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Аннотация

In particle physics data analysis the so-called Lagrange Multiplier Method has been used for
many years. It has been implemented in the 1960s by the famous Alvarez group for processing
experimental data. Since then it is widely used in physical community. It is named after Lagrange
who proposed the method for finding the minimum of functions of many variables under the
requirement that they satisfy to some additional conditions (equalities, inequalities). The method
uses some artificial variables called Lagrange multipliers having no physical meaning.

Another approach is described here, to find the minimum of a function (in our case it is either
χ2 or logarithm of Likelihood Function) with the constraints. The proposed method is based on
the linearization of the constraints during a suitable iteration procedure for the search for the
minimum.

We propose a new method for selecting submatrices of partial derivatives Jacobi matrix in this
paper.

1 Introduction
“The history of constrained optimization spans nearly three centuries. The principal warhorse, Lagrange
multipliers, was discovered by Lagrange in the Statics section of his famous book on Mechanics from
1788 [1], by applying the idea of virtual velocities to problems in statics with constraints. The idea of
virtual velocities, in turn, goes back to a letter of Johann Bernoulli from 1715 to Varignon, in which
he announced a very simple rule for solving hundreds of Varignon’s problems in the blink of an eye.
Varignon then explains this rule in his book published in 1725 [2]. Half a century later, Bernoulli’s
rule was chosen by Lagrange as the general principle for the foundation of his mechanics, with the
multipliers as the main tool for treating mechanical constraints"[3].

In particle physics data analysis Lagrange Multiplier Method has been used for many years. For
processing experimental data it has been implemented in the 1960s by the famous Alvarez group [4, 5].

The problem may be formulated as follows [4, 5]: find such values of kinematical parameters xi,
i = 1, . . . , np, that turn χ2(x) (1) into the minimum

χ2(x) =

np, np∑
i=1, j=1

(xi − xm
i ) gi,j

(
xj − xm

j

)
(1)

and satisfy conservation law equations (constraints) (2)

fλ(x) = 0; λ = 1, . . . , nc, (2)

where x = (x1, x2, . . . , xnp)
T is the column vector of kinematical parameters xi, np is their number,

G = (gi,j) is the matrix, inverse to the error matrix, xm
j are the measured values of the parameters,

and nc is the number of conservation law equations.
The authors have shown that if xm

j are distributed according to the Gauss law and x satisfy (2),
form (1) has the χ2 distribution with the number of degrees of freedom (ndf) equal to nc (ndf = nc).
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The authors proposed to search for the minimum of (1) using iteration scheme for the Lagrange
function (Lagrange multiplier method):

χ2(x) =

np, np∑
i=1, j=1

(xi − xm
i ) gi,j

(
xj − xm

j

)
+ 2

nc∑
λ=1

αλ · fλ(x). (3)

Here αλ are the arbitrary multiplier to be found during the search for the minimum. During iterations
both xi and αλ are varied.

Later [6] we considered a more general case where instead (3) we proposed to search for minimum
(as before in Lagrange Multiplier Method), minimizing the form

χ2(x) =

nf , nf∑
i=1, j=1

(ci(x)− cmi ) qi,j
(
cj(x)− cmj

)
(4)

and satisfying (2). Here ci(x) are the observables, i.e., the functions of kinematical parameters x, cmi
are their measured values, Q = (qi,j) is the inverse matrix of the observables error matrix and nf is
the number of measured functions. It was shown that if errors are distributed by the Gauss law and x
satisfy (2), form (5) has χ2 distribution with ndf = nf −np+nc. Here np is the number of kinematical
parameters or dimension of the vector x. In the case where nf = np, ndf = np as was in the original
proposal of the method.

Let us stress that that in Lagrange Multiplier Method the dimension of the problem (or
iteration procedure) is np + nc.

