

Система охлаждения детектора MPD

Внутренний доклад ЛФВЭ

Докладчик Федотов А.С.

План доклада

План доклада:

- 1. Цель и задачи системы охлаждения;
- 2. Подготовительный этап;
- 3. Leakless режим течения;
- 4. Экспериментальное тестирование;
- 5. Инженерная реализация.

Цель: обеспечить охлаждение электроники (ECal, TPC) и термостабилизацию рабочего газового объема (TPC)

Задачи:

- Обеспечить *leakless* режим течения хладносителя;
- Обеспечить термостабилизацию высокую однородность температурного поля в рабочем газовом объеме ТРС;
- Обеспечить охлаждение эффективный отвод тепла охлаждаемой электроники;

Система охлаждения и термостабилизации

Вид на MPD

Внешний тепловой экран Карты SAMPA и FEC + корпуса камер ROC

Фланцы

термоэкран

ECAL

Подготовительный этап

Таблица 2.

Предварительные данные

Оценка мощности и необходимого потока

 $\dot{m} \times c_p \times \Delta T = U \times A \times \Delta T_{\rm cp}$

где:

- \dot{m} массовый расход жидкости (кг/с),
- c_p удельная теплоёмкость жидкости (Дж/(кг °С)),
- ΔT изменение температуры жидкости (°C),
- U общий коэффициент теплопередачи (Вт/(м $^2 \cdot ^{\circ}$ C)),
- A поверхность теплообмена (м²),

 $\Delta T_{\rm cp}$ - средняя разность температур между жидкостью и стенкой трубы (°C).

Фрагмент технического задания по MPD:

		Нагрузка,	Число	Расход воды на 1	Общий расход
	Подсистема ТРС		регулируемых	контур	воды на
			контуров		подсистему
		(кВт)	Ν	(м ³ /час)	(м ³ /час)
1	Внутренний	< 0.05	2x2=4		
	цилиндрический термо-	(ot FFD)		0.5	2
	экран, (термостабилиза-				
	ция, TPC-Al)				
2	Внешний	0.4 +/- 0.1	6x2=12		
	цилиндрический термо-	(ot ECAL + TOF)		0.192 x 9 = 1.728	20.7
	экран, (термостабилиза-			(9 подконтуров)	
	ция, TPC-Al)				
3	Торцевые термоэкраны	0.5 +/- 0.1	2x2=4	0.5	2
	(термостабилизация,	(ot ECAL + TOF)			
	TPC-Al)				
4	Фланцы со спицами	0.15+/-0.02	8x2=16	0.25	4
	(термостабилизация,	(от проводов			
	TPC-Cu)	питания и карт			
		FEE)			
5	24 корпуса ROC камер	10Втх24=0.24	12x2=24	0.1	2.376
	(термостабилизация,				
	TPC-Cu)				
6	Электроника FEE	126Втх24=3.03	12x2=24	0.21	
	SAMPA			(распараллелено	5.2
	(термостабилизация,			на 11	
	TPC-Cu)			подконтуров)	
7	Электроника FEE	158Втх24=3.80	4x2=8	0.65	
	FPGA			(распараллелено	5.2
	(охлаждение,			на 6 подконту-	
	TPC-Cu)			ров)	
8	Стабилизаторы LVDB и	8.45	2x2=4	0.114x6=0.684	2.736
	контроллеры считывания				
	(охлаждение, ТРС-Си)				
	Итого:	16.6	96	-	44.212

Доклад для команды SPD, 19 сентября 2024

Расчет течения leakless

Система охлаждения и термостабилизации

Режим *leakless* требует абсолютного давления в TPC & ECAL < <u>1 атм.</u>

- Каждый метр водяного столба изменяет давление на 0.1 атм;
- Высота MPD ≈ 8 m;
- Давление выше 1 атм может привести к протеканию;
- Давление ниже 0.1 атм может стать причиной кавитации или остановки.

