Synthesis of Superheavy Elements at RIKEN

Nishina Center for Accelerator-Based Science, RIKEN Hiromitsu Haba for RIKEN SHE Collaboration

CONTENTS

- 1. Facilities for SHE research at RIKEN RI Beam Factory
- 2. Synthesis of element 113 by cold fusion
- 3. Search for element 119 in the ²⁴⁸Cm(⁵¹V,xn)^{299-x}119 reaction
- 4. Production and decay studies of ²⁶¹Rf, ²⁶²Db, ²⁶⁵Sg, and ²⁶⁶Bh
- 5. Solution chemistry of Rf and Db
- 6. Summary

1. Facilities for SHE research at RIKEN RI Beam Factory

Facilities for SHE research in RIKEN RIBF

SRILAC

Facilities for SHE research in RIKEN RIBF

Facilities for SHE research in RIKEN RIBF

2. Synthesis of element 113 by cold fusion

Synthesis of superheavy elements at RIKEN since 2001

Experimental setup for synthesis of element 113

Cold fusion reaction to produce element 113

²⁰⁹Bi(⁷⁰Zn,*n*)²⁷⁸113

Neutron

Period Irradiation time **Experimenters** Beam energy **Beam intensity Beam integral**

Sept. 5, 2003 – Aug. 18, 2012 13274 hours (553 days) 43 **348 MeV in the middle of the target** 0.47 pμA (2.8 x 10¹² s⁻¹) 1.35 x 10²⁰ (15 mg)

 0.45 mg cm^{-2} (1.3 x 10^{18} cm^{-2}) Target thickness GARIS eff. 80% PSD + SSD eff. 94%

2011 Not approved due to few data on ²⁷⁸113 and ²⁶⁶Bh

Observation of the 3rd event of 278113

I U P A C

International Union of Pure and Applied Chemistry

Highlights

- → The IUPAC Network
- Periodic Table of the Elements

Login Contact Forum

About

Projects

Publications

Conferences

< ICSU publications on climate change

30 Dec 2015 23:50 Age: 2 days Category: Press Releases

Discovery and Assignment of Elements with Atomic Numbers 113, 115, 117 and 118 IUPAC announces the verification of the discoveries of four new chemical elements: The 7th period of the periodic table of elements is complete.

The fourth IUPAC/IUPAP Joint Working Party (JWP) on the priority of claims to the discovery of new elements has reviewed the relevant literature for elements 113, 115, 117, and 118 and has determined that the claims for discovery of these elements have been fulfilled, in accordance with the criteria for the discovery of elements of the IUPAP/IUPAC Transfermium Working Group (TWG) 1991 discovery criteria. These elements complete the 7th row of the periodic table of the elements, and the discoverers from Japan, Russia and the USA will now be invited to suggest permanent names and symbols. The new elements and assigned priorities of discovery are as follows:

Element 113 (temporary working name and symbol: ununtrium, Uut)

The RIKEN collaboration team in Japan have fulfilled the criteria for element Z=113 and will be invited to propose a permanent name and symbol.

http://www.iupac.org/

Nihonium – The first element discovered in Asian countries –

INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY	Advancing Cher	nistry Worldwide
<i>President</i>	<i>Vice President</i>	Secretary General
Prof. Natalia P. Tarasova (Russia)	Prof. Qi-Feng Zhou (China)	Prof. Richard Hartshorn (New Zealand)
<i>Past President</i>	<i>Treasurer</i>	Executive Director
Dr. Mark C. Cesa (USA)	Mr. Colin J. Humphris (UK)	Dr. Lynn M. Soby (USA)

For Immediate Release 30 November 2016

IUPAC Announces the Names of the Elements 113, 115, 117, and 118

Elements 113, 115, 117, and 118 are now formally named nihonium (Nh), moscovium (Mc), tennessine (Ts), and oganesson (Og)

Research Triangle Park, NC (USA): On 28 November 2016, the International Union of Pure and Applied Chemistry (IUPAC) approved the names and symbols for four elements: nihonium (Nh), moscovium (Mc), tennessine (Ts), and oganesson (Og), respectively for element 113, 115, 117, and 118.

Atomic	Element	Element
number	name	symbol
113	nihonium	Nh
115	moscovium	Мс
117	tennessine	Ts
118	oganesson	Og

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	4	1																	2
	1	н																	He
		3	4											5	6	7	8	9	10
	2	Li	Be											В	С	N	0	F	Ne
		11	12											13	14	15	16	17	18
	3	Na	Mg											Al	Si	Р	S	Cl	Ar
		19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	4	К	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	_	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	5	Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	- I	Хе
		55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
	6	Cs	Ba	*	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
	_	87	88	89-103	104	105	106	107	108	109	110	111	112	\wedge	114	\wedge	116	\leftarrow	\wedge
	7	Fr	Ra	†	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	113	FI	115	Lv	117	118
							Nh		Mc		Ts	Og							
	*.			57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
	Lai	nthn	olde	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	
89 90 91 92 93 94 95 96 97 98 99 100 101 102 100							103												
Actinoide		de	Ac	Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr		

