

Center for Nuclear Engineering and Sciences

SHE chemistry

Developments at the Laboratory of Radiochemistry PSI Switzerland

ETH zürich

b

UNIVERSITÄT BERN

 ${f U}$

Robert Eichler, P Steinegger, G. Tiebel, J. Wilson, R. Dressler, D Herrmann, A. Vögele SHE Cold Fusion 50, EREVAN, 20.-23. November 2024

Cold fusion: an early Dubna – Swiss collaboration topic

SPRINGER NATURE Link

Find a journal Publish with us Track your research

Q Search

Home > Zeitschrift für Physik A Atoms and Nuclei > Article

A study of fusion reactions between²⁰⁶, ²⁰⁷Pb nuclei and⁴⁰Ar ions near the coulomb barrier

Published: December 1979

Volume 289, pages 415–420, (1979) Cite this article

Thickness of degrading foils, mg/cm ²	Bombarding energy, MeV	Integral ion flux, ×10 ¹⁶	Target thickness, mg/cm ²	Number of detected fission events	Corrected number of s.f. events	σ , cm ²
		206]	$2b(^{40}Ar, 2n)^{244}$	Fm		
2.2 Al+1.4 Ni	175 ± 5	2.8	1,2	0	0	$< 1.3 \times 10^{-35}$
2.2 Al+1.0 Ni	179 + 3	2.1	0,7	1	1	$(6+6) \times 10^{-35}$
1.6 Al + 1.4 Ni	182 ± 5	5.6	1.2	96	96	$(1.2\pm0.2)\times10^{-33}$
1.3 Al+1.3 Ni	188 ± 3	5.8	0.5	64	64	$(1.7\pm0.2)\times10^{-33}$
2.2 Al	190 ± 3	1.4	0.4	18	17	$(2.8 \pm 1.4) \times 10^{-33}$
2.3 Ni	195 ± 3	3.0	0.7	16	11	$(4.4 \pm 1.3) \times 10^{-34}$
1.4 Ni	204 ± 4	6.7	1.2	23	7	$(7\pm3) \times 10^{-35}$
		207	$Pb(^{40}Ar, 3n)^{244}$	m		
1.6 Al + 0.8 Ni	189 + 3	2.5	0.7	44	39	$(1.9 \pm 0.4) \times 10^{-33}$
2.2 Ni	196 ± 3	2,2	0.7	70	64	$(4.2 \pm 0.7) \times 10^{-33}$
1.8 Ni	200 + 3	4.2	0.7	118	109	$(3.5+0.4) \times 10^{-33}$
0.8 Ni	211 ± 3	3.3	0.7	53	49	$(1.8\pm0.4)\times10^{-33}$
Without degrader	220 ± 2	5.4	0.7	6	6	$(1.2\pm0.6)\times10^{-34}$

Table 2. Experimental results

2

H. Gaeggeler^{*}, A.S. Iljinov^{**}, G.S. Popeko, W. Seidel, G.M. Ter-Akopian, and S.P. Tretyakova Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Dubna, USSR

Received September 4, 1978

Excitation functions for the reactions 206 Pb(40 Ar, 2n) 244 Fm and 207 Pb(40 Ar, 3n) 244 Fm have been measured and analysed in terms of a statistical model. The optical potential parameters have been found to be as follows: $V_0 = -70$ MeV, $r_0 = 1.26 \times 10^{-13}$ cm and $d = 0.36 \times 10^{-13}$ cm. Some data on the properties of the excited compound nucleus of fermium have been obtained.

