Time of Flight Detector Status Report

Time of Flight (TOF) detector proposal

- $\pi/K/p$ discrimination for momenta ≤ 2 GeV
- Determination of t0
- Time resolution requirement <60 ps.
- Sealed (MRPC) are the base option. B.Wang et al, JINST 15 (2020) 08, C08022

- Number of readout for Barrel is 144x2x32=9216 channels.
- Number of readout for Endcap is 32x2x48=3072 channels.
- Total amount is 12288 channels

DAQ (TRBv3) preparation and FEE news

OUTPUT 02 03 04 05 06 07 08 RUNO Test PCB Hist T SPD NINO Test Boa

Valery Chmill ToF Status Report

DUBNA, 3 October 2024

TDC-Readout-Board, Triggered/Triggerless-Readout-Board 📼 📫

Item	Value
Supply Voltage	48 V (40-50V), galvanically isolated on board
Power Supply Current	0.5A minimum without AddOns
GbE-connectivity	max. 95 MBytes/s transfer per link
GbE-slow-control	up to 400 registers/transfer, speed depends on GbE latency
Connectivity	Max. 8 SFPs, each 2GBit/s on board. With hub-addon: max. 32 SFP
	4 AddONs on top (208 pin), 1 AddOn on bottom
Max Readout Trigger Rate	about 300 kHz (depending on configuration and network size)
Max Hit Rate	50 MHz (burst of 63 hits)
TDC Channels	260 (Single edge detection)
Time Precision	<20 ps
Minimum pulse width	<500 ps

TRBv3 FPGA-TDC Based Platforms 128ch in TDC mode

Valery Chmill ToF Status Report

TDC on FPGA, TRB3 FEE from PADIWA

* Jinyuan Wu, Z. Shi и I. Wang CERN2000

Update Interval (ms)

C

 $\leftarrow \rightarrow$

Board Filter # of Channels

Split Table

Input Status

c00a

c00b

c00c

c00d

c00e

c00f

c010

c011

c012

Configuration

5000

0310

33

1000

TDC Registers

O D localhost:1234/tdc/tdc.htm

Differences

c10f

c110

c111

c112

0

0

0

0

0

0

0

0

0

0

0

0

0

31672

31672

Enable

 \checkmark

 \checkmark

 \times

Content

ref input valid trg

tdc version channels

valid tmg trg

valid notmg

spurious trg

wrong rdo

spikes

idle time

wait time

releases

rdo time

number

timeout number

data finished

invalid trg

multi trg

0310

2.1.5

14844561

14844561

32 polarity correct

0

0

0

0

0

0

7274799

14227882

14844561

14844561

412354

0

Threshold settings Ō \times TDC Regis $\leftarrow \rightarrow C$ 🔿 🗋 localho

Threshold Settings

Configuration								
Board	0311							
DAC-Chain	1 🗸							
Channel	1 🗸							
Board Type	LTC242x DAC 🗸							
Update Interval (ms)	500							
Reference (mV)	3300							
DiRich2 Flash:	Store Load							
Last read								
Last set	12:46:47 PM							
	ок							

Coarse (0-65535) Fine (0-255)

Shortcuts

- c/v: Increase/Decrease channel number
- d/f: Increase/Decrease chain number
- Up/Down: Increase/Decrease by 1
- Shift + Up/Down: Increase/Decrease by
- · PageUp/PageDown: Increase/Decrease
- Shift + PageUp/PageDown: Increase/De
- a/A: Increase / Decrease board address
- B/U/R: Select input field
- · r: Refresh values, read-back values from

Hit Rate Status	OK		RESET
Reg	Channel	0310	Reg
	Channel group	3 2 1 0 on on on on off off off off	c100
c000	0	31675	c104
c001	1	0	c105
c002	2		c106
c003	3	0	c107
c004	4		c108
c005	5		c109
c006	6	- 0	c10a
007	7		c10b
000	/	0	c10c
-000	0	0	c10d
C009	9	0	

10 🗆

11 🗆

12

13

14

15 🔽

16 🔽

17

18

Reg	Content	0310
c800	Logic Anal. Debug Mode Calib. Prescaler	0 0
c801	window en. window bef. window aft.	Disabled on off 0 ns 0 ns
c802	act chan 1	0xc000c000
c803	act chan 2	0x0
c804	data limit	8
c805	inv chan 1	0x0
c806	inv chan 2	0x0

