

Structure and fission properties of heavy and superheavy nuclei

Shan-Gui Zhou (周善贵)

Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing University of Chinese Academy of Sciences, Beijing

Supported by:NSFC & MOST;HPC Cluster of KLFTP/ITP-CASScGrid of CNIC-CAS

CAS & ITP

CAS: Chinese Academy of Sciences

- >>100 institutes & 3 universities in China; >40 in Beijing
- ➤ ~45,000 graduate students for Master's or PhD degrees

□ ITP: Institute of Theoretical Physics, Beijing

- Founded in 1978 & the smallest one in CAS
- ➤ 52 (assistant, associate & full) professors + ~50 postdocs + ~150 students
- Atomic physics; Nuclear physics; Particle physics; String theory; Cosmology; Condensed matter physics; Biophysics; Statistical physics; Quantum physics & quantum information; ...

Contents

Introduction

MultiDimensionally-Constrained Covariant Density Functional Theories

- Results for actinide nuclei
 - ²⁴⁰Pu: Potential energy surfaces & fission barriers
 - Typical actinide nuclei: Potential energy curves & fission barriers
 - ➤ ²⁷⁰Hs: Potential energy surfaces & fission barriers
 - Even-even superheavy nuclei: Ground state & fission properties

Summary & perspectives

Nuclear shapes

Courtesy of Bing-Nan Lu (吕炳楠)

Nonaxial quadrupole shape (β_{22} or γ)

Figure 1. Left- and right-handed chiral systems for a triaxial odd–odd nucleus.

A static triaxial shape in atomic nuclei manifests itself by the wobbling motion & chiral doublet bands

. . .

Bohr & Mottelson 1975 Odegard+2001_PRL86-5866

• • •

Frauendorf_Meng1997_NPA617-131 Starosta+2001_PRL86-971

Octupole shape (β₃₀)

Gaffney_Butler_Scheck+2013_Nature497-199

doi:10.1038/nature12073

Studies of pear-shaped nuclei using accelerated radioactive beams

L. P. Gaffney¹, P. A. Butler¹, M. Scheck^{1,2}, A. B. Hayes³, F. Wenander⁴, M N. Bree⁷, J. Cederkäll⁸, T. Chupp⁹, D. Cline³, T. E. Cocolios⁴, T. Davinson M. Huyse⁷, D. G. Jenkins¹³, D. T. Joss¹, N. Kesteloot^{7,11}, J. Konki¹², M. Kowa P. Napiorkowski¹⁴, J. Pakarinen^{4,12}, M. Pfeiffer⁵, D. Radeck⁵, P. Reiter⁵, K S. Sambi⁷, M. Seidlitz⁵, B. Siebeck⁵, T. Stora⁴, P. Thoele⁵, P. Van Duppen⁷, I K. Wimmer¹⁸, K. Wrzosek-Lipska^{7,14}, C. Y. Wu¹⁵ & M. Zielinska^{14,19}

ARTICLE

Nuclear fission

□ Fission barrier is crucial for the description

Nonaxial (β_{22} or γ) & octupole (β_{30}) shapes in PES

Möller_Nix 1973 IAEA-SM-174/202

Nonaxial (β_{22} or γ) & octupole (β_{30}) shapes in PES

Möller_Nix 1973 IAEA-SM-174/202

Axial asymmetry plays important roles around the first barrier Reflection asymmetry plays important roles around the second barrier

Nonaxial (β_{22} or γ) & octupole (β_{30}) shapes in PES

Axial asymmetry plays important roles around the first barrier Reflection asymmetry plays important roles around the second barrier

Covariant Density Functional Theory (CDFT)

$$\mathcal{L} = \bar{\psi}_i \left(i \partial - M \right) \psi_i + \frac{1}{2} \partial_\mu \sigma \partial^\mu \sigma - U(\sigma) - g_\sigma \bar{\psi}_i \sigma \psi_i$$
$$- \frac{1}{4} \Omega_{\mu\nu} \Omega^{\mu\nu} + \frac{1}{2} m_\omega^2 \omega_\mu \omega^\mu - g_\omega \bar{\psi}_i \phi \psi_i$$
$$- \frac{1}{4} \vec{R}_{\mu\nu} \vec{R}^{\mu\nu} + \frac{1}{2} m_\rho^2 \vec{\rho}_\mu \vec{\rho}^\mu - g_\rho \bar{\psi}_i \vec{\rho} \vec{\tau} \psi_i$$
$$- \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - e \bar{\psi}_i \frac{1 - \tau_3}{2} \mathcal{A} \psi_i,$$

