

Status of BBC developments @JINR

A.V.Tishevsky on behalf of JINR BBC group

VIII SPD Collaboration Meeting

5 November 2024

<u>Conclusion</u>

Introduction

Extended design

Now : 124 mm diameter Need: 83 mm diameter

We have the opportunity to use an additional tile due to the decreased diameter of the beam pipe.

BBC Sector (1/16 of wheel) design

26 tiles

Prototype assembling part

Sandwich base for BBC

As part of the next **approbation**, it is reasonable to perform milling in plywood or plexiglass.

Honeycomb sandwich base for BBC (under tests)

Proposal for prototype BBC design

Comments for sectors mass production

- It is necessary to ensure the uniformity of WLS output from tiles with a small degree of freedom.
- 2. The output of symmetrical tiles are located taking into account the intersection of fibers at the base of the tiles of each row.
- 3. In order to unify the assemblies, we assume that the WLS of the left tile is always located under the wls of the right tile.

Proposal for prototype BBC design

reduced sector prototype x2

Main Acquisition Modes:

SPECTROSCOPY

SPECT TIMING

(Spectroscopy + Timing)

TIMING

٠

•

CAEN FERS 52XX is an extendable high speed front-end readout system

DT5203 (picoTDC chip)

DT5215 (Concentrator)

- **DT5202** (x2 Citiroc 1A chip)
- DT5202 based on the 64-channel module for SiPM.

Citiroc-1A block scheme

Each channel has low (LG) and high (HG) gain preamplifiers providing a wide dynamic range.

Time of Arrival (**ToA**) & Time over Threshold (**ToT**). **ToT** is giving a rough estimation of energy.

The Timing mode will be used for testbeam and Phase 1 (perhaps) tests, because only this mode has access to the CAEN FERS system **for free-streaming mode**.

Details by Volkov Ivan (see talk at this meeting)

- for future tests
 - → <u>for current tests</u>

→ for calibration

Prototype assembling test

Equipment

The tests were performed for SPECT_TIMING mode (Hybrid) with **self-triggering** opportunity. Main tasks of Hybrid mode are:

Stand for BBC measurements

"AND2_OR32" Trigger logic

- test of the self-triggering option
- the signals analysis
- the dependence of the amplitude to the ToT

Trigger logic for DAQ was "AND2_OR32"

Triggers of consecutive channels are sent to an AND logic operator (e.g. CH0&CH1, etc.). The 32 outputs are then sent to an OR logic operator.

The "FersRun" framework have been designed.

9

Prototype assembling test

Amplitude spectra of two sectors

1-st sector prototype

2-nd sector prototype

Comparison of sector pairs

129

1.00

64.0

There are 2 specific channels, but the debugging process of mass production continues.

These stable tiles were taken for following tests

Prototype assembling test

The first steps for working with the timing mode

LG correlations

LG vs ToT (channel №3)

Correlation of energy deposition for 2 channels, as well as the time information for these channels.

• The calibration of the charge scale is required

Prototype assembling test

The method of assembled sector fast check

Optical connector (26 + 1) WLS <-> Clear Fiber + SGF

Prototype tiles test

The scan by SGF length

from 40mm to 500 mm ~ <u>75% lost</u>

- The 8-channel prototype has been assembled, the self-triggering option of CAEN FERS-5200 system has been tested. The radial dependences of the tiles are correspond with the study of the bending loses of the WLS.
- II. The work of the **ToT function** has been shown, the calibration of the charge scale for estimate of ToT linearity is required.
- III. One of the **possible methods** of express sector checking has been **proposed**.
- IV. A side glow fiber has been tested. The loss of light at possible bends does not exceed over 10%, but the loss of light at a length of 0.5 m is about 75%. Several fiber manufacturers needs to be considered.
- □ The calibration of the charge scale

To do list

- □ Test of clear fiber (Saint-Gobain Crystals and Kuraray manufacturers) attenuation
- □ Test with new connector and transmission box
- □ The assembly of 2 small BBC wheels (128 tiles each) for SPD Phase 0

Thank you for the attention!