C/V: Increase/Decrease channel number		
 d/f: Increase/Decrease chain number 	c013	19 🗆
Up/Down: Increase/Decrease by 1	c014	20 🗆
Shift + Up/Down: Increase/Decrease by 16	c015	21 🗆
 Pageup/Pageuown: Increase/Decrease by 2008 Shift + Dagelin/PageDown: Increase/Decrease by 2008 	c016	22 🗆
a/A: Increase / Decrease board address	c017	23 🗆
B/U/R: Select input field	c018	24 🗆
 r: Refresh values, read-back values from Padiwa 	c019	25 🗆
	c01a	26
	c01b	27 🗆
	c01c	28 🗆
	c01d	29 🗆
	c01e	30 🗆
	c01f	31 🗹
Valery Chmill ToF Status Report	c020	32 🗹

31677

 \checkmark

WEB CTS

ZOO on SUSE Tumbleweed:

- VHDL is a hardware description language that can model the beha vior and structure of digital system at multiple levels of abstraction.
- **Perl** Practical Extraction and Report Language.
- **XML** ExtensibleMarkupLanguage for storing, transmitting, and recon structing arbitrary data.
- **C++** (ROOT etc.)

Central Trigger System

Trigger Channels

Counter	Counts	Rate
Trigger asserted	34969050 clks.	30.00 Kcnt/s
Trigger rising edges	34969050 edges	30.00 KHz
Trigger accepted	34969050 events	30.00 KHz
Last Idle Time	30860 ns	
Last Dead Time	2470 ns	404.86 KHz
Total Dead Time	74100242 ns	7.4%
Throttle	Limit Trigger Rate to	1 KHz
Full Stop	🗆 Ig	nore all events
Export CTS Configuration	as TrbCmd script	as shell scrint

Plot will be available in a few moments

Central Trigger System

	5						
#	Enable	Trg. Cond.	Assignment	TrbNet Type		Asserted	Edges
0		R. Edge 🗸	Periodical Pulser 0	0x1_physics_trigger	~	0.00 cnt/s	0.00 Hz
1		R. Edge 🗸	Periodical Pulser 1	0x1_physics_trigger	~	25.00 Mcnt/s	25.00 MHz
2		R. Edge 🗸	Random Pulser 0	0x1_physics_trigger	~	0.00 cnt/s	0.00 Hz
3		R. Edge 🗸	Input Multiplexer 0	0x1_physics_trigger	~	100.00 Mcnt/s	0.00 Hz
4		R. Edge 🗸	Input Multiplexer 1	0x1_physics_trigger	~	2365.45 cnt/s	2365.45 Hz
5		R. Edge 🗸	Input Multiplexer 2	0x1_physics_trigger	~	100.00 Mcnt/s	0.00 Hz
6		R. Edge 🗸	Input Multiplexer 3	0x1_physics_trigger	~	6.40 Mcnt/s	30.00 KHz
7		R. Edge 🗸	Input Multiplexer 4	0x1_physics_trigger	~	0.00 cnt/s	0.00 Hz
8		R. Edge 🗸	Input Multiplexer 5	0x1_physics_trigger	~	0.00 cnt/s	0.00 Hz
9		R. Edge 🗸	Periph. FPGA Inputs 0	0x1_physics_trigger	~	0.00 cnt/s	0.00 Hz
10		R. Edge 🗸	Periph. FPGA Inputs 1	0x1_physics_trigger	~	0.00 cnt/s	0.00 Hz
11		R. Edge 🗸	Coincidence Module 0	0x1_physics_trigger	~	100.00 Mcnt/s	0.00 Hz
12		R. Edge 🗸	Coincidence Module 1	0x1_physics_trigger	~	100.00 Mcnt/s	0.00 Hz
13		R. Edge 🗸	Coincidence Module 2	0x1_physics_trigger	~	100.00 Mcnt/s	0.00 Hz
14		R. Edge 🗸	Coincidence Module 3	0x1_physics_trigger	~	100.00 Mcnt/s	0.00 Hz

# Source	Inp. Rate	Invert	Delay	Spike Rej.	Override	Downscale
0 extclk[0] V	0.00 Hz		0 ns	0 ns	bypass 🗸	
1 extclk[1] v	2365.45 Hz		0 ns	0 ns	bypass 🗸	
2 trgext[2] v	0.00 Hz		0 ns	0 ns	bypass 🗸	
3 trgext[3] V	30.00 KHz		0 ns	0 ns	bypass 🗸	
4 [jeclin[0] V	0.00 Hz		0 ns	0 ns	bypass 🗸	
5 jeclin[1] V	0.00 Hz		0 ns	0 ns	bypass 🗸	

rempilera	inggei	mputs															
#	# from FPGA 1			fro	m FPG	A 2			fro	m FPG/	4 3		fro	m FPG/	4		
	3	2	1	0	3	2	1	0		3	2	1	0	3	2	1	0
0									(
1									(