2 Alternative to Lagrange Multiplier Method

2.1 The idea of the method
At the time when we considered the so-called generalized [6] kinematical fit we came to the following:
the search for the minimum of form (5)

χ2 =

nf,nf∑
i=1,j=1

(Ci(x)− Cm
i )Qi,j(Cj(x)− Cm

j ) (5)

is usually performed by an iteration procedure, where near some initial values of the parameters x = x0

function (5) is approximated by quadratic form

F (x) = F0 + gT ·∆x+
1

2
∆xT ·Z ·∆x, (6)

where g is the column vector of the derivatives and Z is the Hesse matrix of the second derivatives
with respect to parameters x. Near the same values x0 one can expand (2)

f(x) ∼= f(x0) + F ′ ·∆x = 0, (7)

where F ′ is the rectangular matrix of the constraint derivatives with respect to parameters (nc rows
and np columns). Using this equation we may express some of the increments ∆(x) in terms of f(x0)
and the matrix F ′ and substitute it into (6). After this substitution you get another quadratic form
with the parameter vector x′ having the dimension np − nc. We have the reduction of the dimension
of the problem. So it is the pure substitution method but for parameter increments! This approach
was published in [7]. It was shown that under correct hypothesis average value χ2 = nf −np+nc. The
expression for the error matrix of the vector x was also obtained.

Authors of [8] refer to the Reduced-Gradient-Type Methods for the solution of the minimization
problems with nonlinear equalities constraints. A generalized reduced gradient (GRC) method was
first proposed by J. Abadie and J. Carpentier (1965, 1969 [9]). The idea of our method is similar to
the GRC approach.

We would like also to mention another approach, proposed by V.I. Moroz [10] in JINR in the
time when bubble chamber was the main instrument in particle physics. He used a simple constraint
accounting method by using a penalty function.
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2.2 Necessary formulae
We may rewrite (7) as

f ≈ f(x0) + F ′
f ·∆xf + F ′

c ·∆xc = 0. (8)

Here F ′
f and F ′

c are submatrices of F ′, first has nc rows and np − nc columns, second nc rows and nc

columns. We may express ∆xc as a function of ∆xf in the form

∆xc = r + S ·∆xf . (9)

The subvector ∆xc in (6) may be changed according to (9), and we come to the new quadratic form
depending only on nf = np − nc increments ∆xf :

F = F̃0 + g̃T ·∆xf +
1

2
∆xT

f · Z̃ ·∆xf , (10)

F̃0 = F0 +

nc∑
k=1

rk ·
[
gnf+k +

1

2
·

nc∑
l=1

znf+k,nf+l rl

]
, (11)

g̃i = gi +

nc∑
k=1

gnf+k · sk,i +
nc∑
k=1

rk

[
znf+k,i +

nc∑
l=1

sl,i znf+l,nf+k

]
, (12)

z̃i,j = zi,j +

nc∑
k=1

[
sk,i · znf+k,j + sk,j · zi,nf+k

]
+

nc, nc∑
k=1, l=1

sk,i znf+k,nf+l sl,j . (13)

2.3 Selection of a submatrix F ′
c

There exist more principles of “correct” selection of a submatrix F ′
c of F ′ in (8). If the selection process

is defined by removing np − nc columns of the matrix F ′, we may consider, e.g., the next principles:

• select a submatrix F ′
c with maximum absolute value of the determinant among all possible

submatrices of size nc × nc of the matrix F ′ (to get the “maximal precision” in computation
of vectors ∆xc from (8));

• remove the columns corresponding to the maximum absolute values in the upper triangle of the
correlation matrix of F ′ columns (to remove the “maximal dependent” columns);

• remove the columns corresponding to the maximum absolute values in the upper triangle of the
cosine matrix of F ′ columns (to keep the “maximal independent” columns).