Чтобы рассчитать режим работы нужно знать гидравлические сопротивления контуров

Физическая модель

Уравнения Навье-Стокса для труб:

$$\begin{cases} \frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \nabla)\vec{u} = -\frac{\nabla P}{\rho} - \frac{1}{2}f\frac{|u|\vec{u}}{D} + \vec{g} \\ \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho\vec{u}) = 0 \end{cases}$$
$$\rho c_l \left(\frac{\partial T_l}{\partial t} + \vec{u} \cdot \nabla T_l\right) = \nabla \cdot (\lambda_l \cdot \nabla T_l) + \frac{1}{2}f\frac{\rho |u|\vec{u}}{D} + Q_{\text{wall}} \\ \rho c_s \frac{\partial T_s}{\partial t} = \nabla \cdot (\lambda_s \cdot \nabla T_s) + Q_{\text{heat}} \end{cases}$$

Уравнение Колбрука-Уайта для фактора Дарси:

$$\frac{1}{\sqrt{f}} = -2\log\left(\frac{\varepsilon}{3.7D} + \frac{2.51}{\operatorname{Re}\sqrt{f}}\right)$$

Re – число Рейнольдса; ε – шероховатость стенок трубопровода.

 \vec{u} – скорость,

- Р давление воды,
- *T*_{*l*} температура воды,
- *T_s* температура твердого тела,
- λ коэффициент теплопроводности,
- с теплоемкость

Q – источник тепла,

- *g* ускорение свободного падения,
- $\rho\,$ плотность,
- D диаметр трубы,

f – фактор Дарси.

Падение давления на изгибах:

$$\Delta p = \frac{1}{2} K_f \rho u^2$$

К_f – коэффициент потерь.

• Будет ли соблюдаться 0.1 atm < *p* < 1?

Пример краевой задачи для SAMPA

Внешний тепловой экран

Изначальный концепт: "одно окно MPD для входа и выхода трубы" — слишком низкое давление на выходе

Новый концепт: "выходные трубы в верхней половине MPD направляются в боковое окно" – давление ОК

Параметры внешнего теплового экрана

Вычисляемые результаты

Параметр	Значение
Диаметр подводов MPD d_MPD_in	20 мм
Диаметр отводов MPD d_MPD_out	30 мм
для контуров III, IV, V, VI, VII	
Диаметр отводов MPD d_MPD_out	20 мм
для контуров I, II, VIII, IX,Х	
Диаметр подводов TPC d_TPC_in	20 мм
Диаметр отводов TPC d_TPC_out	20 мм
Расход на подконтур q_out_th_scr	1.08 м ³ /ч
Высота верхнего коллектора h _{c-u}	4.1 M
Высота нижнего коллектора h _{c-d}	2.6 м
Шероховатость трубок є	0.015 мм
Давление в баке р _{tank}	0.35 атм
Давление на вход в контур I р _{itsl}	0.996 атм
Давление на вход в контур II p _{itsll}	1.11 атм
Давление на вход в контур III р _{itsl}	0.85 атм
Давление на вход в контур IV p _{itsll}	0.94 атм
Давление на вход в контур V р _{itsl}	0.92 атм
Давление на вход в контур VI р _{itsll}	0.90 атм
Давление на вход в контур VII р _{itsl}	0.80 атм
Давление на вход в контур VIII р _{itsl}	0.92 атм
Давление на вход в контур IX р _{its}	1.04 атм
Давление на вход в контур X р _{its}	1.04 атм
Число Рейнольдса в нагрузке Re	$(0.5 - 1.2) \cdot 10^4$
••	-