3. Search for element 119 in the ²⁴⁸Cm(⁵¹V,xn)^{299-x}119 reaction

Search for element 119 at RIBF

RIKEN – ORNL – UTK - Kyushu Univ. – Niigata Univ. – Saitama Univ. – 124 Osaka Univ. – Tohoku Univ. – JAEA – Yamagata Univ. – IPHC – IMP – ANU – NCBJ Conaboration

26 126-310

Upgrade of RILAC (June 2017–February 2020)

N. Sakamoto and T. Nagatomo, Nucl. Phys. News 32, 21 (2022).

Gas-filled recoil ion separator, GARIS III

Veto

MCF

128 mm

Si box

Mvlar+Au+CsI

© Pierre Brionnet

DSSD

Side

²⁴⁸Cm target

Y. Kudou et al., RIKEN Accel. Prog. Rep. 42, 265 (2009).

What is the optimal reaction energy ?

CN formation Survival of ER

 $\sigma_{\rm ER} = \sigma_{\rm cap} \times P_{\rm CN} \times P_{\rm surv}$

Capture

Measurement of excitation function of quasielastic backscattering to Rutherford scattering $(d\sigma_{QE}/d\sigma_{Ruth})$ by detecting non-captured projectiles \rightarrow Optimal reaction energy for capture process

M. Tanaka, TASCA22, GSI, May 10, 2022.

4. Production and decay studies of ²⁶¹Rf, ²⁶²Db, ²⁶⁵Sg, and ²⁶⁶Bh

GARIS + gas-jet + MANON

RIKEN GARIS

Breakthroughs in SHE chemistry

- Chemistry experiments under low background radiation
- Stable and high gas-jet transport yield
- New chemical reactions

Production and decay studies of ²⁶¹ Rf, ²⁶² Db, ²⁶⁵ Sg, and ²⁶⁶ Bh							
Nuclide	²⁶¹ Rf ^{<i>a,b</i>} (<i>Z</i> =104)	^{262,263} Db (<i>Z</i> =105)	²⁶⁵ Sg ^{<i>a,b</i>} (Z=106)	^{266,267} Bh (<i>Z</i> =107)			
Half-life	68, 3 s ¹⁾	34 s, 27 s ²⁾	8.9, 16.2 s ¹⁾	1.7 s, 17 s ⁴⁾			
Reaction	²⁴⁸ Cm(¹⁸ O,5 <i>n</i>)	²⁴⁸ Cm(¹⁹ F,5;4 <i>n</i>)	²⁴⁸ Cm(²² Ne,5 <i>n</i>)	²⁴⁸ Cm(²³ Na,5;4 <i>n</i>)			
Cross section (nb)	12 ³⁾ , ?	1.5 ³⁾ , ?	0.2–0.3 ¹⁾ ?	0.05 ⁵⁾ ?			
Beam energy (MeV)	95	103, 97.4	118	135, 131, 126, 121			
Beam intensity (pµA)	7	4	3	3			
²⁴⁸ Cm ₂ O ₃ target (µg/cm ²)	280 <i>,</i> 230	230, 290, 330	230, 280	290, 260, 270			
Magnetic rigidity (Tm)	1.58–2.16	1.73–2.09	1.73–2.16	2.12			
GARIS He (Pa)	33	32	33	33			
GARIS transmission (%)	7.8±1.7	8.1±2.2	13	15			
RTC Mylar window (µm)	0.5	0.5	0.7	0.7			
Honeycomb grid (%)	78/84	84	72/84	78			
Gas-jet He (kPa)	49	47	49	80			
Chamber depth (mm)	20	20	40	20			
He flow rate (L/min)	2.0	2.0	2.0	5.0			
KCl generator (°C)	620	620	600/605	620			
MANON step interval (s)	30.5, 2.0	15.5	20.5, 10.5	5.0, 8.5, 15.0			
1) Düllmann and Türler, PRC 77, 064320 (2008). 2) Firestone and Shirley, Table of Isotopes, 8th ed. (Wiley, New York, 1996).							

3) Nagame et al., JNRS **3**, 85 (2002). 4) Wilk et al., PRL **85**, 2697 (2000). 5) Morita et al., JSPS **78**, 064201 (2009).

Production and decay studies of ^{266,267}Bh

²² Na beam	Thickness of 248 Cm ₂ O ₃	Beam integral $(\times 10^{18})$	MANON Step
		(~10)	
121	257	10.20	8.5
126	256	9.26	8.5
	290	4.96	5.0
121	290	3.99	15.0
151	257	8.90	8.5
	257	9.02	8.5
135	256	11.21	8.5

Table of Isotopes, 8th ed. (1996). Wilk *et al.*, PRL **85**, 2697 (2000). Eichler *et al.*, Nature **407**, 63 (2000). Gan *et al.*, EPJA **20**, 385 (2004). Qin *et al.*, NPR **23**, 400 (2006). Morita *et al.*, JSPS **78**, 064201 (2009). Morita *et al.*, JSPS **81**, 103210 (2012). Haba *et al.*, PRC **89**, 024618 (2014).