REFERENCES

- 1. Physics of Atomic Nuclei, 2024, Vol. 87, No. 4, pp. 450-457.
- 2. Phys.Part.Nucl. 55 (2024) 4, 1091-1098
- 3. www.caen.it/support-services/documentation-area/ (/

(A5202/DT5202 User Manual)

Backup

R & D

Stages of detector production

י 8

The hardware of BBC tests part

Calibration method (Led source)

DT5202 with CAEN LED Driver (SP5601)

Materials selection test part

Scintillator cover

Materials selection test part

Optical cement and WLS

OK-72

сктн і

СКТН Б

1000

014, LG, channels

Fit parameters OK-72

Rms, channels 212.6

800

CKTN

mark E

340.3

240.7

CKTN

mark B

378.4

265.4

for

Prototype

tests

Kuraray Y-11 SGC BCF92 Hits Hits **OK-72** СКТН Е 3000 3000 СКТН Б 2500 2500 CKTN CKTN Fit parameters OK-72 2000 2000 mark E mark B Mean, channels 263.7 Mean, channels 312.8 429.7 569.1 1500 1500 Rms, channels 228.2 268.7 324.9 1000 1000 for 500 500 Phase 1 tests 400 600 200800 1000 200 600 400 016, LG, channels

CKTN χ²/ndf 2.658e-07/0 ĝ0 Epage Channels 390.5 ± 2.227 p1 41.97 ± 0.9293 390 p2 13.41 ± 0.3138 380 370 360 Light collection peak 350 position on dependence of 340 A component amount for 330 🗄 optical cement. 320 🗄 2.4 2.6 2.8 3.2 3.4 3.6 Amount of composition A, %

The results of tests of Kuraray WLS fiber and Saint-Gobain Crystals (SGC) WLS fiber with different types of cement are presented.

- □ CKTN mark B paired with Kuraray WLS fiber are the most appropriate candidates for future testbeam.
- □ CKTN mark B paired with <u>SGC WLS</u> fiber are the most appropriate candidates for prototype assembly tests.
- □ Datasheet ratio will be used and closely monitored for mass production.

- □ Triggers of consecutive channels are sent to an AND logic operator (e.g. CH0&CH1, CH2&CH3, etc.). The 32 outputs are then sent to an OR logic operator.
- OR32_AND2: Triggers of each Citiroc-1A (32 channels each) are sent to an OR logic operator. The 2 output signals (one for each Citiroc-1A) are then sent to a logic AND operator.

FEE studies results

Saint-Gobain Crystals vs KURARAY fibers difference. (CKTN optical cement)

Saint-Gobain Crystals fibers

Specific Properties of Standard Formulations							
Fiber	Emission Color	Emission Peak, nm	Decay Time, ns	# of Photons per MeV**			
BCF-10	blue	432	2.7	~8000			
BCF-12	blue	435	3.2	~8000			
BCF-20	green	492	2.7	~8000			
BCF-60	green	530	7	~7100			
BCF-91A	green	494	12	n/a			
BCF-92	green	492	2.7	n/a			
BCF-98	n/a	n/a	n/a	n/a			

** For Minimum Ionizing Particle (MIP), corrected for PMT sensitivity

Light collection peak position on dependence of A component amount for optical cement.

KURARAY fibers

	Emission		Absorption	Att Long 2			
Description	Color	Spectra	Peak[nm]	Peak[nm]	[m]	Characteristics	
Y-7(100)	green	See the following figure	490	439	>2.8	Blue to Green Shifter	
Y-8(100)	green		511	455	>3.0	Blue to Green Shifter	
Y-11(200)	green		476	430	>3.5	Blue to Green Shifter (K-27 formulation) Long Attenuation Length and High Light Yield	
B-2(200)	blue		437	375	>3.5	UV to Blue shifter	
B-3(200)	blue		450	351	>4.0	UV to Blue shifter	

Kuraray Y-11 fiber collects more photons

Table 1 O	ntical comer	its and their	r narametere

Brand	Viscosity,	Operating	Spectral	Refractive
	cPs	temperature	characteristics	index
		range		
EJ-500	800	From -65	60-95% at	1.574
			300-350 nm	
		to +105 °C	95-100% at	
			350-600 nm	
CKTN MED	$15 \cdot 10^{3}$	—	92-96%	1.606
Mark E			500 nm	
OK-72	—	From -60	99% at	1.587
		to +60 °C	400-2700 nm	