- Pulsers and Coincidence Detectors

Deriphoral Trigger Inputs

Periodical Pulsers

Coincidence Detectors

×

× TDC Registers

× TDC Registers

GO4 for data visualization and analysis

Threshold for Fast and Slow FEE output

Signals from MRPC

7/3/2024 6:31:51 AM

IV of MRPC#2 from Protvino vs. Sealed (Yi Wang)

TDC#0311

TDC#0312

TDC 313

Valery Chmill ToF Status Report

0

0

CH#22 slow from TDC#0312

Possible FEE and Digitization

- Sensor (SiPM)
- ASIC (WEEROC family, citiroc-1A)
- FPGA
- Data Transmitting

- Sensor (MRPC) + NINO
- ASIC (picoTDC)
- FPGA
- Data Transmitting

Front-End Readout System

• FERS A5202

• FERS A5203

FERS Concentrator Board DT5215

http://trb.gsi.de/

- Sensor (SiPM) +RUNO
- TRBv3 TDC
- ToT method
- Data Transmitting

TRBv3 contains front-end electronics and a complete set of data acquisition and control software.

FERS FERS+NINO vs. TRBv3 FPGA-TDC+RUNO

Valery Chmill ToF Status Report

DUBNA, 3 October 2024

Sensor (MRPC) + RUNO

TRBv3 TDC

ToT method

Data Transmitting

RUNO

RUNO

- RUNO has very low impedance on power line
- VddA and VddD are short-circuited
- GNDD and GNDA as well
- · We need some time to relax and enjoy the life

Valery Chmill ToF Status Report

F. Garzetti et al.: TDC IP-Core for FPGA at State of the Art

Reference	FPGA device	Tech. Node	LSB	σ_{CH}	FSR	DNL	INL	Ch. Rate
[23]	Virtex-6	40–nm	10.0 ps	19.6 ps r.m.s.	N.A.	15.0 ps	22.5 ps	N.A.
[24]	Virtex-5	65–nm	16.3 ps	N.A.	N.A.	48.9 ps	81.5 ps	N.A.
[25]	Virtex-6	40–nm	1.70 ps	4.2 ps r.m.s.	N.A.	1.36 ps	1.70 ps	N.A.
[26]	Kintex-7	28–nm	17.6 ps	12.7 ps r.m.s.	N.A.	17.6 ps	15.3 ps	N.A.
[27]	Virtex-6	40–nm	10.0 ps	10.0 ps r.m.s.	N.A.	19.1 ps	22.0 ps	N.A.
[28]	Kintex-7	28–nm	10.6 ps	8.13 ps r.m.s.	N.A.	10.6 ps	45.6 ps	N.A.
[28]	Virtex-6	40–nm	10.1 ps	9.82 ps r.m.s.	N.A.	11.9 ps	33.3 ps	N.A.
[28]	Spartan-6	40–nm	16.7 ps	12.8 ps r.m.s.	N.A.	20.4 ps	42.4 ps	N.A.
[29]	UltraScale	20-nm	2.25 ps	3.90 ps r.ms.	N.A.	N.A.	N.A.	N.A.
[30]	Virtex-5	65–nm	7.40 ps	6.80 ps r.m.s.	N.A.	5.48 ps	11.6 ps	N.A.
[31]	Virtex-7	28–nm	1.15 ps	3.50 ps r.m.s.	N.A.	4.03 ps	6.79 ps	N.A.
[12]	Virtex-7	28–nm	10.5 ps	14.6 ps r.m.s.	N.A.	0.84 ps	1.16 ps	N.A.
[12]	UltraScale	20–nm	5.02 ps	7.80 ps r.m.s.	N.A.	0.60 ps	2.31 ps	N.A.
[32]	Virtex-5	65–nm	18.0 ps	25.0 ps r.m.s.	10.7 s	N.A.	N.A.	5 MHz
[33]	Artix-7	28–nm	10.0 ps	15 ps r.m.s.	10.7 s	N.A.	N.A.	10 MHz
[34]	Artix-7	28–nm	250 fs	12 ps r.m.s.	10.3 s	N.A.	4.2 ps	20 MHz
[35]	Artix-7	28–nm	250 fs	12 ps r.m.s.	10.3 s	33 fs	4.6 ps	45 MHz
[36], [37]	Zynq-7000	28–nm	2 ps	12 ps r.m.s.	10.7 s	N.A.	N.A.	45 MHz
[38]	UltraScale	20–nm	305 fs	8.5 ps r.m.s.	$10.2 \ \mu s$	N.A.	N.A.	50 MHz
[39]	Spartan-6	40–nm	7.70 ps	8.90 ps r.m.s.	N.A.	22.3 ps	67.8 ps	40 MHz
[40]	Virtex-7	28–nm	6.00 ps	7.00 ps r.m.s.	2.1 s	N.A.	N.A.	125 MHz

TABLE 1. Most significant implementations of TDL-TDCs in Xilinx FPGA devices, sorted by resolution (LSB).

