Realistic simulation and hit reconstruction for the Straw Tracker

Ekaterina Mosolova

September 18, 2024

PNPI | SPD Physics & MC Meeting

Straw Tracker – the main tracking system of SPD

Straw diameter: 10mm thickness 36μ m PET Barrel is made of 8 modules with up to 31 double-layers, with the ZUV orientation $(0^{\circ}, +3^{\circ}, -3^{\circ})$

2023 Sonya B. & Vitalii B. parameterized mode and variance of the straw signal registration time distribution by Garfiled++/LTSpice

 Straw diameter: 10 mm
 Si

 Anode diameter: 30 mkm
 Ni

 Gas mixture: Ar+CO2 / 70:30 [%]
 Ti

 Gas gain = 4.5E4
 Vi

 Peaking time 25 ns
 So

 Mosolova E. (PNPI | SPD Physics & MC Meeting)

σ vs distance to wire, noise 1500e

Signal amplification 3 mV/fC Noise is implemented Threshold 10 mV VMM3-based readout model Source: Diploma by Sonya B.

- 1. Geometry-update-spring 2023: $\sigma(R_{MC})$ is const = 150 μ m
- 2. Development 2024: $\sigma(R_{MC})$ is 0.06506 * $exp(-3.26 * R_{MC})$

Before the SPDROOT blurred the MC point

File: spddata/hits/vnt/SpdMCStrawHit1D.cxx

- Initially, there was no simulation of the real signal.
- Monte Carlo Point was blurred in an almost infinite while loop with a fixed variance of 150 μm

We introduced the realistic signal parameterization (Hit Reconstruction) to SPDROOT

File: spddata/hits/vnt/SpdMCStrawHit1D.cxx

- The distribution of the drift time (DT) is provided by Sonya B.
- The DT is calculated for each Monte Carlo point
- Afterward, DT is smeared by $\sigma(DT) = f(R_{MC})$
- Roots of the inverse function (parabola) provide *R_{RecoHit}*

4% of hits are lost near the anode Less than 1% is reconstructed outside the tube

Therefore, the accuracy of hits position estimation is an object of utter importance. Mosolova E. (PNPI | SPD Physics & MC Meeting)

Simulation settings

- Patricle: muon (μ , pdg = 13)
- Energy: 1GeV
- Generator: SpdlsotropicGenerator
 - θ : is angle between Z-axis and beam (now we used $\theta = 90^{\circ}$)
 - *φ*: From 0° to 360°
- Detectors:
 - Only Straw Barrel
- Vertex: Off
- Magnet: field_full1_8.bin
- Events:

100k (for $heta=90^\circ$)

The comparision includes simuls by two versions of SPDROOT w/o magnetic field (param0) and w/ magnetic field 1.3T (param1)

Reconstruction efficiencies for param0/1 difference are the same

Efficiency for θ =90° (angle between Z-axis and beam) IP = 1.0 GeV, pdg = 13, stereo-angle between straw sublayers = 3.0° (default)]

Mosolova E. (PNPI | SPD Physics & MC Meeting)

Distributions of residuals over areas R_{mc} We are considering 10 ranges [mm]: [0.0–0.5), [0.5–1.0), [1.5– 2.0), etc.

Bias Analysis of hit reconstruction: Default vs. Parametric Versions.

Mean of $R_{\text{RecoHit}} - R_{MC}$ for $\theta=90^{\circ}$ (angle between Z-axis and beam) [P = 1.0 GeV, pdg = 13, stereo-angle between straw sublayers = 3.0° (default)]

 $\begin{array}{l} R_{RecoHit} \text{ for defaul version is } gRandom \rightarrow Gaus(R_{MC},\sigma(R_{MC})) \\ R_{RecoHit} \text{ for param version is calculated from smearing function} \\ \text{In Development2024 version (default) toy parameterization was} \\ & \text{Mosolova, E. (PNPI | SPD Physics \& MC Meeting)} \\ & \text{added} \end{array}$

Variance of $R_{MC} - R_{RecoHit}$

Variance of $R_{\text{RecoHit}} \cdot R_{\text{MC}}$ for θ =90° (angle between Z-axis and beam) [P = 1.0 GeV, pdg = 13, stereo-angle between straw sublayers = 3.0° (default)]

1. $\sigma(R_{MC})$ for 2023 defaul version is const = 150μ m 2. $\sigma(R_{MC})$ for 2024 defaul version is $0.06506 * exp(-3.26 * R_{MC})$ 3. $\sigma(R_{MC})$ for 2023/4 param0/1 calculated with SmearHit func.