$$(\boldsymbol{\alpha} \cdot \mathbf{p} + \boldsymbol{\beta}(\boldsymbol{M} + \boldsymbol{S}(\mathbf{r})) + \boldsymbol{V}(\mathbf{r}))\psi_{i} = \epsilon_{i}\psi_{i}$$

$$\left(-\nabla^{2} + m_{\sigma}^{2}\right)\sigma = -g_{\sigma}\rho_{S} - g_{2}\sigma^{2} - g_{3}\sigma^{3}$$

$$\left(-\nabla^{2} + m_{\omega}^{2}\right)\omega = g_{\omega}\rho_{V} - c_{3}\omega^{3}$$

$$\left(-\nabla^{2} + m_{\rho}^{2}\right)\rho = g_{\rho}\rho_{3}$$

$$-\nabla^{2}A = e\rho_{C}$$

Serot_Walecka1986_ANP16-1 Reinhard1989_RPP52-439 Ring1996_PPNP37-193 Vretenar_Afanasjev_Lalazissis_Ring2005_PR409-101 Meng_Toki_SGZ_Zhang_Long_Geng2006_PPNP57-470 Liang_Meng_SGZ2015_PR570-1 Meng_SGZ2015_JPG42-093101 Meng (ed.), Relativistic Density Functional for Nuclear structure (World Scientific, 2016) □ Axially deformed harmonic oscillator (ADHO) basis

$$\begin{bmatrix} -\frac{\hbar^2}{2M} \nabla^2 + V_B(z,\rho) \end{bmatrix} \Phi_{\alpha}(\boldsymbol{r}\sigma) = E_{\alpha} \Phi_{\alpha}(\boldsymbol{r}\sigma)$$

$$V_B(z,\rho) = \frac{1}{2} M(\omega_{\rho}^2 \rho^2 + \omega_z^2 z^2)$$

$$\Phi_{\alpha}(\boldsymbol{r}\sigma) = C_{\alpha} \phi_{n_z}(z) R_{n_{\rho}}^{m_l}(\rho) \frac{1}{\sqrt{2\pi}} e^{im_l \varphi} \chi_{s_z}(\sigma)$$

□ Fourier expansion for densities & potentials $f(\rho, \varphi, z) = f_0(\rho, z) \frac{1}{\sqrt{2\pi}} + \sum_{n=1}^{\infty} f_n(\rho, z) \frac{1}{\sqrt{\pi}} \cos(2n\varphi) \qquad f = V \text{ or } \rho$

A modified linear constraint method

$$E' = E_{\rm RMF} + \sum_{\lambda\mu} \frac{1}{2} C_{\lambda\mu} Q_{\lambda\mu} \qquad C_{\lambda\mu}^{(n+1)} =$$

$$C_{\lambda\mu}^{(n+1)} = C_{\lambda\mu}^{(n)} + k_{\lambda\mu} \left(\beta_{\lambda\mu}^{(n)} - \beta_{\lambda\mu} \right)$$

Lu_Zhao_Zhao_SGZ 2014_PRC89-014323 Zhao_Lu_Zhao_SGZ 2017_PRC95-014320

Applications of MDC-CDFTs

Potential energy	surface, ground state & fission properties	
▶ (β ₂₀ , β ₂₂ , β ₃₀): 1-, 2- & 3-dim PES of ²⁴⁰ Pu & <i>B</i> _f 's of actinides	
► (β ₂₀ , β ₂₂): Shape polarization effect of Λ	
► (β ₂₀): Superdeformed shapes in Λ hypernuclei	MultiDimensionally-
≻ (β ₂₀): Third barriers in light actinides	Constrained
► (β ₂₀ , β ₃₀)): Octupole correlations & shape transitions	Covariant Density
▶ (β ₂₀ , β ₂₂ , β ₃₀): Octupole correlations in $M\chi D$	Functional Theories

- > (β_{20} , β_{32}): Nuclear Tetrahedral shapes
- > (β_{20} , β_{22} , β_{30}): 1-, 2-, & 3-dim PES of ²⁷⁰Hs & B_f 's of even-even superheavies
- > ($\beta_{\lambda\mu}$, *R*): Clustering, bubble & toroidal structure; GMR
- Fission dynamics based on PES from MDC-CDFTs
 - Spontaneous fission
 - Induced fission
- □ Angular momentum & parity projected MDC-CDFTs
 - Clustering & exotic shapes