Fig. 2. Excitation functions for the reactions 206 Pb(40 Ar, 2n) 244 Fm and 207 Pb(40 Ar, 3n) 244 Fm. The solid lines show the calculation with fitted absolute values of σ_x in the maxima of excitation functions by the selection of the fissility parameter $\langle T_n/T_f \rangle$ (see Eq. (10)). The shaded area corresponds to the subbarrier energies of argon ions

Requirements to the chemical method for SHE

- efficiency
 - velocity
 - sensitive detection of SHE decay
- formation of defined reversible chemical states:
 - stable compound formation, interaction type

Activated Adsorption: 3 parameters

- requires stable surfaces, stable resins, stable reactant concentrations etc.
- excellent separation of interfering by-products:
 - \rightarrow everything with SF or high energy a-particle emission
 - * lighter TA (a, SF)
 - * Po (precursor Bi and Pb or At and Rn (a)
 - * heavy actinides (Cf, Cm, Md, Fm) (SF)
 - * removal/destruction of aerosol particles, colloids

Requirements to the chemical method

macroscopic amounts:	\rightarrow Equilibrium concentrations,	
\Rightarrow	1 step	
single atoms:	\rightarrow Probabilities	
\Rightarrow multi-ste	, <i>"chromatographic"</i> "reversible" systen	ns
ion exchange chromatogr	$aphy \rightarrow$ Distribution coefficients	
extraction chromatograp	$y \rightarrow$ Distribution coefficients	
gas chromatography	\rightarrow Adsorption properties	

Demand from "Physical Chemistry":

To determine thermodynamic constants we have to be able to either:

- change concentrations of reactants in case of investigating molecule or complex formation or/and:

- change of adsorption temperature in case of pure molecular/elemental adsorption

Group 13: Homolog Studies

Experiments on <u>fused silica</u> surfaces

- \rightarrow In/InOH: Offline thermochromatography
- \rightarrow Tl/TlOH: Offline thermochromatography

→ Tl: Online* isothermal chromatography
→ Nh/NhOH ?

Adsorption of Thallium on Quartz Results

Chemical identification macroscopic vs. microscopic behavior

PSI Center for Nuclear Engineering and Sciences

7

Online Experiment at FLNR/JINR

PSI

Online Isothermal Chromatography

PSI

Online Isothermal Chromatography

 $-\Delta H_{ads}^{SiO_2}(TlOH) =$ 129 ± 3 kJ/mol

Setpoint Temperature, T_i [°C]

PSI

[1] Wilson under review (2024)

Page 11

Setpoint Temperature [°C]

25

20-

15 -

10 ⊣

Relative Yield [%]

Surface Dehydroxylation

• Primary TlOH formation occurs (likely) due to adjacent hydroxyls

Surface changes with temperature [1,2]
 >100-200 °C: surface dehydration
 >200 °C: dehydroxylation
 >400 °C: rehydroxyation strongly hindered with H₂O or air

[1] Youngheng, Z., Zhenan, G. J. Non-Cryst. Solids (2006) 352 pg. 4030-4033.
[2] Young, G. J., Journal of Colloid Science (1958) 13 pg. 67-85.

Theoretical Adsorption Studies 2022

	$-\Delta H_{ad}^{Sic}$	^D ² [kJ/mol]		
	Τι	ΤΙΟΗ	Nh	NhOH
Geminal surface (G)	20,1	133.1	4.7	127.1
Vicinal surface (V)	44.2	157	27.1	140.7
Dehydroxylated (B)	80.9	324.5	24.3	237.8
Fully hydro ΔH_{ads} -(160 ± 20)	Tl kJ/mol	lly hydroxylat -(ΔH _{ads} TlOH 140 ± 20) kJ/m	ated (B)
and Element 113. Nh. and of				

Reactivity of Group 13 Elements TI and Element 113, Nh, and or Their Hydroxides with Respect to Various Quartz Surfaces from Periodic Relativistic DFT Calculations Miroslav Iliaš and Valeria Pershina*

Tl in room temperature isothermal gas chromatography

Figure 8: Panels (a and b) show the sum spectra of Hg in COMPACT I and II.