Let's look at interesting areas: from 0.5 to 1.0;

R_{MC} [cm]

Mean of $R_{\text{PeccHz}} \cdot R_{MC}$ for θ =90° (angle between Z-axis and beam) [P = 1.0 GeV, pdg = 13, stereo-angle between straw sublayers = 3.0° (default)]

Variance of R_{PecoN1} - R_{INC} for #=90° (angle between Z-axis and beam) [P = 1.0 GeV, pdg = 13, stereo-angle between straw sublayers = 3.0° (default)]

Let's look at interesting areas: from 0.5 to 1.0; from 1.5 to 2.0

[P = 1.0 GeV, pdg = 13, stereo-angle between straw sublayers = 3.0° (default)] [mm] (June - Rucc) [mm] 0.2 0.5 Parameterisation based on Gartield simulation for mul13) 1 Gev Parameterisation based on Garfield simulation for mul13) 1 Gev 0.45 0.4 Resolution: 287 µm solution: 147 µm [2023, default] (2024, default) (2023, detault) 12024, default 0.35 -0.1 0.3 Resolution: 174 µm -0.2 12023. param04 🔺 (2024, param0) (2023, param0) [2024, param0] 0.25 -0.3 0.2 Resolution: 150 um Resolution: 150 um • [2023, param1] A [2024, param1] [2023, param1] [2024, param1] -0.4 0.15 -0.5 0.1 -0.6 0.05 -0.7 0.6 0.8 0.2 0.6 0.8 R_{MC} [cm] R_{MC} [cm] Efficiency for 0=90° (angle between Z-axis and beam) [P = 1.0 GeV, pdg = 13, stereo-angle between straw sublayers = 3.0° (default)] Rue)"100 [%] emeterisation based on feld simulation for mu(13) 1 Gev 100 ¥ Mean eff. = 10 (2023, default) Mean eff. = 1009 (2024, default) 80 . (0.5, 1.0]Mean eff. - 94% Mean eff. - 94% (2024, param0) 60 (1.5, 2.0]5 4 Mean eff. = 95%
 [2023, peram1] Maan eff. = 95% [2024, param1] 40 20 0.8 R_{MC} [cm] Unit:mm

Mosolova E. (PNPI | SPD Physics & MC Meeting)

Mean of R_{Bernite} - R_{MC} for e=90° (angle between Z-axis and beam)

Variance of R_{RecoHt} - R_{INC} for 0=90° (angle between Z-axis and beam) [P = 1.0 GeV, pdg = 13, stereo-angle between straw sublayers = 3.0° (default)]

Let's look at interesting areas: from 0.5 to 1.0; from 1.5 to 2.0 and from 4.5 to 5.0 mm

0.2 0.5 [mm] (June - Hand) Parameterisation based on Garfield simulation for mu(13) 1 Gev Parameterisation based on Garfield simulation for mu(13) 1 Gev 0.45 111 0.4 solution: 147 µm Resolution: 287 µm [2023, default] (2024, default) (2023, detault 12024, default 0.35 -0.1 0.3 -0.2 12023. param04 12024. param08 (2023, param0) [2024, param0] 0.25 -0.3 0.2 Resolution: 150 µm Resolution: 150 um [2023, param1] A [2024, param1] [2023, param1] -0.4 0.15 -0.5 0.1 -0.6 0.05 -0.7 0.6 0.8 0.6 0.8 R_{MC} [cm] R_{MC} [cm] Efficiency for 0=90° (angle between Z-axis and beam) [P = 1.0 GeV, pdg = 13, stereo-angle between straw sublayers = 3.0° (default)] R.w.)*100 [%] Parameterisation based on Garfield simulation for mu(13) 1 Gen 100 Mean eff. = 100% (2023. default) Mean eff. = 100* (2024, default) 80 . (0.5, 1.0] Mean eff. - 94% (2023, paramol Mean eff. - 94% (2024, param0) 60 (1.5, 2.0]5 2 4 Mean eff. = 951 (2023, param1) Maan eff. = 95% [2024, param1] 40 (4.5, 5.0]20 0.8 R_{MC} [cm] Unit:mm