TABLE 14. Implementation results and measurements. In particular, Artix-7 column refers to the device selected for testing the IP-Core.

Performance	Artix-7	Virtex-5	Spartan-6	Kintex-7	Zynq-7000	Kintex UltraScale
Resolution	366 fs	18 ps	25 ps	250 fs	2 ps	305 fs
Precision	8.0 ps r.m.s.	25.0 ps r.m.s.	17 ps r.m.s.	8.0 ps r.m.s.	12 ps r.m.s.	8.5 ps r.m.s.
Full Scale Range	10.3 s	10.7 s	640 ns	10.3 s	10.7 s	$10.2 \ \mu s$
DNL	250 fs	N.A.	N.A.	200 fs	1.4 ps	N.A.
INL	2.5 ps	N.A.	N.A.	2.2 ps	5 ps	N.A.
Number of Channels	16	16	4	16	8	24
Channel Rate	150 MHz	5 MHz	N.A.	150 MHz	45 MHz	50 MHz
Dead–Time	5 ns	N.A.	N.A.	5 ns	20 ns	N.A.
Temperature Sensitivity	286 fs/°C	N.A.	N.A.	N.A.	N.A.	N.A.

Master of Science Thesis in Electrical Engineering

A 1.8 ps Time-to-Digital Converter (TDC) Implemented in a 20 nm Field-Programmable Gate Array (FPGA) Using a Ones-Counter Encoding Scheme with Embedded Bin-Width Calibrations and Temperature Correction:

Sven Engström LiTH-ISY-EX--20/5343--SE

5.1 Resolution

The best resolution of 1.8 ps was achieved using external calibration in combination with the pulsed edge mode. This result is better than previously published FPGA-based TDCs [6]. A small comparison to previous works can be seen in table 5.1.

RefYear	Device	Method	Precision	Resources
[11]-14	Spartan-6	Wave union across multiple TDLs	6 ps	144 SLICEs
[10]-15	Virtex-6	Average multiple TDCs	4.2 ps	-
[9]-17	Virtex-7	Average multiple TDCs	3.5 ps	12758 LUTs
[2]-16	Kintex-7	Average multiple TDCs, wave union	3.1 ps	_
[13]-17	Kintex-7	Multiple TDLs, ones-counter	3.9 ps	2433 LUTs
[5]-16	Kintex UltraScale	Dual sampling	3.9 ps	_
This work	Kintov Ultra Scala	Internal calibration, dual sampling, ones-counter	2.5 ps	1072 I UTA
I NIS WORK	Kintex Offrascale	Wave union, dual sampling, ones- counter	1.8 ps	1972 LUIS

Table 5.1: Comparison of recent, high resolution, FPGA-based TDCs

The only way to do great work is to love what you do. © S.J.

- Artem Semak, Evgeni Ladygin
- Sergei Morozov, Evgeni Usenko
- Artem Ivanov
- Vladimir Ladygin, Aleksey Tishevsky
- Vadim Babkin, Mikhail Buryakov, Oleg Tarasov
- Yi Wang at al.

Thank you for your attention

Valery Chmill ToF Status Report

DUBNA, 3 October 2024

Spare slides

Test signal forming chains and key parameters

1 pF diff capacitance \rightarrow 200mV = 200 fC

Valery Chmill ToF Status Report

Linear response to test signal for Fast and Slow output

Protvino MRPC prototype for SPD project at NICA

- To start MRPC and check functionality
- To obtain detection efficiency and time resolution on a new DAQ
- Preparation for using 3 MRPC as a servicing system at TEST AREA (Anton Baldin).

2.6

2.7

7 2.8 2.9 applied voltage, kV

Particles ID for m² vs. p

- π/K/p/d discrimination for momenta <2 GeV
- Determination of t0
- Time resolution requirement <60 ps.

Sealed MRPC for SPD TOF

(B.Wang et al, JINST 15 (2020) 08, C08022)

Sealed MRPC proposed for CBM-TOF

Sealed MRPC proposed for SPD-TOF

Valery Chmill ToF Status Report

Super modules mounting proposal

DUBNA, 3 October 2024

Sealed (MRPC) are the base option of today

(B.Wang et al, JINST 15 (2020) 08, C08022)

- The prototype was tested in cosmic rays along with 2 MRPC2 counters in the TRBv3 test stand.
- The plateau efficiency is 97%, with a 1.6 cluster size and a 100 ps flight-time resolution.
- The systematic time resolution of the prototype is about 60 ps. if we reasonably expect the same timing precision between two MRPCs.
- The prototype has the same working point at \pm 5.4 kV with standard gas flow (Freon/iC₄H₁₀ = 90/5/5