DE GRUYTER

In panels (c and d) the distribution (with statistical uncertainties indicated as error bars in every fourth experimental bar) of Hg (3.5–6.5 MeV) inside the COMPACT detector arrays, together with the result of the MCS using the $-\Delta H_{ads}$ for Tl from Ref. [32] is shown. The white bars shown in panel c, show Hg decay in flight, determined from the total sum of Hg, subtracted the deposition of Tl.

Radiochim, Acta 2018; 106(12); 949-962

These experiments will not tell us:
1) what species deposits (maybe two or three?).
2) and what are the absolute adsorption properties. They will allow to determine adsorption interaction limits
assuming a hypothetical species.

Lotte Lens*, Alexander Yakushev, Christoph Emanuel Düllmann, Masato Asal, Jochen Ballof, Michael Block, Helena May David, John Despotopulos, Antonio Di Nitto, Klaus Eberhardt, Julia Even, Michael Block, Helena May David, John Despotopulos, Antonio Di Nitto, Klaus Eberhardt, Julia Even, Michael Block, Helena May David, John Despotopulos, Antonio Di Nitto, Klaus Eberhardt, Daniel Judson, Jadambaa Khuyagbaatar, Birgt Kindler, Yukiko Komori, Joonas Kant-Jens Volker Kratz, Jög Krier, Nikolaus Kurz. Muetarkter Kenne, Son Gager, Daniel Judson, Jadambaa Khuyagbaatar, Birgt Kindler, Yukiko Komori, Joonas Kant-Bettina Lommed Market Katz, Jög Krier, Nikolaus Kurz. Muetarkter Katz, Jög Krier, Nikolaus Kurz, Kurz, Kurz, Muetarkter Katz, Jög Krier, Nikolaus Kurz, Kur

Vacuum seems more promising?

The IF-to-IVAC System

16

Facilities @ Cyclotron Institute, TAMU

Transport through Buffer Gas Cell @ *E_{cot}* = 184 MeV

Transport through Buffer Gas Cell @ *E*_{cot} = 197 MeV

The real thing... ~2t of material

PSI

PSI

Comparison with MCS on SiO₂

S. Soverna, Attempt to Chemically Characterize Element 112, Universität Bern, **2004**. K. Hermainski et al., Poster @ NRC10, Brighton, **2024**.

High-temperature α-spectroscopy

After scCVD diamond: 4H-SiC-based semiconductor solid-state detectors.

5

PSI Center for Nuclear Engineering and Sciences

24

High-temperature α-spectroscopy

Looking at the predictions for Nh on SiO₂: **Higher stationary phase temperatures** needed for online **thermochromatography**

686

Diamond

4H-SiC

LEGEND - first-generation SiC → -40°C) for Nh

GSI

LMU

Russian Federation:

Dr. N.V. Aksenov, Dr. G.A. Bozhikov, V.I. Chepigin, Prof. Dr. S.N. Dmitriev, Prof. Dr. M.G. Itkis, Dr. O.N. Malyshev, Prof. Dr. Yu.Ts. Oganessian, Dr. A.G. Popeko, Dr. A.I. Svirikhin, G.K. Vostokin, Dr. A.V. Yeremin

USA,Texas:

Prof. C. M. Folden III, A. Kirkland,

Dr. E. Tereshatov & Heavy Elements" group

Japan:

Dr. Y. Ito, Dr. T. Sato, Dr. M. Asai, & "Heavy Elements" group (JAEA)

Germany:

Prof. M. Block, Dr. S. Räder (GSI & HIM) Prof. P. Thirolf, P. Hartung (LMU)

Others: Dr. M. Camarda (SenSiC), M. Carulla Areste (PSI), S. Streuli (PSI)

Supported by SCNAT and SCS through a «Chemistry Travel Award»

SCS Swiss Chemical Society

Project grant 200020_196981/1

If there are inhomogeneities of the surface the atoms will "find" them efficiently and adsorb,

- this is defined as sticking coefficient!

$$SC = sc \cdot exp\left(-\frac{E_a}{RT}\right)$$

There cannot be two deposition zones with onbe adsorption enthalpy