Mosolova E. (PNPI | SPD Physics & MC Meeting)

Mean of R_{Bernite} - R_{MC} for e=90° (angle between Z-axis and beam)

[P = 1.0 GeV, pdg = 13, stereo-angle between straw sublayers = 3.0° (default)]

Variance of R_{PacoHt} - R_{MC} for 0=90° (angle between Z-axis and beam) [P = 1.0 GeV, pdg = 13, stereo-angle between straw sublayers = 3.0° (default)]

Residual for three selected point

Next, we'll analyze the behavior at an angle with 30 hits per track (26°) and at the left edge of the saturation plateau (40°).

Mosolova E. (PNPI | SPD Physics & MC Meeting)

Difference near anode $>20\%\rightarrow$ switch to individual calibration curves

Individual calibration curve: less bias

Mosolova E. (PNPI | SPD Physics & MC Meeting)

$$DT = 20.72R_{MC}^2 + 5.7$$
 $DT = 16.88R_{MC}^2 + 5.7$ $DT = 15.39R_{MC}^2 + 5.7$

Mosolova E. (PNPI | SPD Physics & MC Meeting)

Bias increases with the same calibration curve (90°) .

Reduced variance: ineffective with high bias

- **Signal Parameterization:** Straw signal parameterization by Sonya B. and Vitalii B. was implemented in SPDROOT for several angles.
- SPDROOT:
 - **Parameterization:** A comparison of different parameterization approaches, considering with and without the magnetic field, was conducted.
 - **Hit Reconstruction:** A straw hit reconstruction procedure has been introduced into SPDROOT.
- https://git.jinr.ru/nica/spdroot/-/tree/Straw-Signal-Parameterisation

Result:

- Initially, both parameterization approaches seem to work similarly, so we'll use the parameterization without considering the magnetic field for future work.
- The initial version developed shows a bias at the level of 100 as a function of the radius.
- For the current realistic simulation of VVMM3-based readout model, the average resolution for 90° is 150μ m.
- Using a single calibration curve results in high bias and reduced variance, making it ineffective.

Thank you for your attention!

bckp

2023 param0 \mid Residual for three selected point \mid Bias issues with a single calibration curve

Efficiency for 0=26° (angle between Z-axis and beam) [P = 1.0 GeV, pdg = 13, stereo-angle between straw sublayers = 3.0° (default)] Used MPV (theta = 90deg) calibration curve (R_{RecoHit}/R_{MC})*100 [%] 100 1 Parameterisation based on Garfield simulation for mu(13) 1 Gev 80 Mean eff. = 100% Mean eff. = 100% [2023, default] [2024, default] 60 -11 Mean eff. = 86% Mean eff. - 86% [2023. param0] [2024, param0] 40 20 0 0 0.2 0.4 0.6 ^{0.8}R_{MC} [cm] Efficiency for 8=40° (angle between Z-axis and beam) [P = 1.0 GeV, pdg = 13, stereo-angle between straw sublayers = 3.0° (default)] Used MPV (theta = 90deg) calibration curve (R_{RecoHit}/R_{MC})*100 [%] 100 ų, Parameterisation based on Garfield simulation for mu(13) 1 Gev 80 77 Mean eff. = 100% Mean eff. = 100% 2023, default] 2024 default 60 Mean eff. = 89% [2023, param0] Mean eff. = 89% [2024, param0] v . 40 20 0 0.2 0.4 0.6 0.8R_{MC} [cm]

To calculate the efficiency in the range of R_{mc} from 0.0 to 0.5 cm, the total number of R_{mc} was counted, then it was calculated how many of these R_{mc} were reconstructed:

 $Eff = \frac{N_{RecoHit}}{N_{totalOfHits}}$ The efficiency of the parameterized version is lower than in the default version.

No reco in default.

1. Drift time (*DT*) from R_{mc} and Garfield's simulations **2.** $R_{RecoHit}$ from *DT*

Create hit position in param0/1

Create hit position in default

Coeff for quadratic equation (param0)

Coeff for quadratic equation (param1)