Search for α - α /SF correlations

Energy	α-	α-α	O	ι-α	α	-SF	α-0	α-SF
(MeV)	Obs.	RDM	Obs.	RDM	Obs.	RDM	Obs.	RDM
121	0	<0.00	0	<0.15	0	<0.02	0	<0.00
126	0	<0.00	1	<0.16	3	<0.03	0	<0.00
131	5	<0.00	21	<1.09	10	<0.13	0	<0.00
135	2	<0.00	9	<0.15	0	<0.02	0	<0.00
Total	7	<0.00	31	<1.55	13	<0.19	0	<0.00

Decay properties of ²⁶⁶Bh

- E_{α} of ²⁶⁶Bh: E_{α} = 8.62–9.40 MeV. $\iff E_{\alpha}$ = 8.82–9.77 MeV in Refs.
- $T_{1/2} = 10.0$ s in this work is longer than those of ²⁶⁶Bh in Refs.

Nuclida	-	This work	Refs. [1–4]			
Nuclide	Ν	T _{1/2} [s]	Ν	<i>T</i> _{1/2} [s]		
²⁶⁶ Bh	23	10.0 ^{+2.6} _{-1.7}	8	1.20 ^{+0.66} _{-0.31}		
²⁶⁷ Bh	0	_	11	13.7 ^{+5.9} 3.2		

[1] 249 Bk(22 Ne,5;4*n*) 266,267 Bh (*N* = 1, 5): Wilk *et al.*, PRL **85**, 2697 (2000). [2] 249 Bk(22 Ne,4*n*) 267 Bh (*N* = 6): Eichler *et al.*, Nature **407**, 63 (2000). [3] 243 Am(26 Mg,3*n*) 266 Bh (*N* = 4): Qin *et al.*, Nucl. Phys. Rev. **23**, 400 (2006). [4] 209 Bi(70 Zn,*n*) 278 113 $\rightarrow {}^{266}$ Bh (*N* = 3): Morita *et al.*, JPSJ **81**, 103201 (2012).

- Existence of an isomeric state in ²⁶⁶Bh? Miss assignment of ²⁶⁶Bh to ²⁶⁷Bh in the previous experiments?
- The long half-life of ²⁶⁶Bh is good for Bh chemistry.

Cross section of ²⁴⁸Cm(²³Na,5*n*)²⁶⁶Bh

Poaction	Cross section	Posstion*	Cross sections*		
Reaction	at 131 MeV	Reaction	at 117/123 MeV		
²⁴⁸ Cm(²³ Na,5 <i>n</i>) ²⁶⁶ Bh	57 ± 14 pb	²⁴⁹ Bk(²² Ne,5 <i>n</i>) ²⁶⁶ Bh	-/25–250 pb		
		²⁴⁹ Bk(²² Ne,4 <i>n</i>) ²⁶⁷ Bh	58 ⁺³³ ₋₁₅ /96 ⁺⁵⁵ ₋₂₅ pb		

*Wilk et al., PRL **85**, 2697 (2000).

Production and decay studies of ²⁶¹Rf, ²⁶²Db, ²⁶⁵Sg, and ²⁶⁶Bh

H. Haba et al., Chem. Lett. 38, 426 (2009).
H. Haba et al., Phys. Rev. C 83, 034602 (2011).
H. Haba et al., Phys. Rev. C 85, 024611 (2012).
M. Murakami et al., Phys. Rev. C 88, 024618 (2013).

H. Haba et al., Phys. Rev. C 89, 024618 (2014).
H. Haba, EPJ Web Conf. 131, 07006 (2016).
H. Haba et al., Phys. Rev. C 102, 024625 (2020).

Pre-separated SHE RIs are ready for chemistry experiments.

5. Solution chemistry of Rf and Db

SHE production system at RIKEN AVF cyclotron

Conventional target and gas-jet system for production of SHEs

* Including α particles of ²⁵⁷No.

** Estimated from the gas-jet efficiencies of ¹⁶⁹Hf produced in ^{*nat*}Gd(¹⁸O,*xn*)¹⁶⁹Hf.

*** The target thicknesses were assumed to be 325 and 569 μ g/cm² for ²⁵⁵No and ²⁶¹Rf^a, respectively.

Solution chemistry of Rf and Db at AVF

ARCA (JAEA)

Liq. chromatography CHIN (Osaka Univ.)

Co-precipitation AMBER (Osaka Univ.) ISE (Osaka Univ.)

Liq.-liq. flow extraction

6. Summary

- Present status of RIKEN RIBF facilities for SHE research was introduced.
- Element 113 was synthesized in the cold fusion of ²⁰⁹Bi + ⁷⁰Zn.
- A synthesis experiment of element 119 in the ²⁴⁸Cm(⁵¹V,xn)^{299-x}119 reaction is ongoing using GARIS III at the upgraded SRILAC facility.
- Production and decay properties of ²⁶¹Rf, ²⁶²Db, ²⁶⁵Sg, and ²⁶⁶Bh were investigated using the GARIS gas-jet system coupled to the rotating wheel apparatus for α and SF spectrometry.
- Formations of chloride, fluoride, hydroxide, and sulphate complexes of Rf and fluoride complexes of Db were investigated using the conventional gas-jet transport system at AVF.