Study of wavelength shifters for tiles' readout

Filipp Dubinin on behalf of MEPhl group

Dubna, 5th November 2024

Beam-beam counter WLS layout

- Various WLS radii for different tiles
 - ➤ D = 18.7..39.8 mm
- 3 loops of WLS embedded into tiles
 - light losses at each loop
- Various length of WLS embedded into different tiles
 - > variation in photons path length

Materials & equipment

Kurarai datasheet: Y-7, Y-8, Y-11 1.0 Emission · Y-7 0.8 - Y-8 0.6 -Y-11 M 0.8 0.4 L 0.6 0.2 0.0 T 0.4 450 550 600 650 500 U ABSORPTION -0.2 D 0.2 Wavelength [nm] -0.4 -0.6 350 400 450 -0.8 Absorption -1.0

Saint-Gobain datasheet:

LED in pulse mode

Single cladding shifters:

Kurarai Y11, Ø1mm

Saint Gobain BCF-92, Ø1mm

*

**

- $t_p = 20$ ns (from pulse generator)
- LED wavelength = 470 nm

Photodetector – PMT-130 (1500V)

Pulse analyzer – Oscilloscope Lecroy 620Zi

Experimental setups

Relative light absorption & Light collection efficiency PMIT-130 Pulse analyzer

Bending loss measurement

Bending loss vs Arc length

Relative light yield

Light transportation in WLS

ລ

Attenuation length: ~ 3.5 m

Relative light absorption

Bending losses

• Y11 • BCF-92

Single loop

Fixed light path length

30mm btw loop and PMT

Dependence on the number of loops

Influence of the number of loops on the light losses:

- Decrease of average number of photoelectrons
- Increase of width of energy distribution \rightarrow degradation of energy resolution

Sources of energy resolution degradation:

- Difference in photons path in WLS
- Loses in bended WLS

Dependence on the number of loops

Number of loops

Impact of photon trapping position to light transmission

For scintillators: $\sigma^2(E) = \alpha E^2 + \beta E + \gamma$

Impact of photon trapping position to energy resolution

- 100 photons generated randomly over N loops
- Mean and sigma of a photon registration probability are taken from the experiment

Summary

Kurarai Y11 and Saint Gobain BCF-92 were chosen for light collection and transmission in BBC detector, their properties were measured:

	Y11, Ø1mm	BCF-92, Ø1mm
Light yield	1	0.33
Bending loss @ D30mm, %	10	8
Light absorption @ 1m, %	60%	50%
Trailing edge, ns	24	12

Overall losses in WLS in BBC configuration and its impact to energy resolution were estimated with Kurarai Y-11 WLS:

For 3 loops and 50 cm long tale: **Transmission efficiency: 88% Relative energy resolution (FWHM): 1.5% (Light source uncertainty excluded)**

THANK YOU!

Multi-cladding Kurarai shifters:

Kurarai data:

Pulse shape (Generator pulse = 20 ns)

Saint Gobain BCF-92 trailing edge = 12 ns Kurarai Y11 trailing edge = 24 ns **1**st **Tver** trailing edge = 16 ns

 2^{nd} Tver trailing edge = 20 ns

For scintillators: $\sigma^2(E) = \alpha E^2 + \beta E + \gamma$

- α light collection inhomogeneity
- β statistics
- γ electronics noise