In the general case, the last principle may be faster then the determinants evaluation. We do
prefer the maximum absolute value of the determinant principle. Is some special cases, it is possible to
determine the maximal determinant absolute value without the evaluation of all submatrices determinants.
E.g., in some our computations, we have got the 4× 6 matrices F ′ in the form:

F ′ =


d11 d12 d13 d14 d15 d16
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

 ,

for which the maximal possible determinant absolute value is equal to

|D|max = max [|d14 − d11|, |d15 − d12|, |d16 − d13|] = max [|∆41|, |∆51|, |∆61|] = max
k=4,5,6

|∆k1|.

The column k∗ = argmaxk=4,5,6 |∆k1| is added to the columns 1, 2, and 3, to get the submatrix F ′
c

with the maximal absolute value of the determinant.
Finally, in this approach the dimension of the space of parameters, in which solutions are sought

is np − nc, compared with the dimension np + nc in the Lagrange Multiplier Method.
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3 Realization of the method
The method was realized on the base of the algorithm of the Fumili program [11, 12]. The main idea
of the Fumili algorithm is to use the approximate expression of the second derivative matrix Z in
the formula (6). This approximate matrix is positively defined, which guarantees the motion to the
minimum during iterations. The details of the Fumili algorithm in the simplest form are presented
in [13].

3.1 Tutorial example on simulated data
A couple of years ago my two young colleagues asked me to give an example of usefulness of the
kinematical fit, in particular of the proposed one – or in general case – constrained fit.

The suitable probability density function (pdf) was chosen as (14)

pdf (x, y) = (1 + α1 · x+ α2 · y)/(1 + 0.5 · α1 + 0.5 · α2), (14)

i.e., a two-dimensional function defined on the area 0 < x < 1 and 0 < y < 1. The values of the
parameters were α1 = 0.5 and α2 = 0.8. A constraint was just one equation, chosen in the simplest
linear form (15):

α1 + α2 = 1.3 . (15)

According to (14), 105 events were generated and fitted in two approaches – fitting suitable
likelihood function by the standard Fumili code without constraints and by the procedure proposed
here.

parameter constrained option unconstrained option

α1 0.501± 0.013 0.515± 0.023

α2 0.799± 0.013 0.815± 0.026

Таблица 1: The values of the estimates

In Table 1, the results for the constrained and unconstrained cases are shown. Cited errors are
those calculated by the program. It is clear that:

1. In both cases the estimates are within one calculated error of true values.

2. Calculated errors in the constrained option are two times smaller than in the unconstrained
option.

3. Values of estimates in the constrained option are much nearer to the true ones.

3.2 In the processing of experimental data
In fact, the above-mentioned approach was born during our experiments in Protvino [14, 15].

The other field of application of this method was experiments in a COSY Accelerator Center
(Germany).

During many years a lot of nuclear physics experiments were performed in a COSY. Many processes
were measured and analyzed within this program. In particular, processes with the production of the
diproton (i.e., two-proton system (1S0 state) with small binding energy) were extensively investigated.
There is a lot of the papers where proposed method was used. An example is [16], where the process
of pp → pp (1S0) + π0 was studied. It was found that the differential cross section of the production of
the 1S0 system in the forward direction had resonance-like behavior in the region

√
s ≈ 2.65 GeV.

4 Conclusion
New approach to the estimation of particle parameters by the minimization of χ2 or logarithmic
functions with the constraints is presented. Since its origination it required more than 30 years before
we understood that we came to “complete” solution of a problem in a frame of original proposal. In
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a sense this approach may be considered as an alternative to Lagrange Multiplier Method, proposed
nearly seventy years ago and actively used since then.

We are not going to compare proposed method with Lagrange Multiplier Method in terms of
computer speed, simplicity and so on. Our aim was just to show that there is another option for
the solution of similar problem! As for its advantages or disadvantages we would prefer to do such
a conclusions by the reader.

The only thing which we may say that the dimension of the problem diminishes compared with
Lagrange Multiplier Method,but on the other hand there is a problem of the selection of so-called
“free” parameters.
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