Расчет параметров для всех контуров

Обновленные параметры системы

Название системы	Расход на контур	Количество подконтуров	Расход на полконтур	Мощность, кВт
Внешний	<i>J</i> I		<u> </u>	
тепловой экран	20,7 м³/ч	8	1.21 м³/ч	0,5
ź		12	0.91 м³/ч	
Фронтальный				
тепловой экран	1,44 м³/ч	8	0,18 м³/ч	0,6
Фланцы	8,0 м³/ч	8	1 м³/ч	0,15
Корпуса ROC	2,4 м³/ч	24	0,1 м³/ч	0,02
LVDB	2,74 м³/ч	8	0,34 м³/ч	8,45
FEC-FPGA	6,62 м ³ /ч	6	0,84 м ³ /ч	3,8
		2	0,79 м³/ч	
FEC-SAMPA	13,2 м³/ч	12	0,55 м ³ /ч	3,03
Внутренний				
термоэкран	2 м³/ч	4	0,5 м³/ч	0,05
ECAL	3,24 м³/ч	10	0,324 м ³ /ч	7,5
Термостабили-				
зация газа	0.3 м ³ /ч	3	0,1 м³/ч	минимальна
Суммарно на систему	60,34	105		24,1

Доклад для команды SPD, 19 сентября 2024

Радиаторы и экраны были изготовлены на подготовительном этапе.

Их изготовление можно объединить с расчетами течения.

Система охлаждения детектора МРD

15

Экспериментальное тестирование

Испытательный стенд

Насосы:

СР — циркуляционный насос Wilo 903; VP — вакуумный насос VALUE 115N; Электроника:

FM – частотный преобразователь;

HDMI – панель управления WEINTEK cMT3162X;

Сенсоры:

G1, G2 – вихревые расходомеры SV3150, G3 – Теккноу Флексус;

Т1-Т3 – погружные датчики температуры; Р1-Р4 – датчики давления.

Гидродинамический эксперимент

Элемент	Sampa	ECAL	Frontal thermal screen	Outer thermal screen	LVDB	ROC case	FPGA
<i>q</i> , m³/h	0,55	0,12	0,08	0,91	0,1	0,1	0,27
ΔP_{exp} , atm	0,47	0,16	0,15	0,41	0,5	0,5	0,52
ΔP_{sim} , atm	0,50	0,18	0,15	0,38	0,5	0,5	0,55

Frontal thermal screen behaves better than predicted, the rest are similar

Тепловой эксперимент

Достижима ли термостабилизация 0.1 К в принципе?

мин. ~24.3 °С 27.0 ↓ - - - ↓ ↓ - - - ↓ 23.0

Pad plane with ROC input water heating T = 23 °C

Пэдовая плоскость в контакте с рабочим газовым объемом

https://rutube.ru/video/private/fc768c02 ae8ce14493c1f14abc95949b/?p=Mdkkue BE90 rzah2Bd1gRA

Инженерная реализация

Схема медного контура термостабилизации

Утвердил

Левков

Оборудование

Вакуумные баки

Насосные модули с дублированием и фильтрационными системами

Шкафы электроники

Некоторые заметки

- Материалы труб не должны образовывать гальваническую пару (Al и Cu);
- Термостабилизация линии подачи газа представляет серьезную проблему;
- Нужна защита от бактерий и водорослей.

Медная и алюминиевая трубка после 135 часов непрерывной прокачки дистиллированной воды по медноалюминиевому контуру

Выводы

- Экспериментальные измерения расходно-напорных характеристик системы охлаждения MPD совпадают с численными оценками, что повышает вероятность корректных расчетов всей системы охлаждения и термостабилизации;
- Расчеты с использованием САD-программ позволили добиться конфигурации, соответствующей требованиям leakless;
- Проведенные стендовые испытания лягут в основу автоматизированных алгоритмов термостабилизации.

Спасибо за внимание!

	BSU INP:	ArcoLab:	JINR:
	Ilya Zur,	Alexander Shish,	Alexander Fedotov,
	Alexei Kunz,	Vladimir Senkevich,	Alexander Makarov,
	Yaroslav Galkin	Mikhail Vaschilenko,	Gleb Mescheryakov,
	Julia Fedotova	Kirill Levkov	Sergei Movchan,
١	Vladimir	Alexander Galuza	Igor Balashov,
	Tchekhovski	Alexander Novikov	Vyacheslav
	Maria Medvedeva		Samsonov
	Julia Shafarevich		