Collaborators

Xiang-Quan Deng (邓祥泉) Emiko Hiyama Shivani Jain Zhi-Pan Li (李志攀) Bing-Nan Lu (吕炳楠) Xiao Lu (陆晓) Xu Meng (孟旭) Tamara Niksic Yu-Ting Rong (荣宇婷) Hiroyuki Sagawa Xiang-Xiang Sun (孙向向) Dario Vretenar п Kun Wang (王琨) Xiao-Qian Wang (王晓倩) Jiang Xiang (向剑) En-Guang Zhao (赵恩广) Jie Zhao (赵杰)

Univ. CAS Kyushu Univ. & RIKEN ITP/CAS Southwest Univ. Graduate School, China AEP ITP/CAS Yanshan Univ. Univ. Zagreb Guangxi Normal Univ. **RIKEN & Aizu Univ.** Forschungszentrum Jülich Univ. Zagreb

ITP/CAS Qiannan Normal Univ. Nationalities ITP/CAS Pengcheng Lab

Applications of MDC-CDFTs

	J Potential energy surface, ground state & fission properties									
	▶ (β ₂₀ , β ₂₂ , β ₃₀									
	▶ (β ₂₀ , β ₂₂): Shape polarization effect of Λ								
	► (β ₂₀): Superdeformed shapes in Λ hypernuclei	MultiDimensionally-							
	≻ (β ₂₀	Constrained								
	▶ (β ₂₀ , β ₃₀)): Octupole correlations & shape transitions	Covariant Density							
	▶ (β ₂₀ , β ₂₂ , β ₃₀): Octupole correlations in $M\chi D$	Functional Theories							
	► (β ₂₀ ,	β_{32}): Nuclear Tetrahedral shapes								
	▶ (β ₂₀ , β ₂₂ , β ₃₀): 1-, 2-, & 3-dim PES of ²⁷⁰ Hs & <i>B</i> _f 's of even-even s	superheavies							
> $(\beta_{\lambda\mu}, R)$: Clustering, bubble & toroidal structure; GMR Fission dynamics based on PES from MDC-CDFTs										
								Spontaneous fission		

- Induced fission
- □ Angular momentum & parity projected MDC-CDFTs
 - Clustering & exotic shapes

²⁴⁰Pu: 3-dim. PES ($\beta_{20}, \beta_{22}, \beta_{30}$)

 $\begin{array}{c} \beta_{20}: \ 0.25 \ \text{to} \ 1.70 \ \text{w/a step of} \ 0.05 \\ \beta_{22}: \ 0.00 \ \text{to} \ 0.25 \ \text{w/a step of} \ 0.01 \\ \beta_{30}: \ 0.00 \ \text{to} \ 0.50 \ \text{w/a step of} \ 0.05 \end{array} \right\} \begin{array}{c} 8580 \ \text{points} \end{array}$

Lu_Zhao_SGZ 2014_PRC89-014323

²⁴⁰Pu: 3-dim. PES ($\beta_{20}, \beta_{22}, \beta_{30}$)

AS & RS for g.s. & isomer, the latter is stiffer

- Triaxial & octupole shape around the outer barrier
- Triaxial deformation crucial around barriers

Lu_Zhao_SGZ 2012_PRC85-011301R Lu_Zhao_SGZ 2014_PRC89-014323

²⁴⁰Pu: 2-dim. PES (β₂₀, β₃₀)

²⁴⁰Pu: 1-dim. potential energy curve (β_{20})

□ Triaxiality lowers inner barrier height by more than 2 MeV

- **D** Octupole deformation lowers outer barrier dramatically
- Triaxiality lowers outer barrier height by about 1 MeV

NDC110-3107 (RIPL-3)

Lu_Zhao_SGZ 2012_PRC85-011301R

□ Influence of triaxiality

- Inner fission barriers lowered by 1~2 MeV
- Outer fission barriers lowered by 0.5~1 MeV

Problems

- ²³⁰⁻²³²Th: out barriers primary
- ≻ ²³⁸U: ?
- ➢ ²⁴⁸Cm: two fission paths

Empirical values: Capote...2009 NDC110-3107 (RIPL-3)

										Lu Zhao Zhao SGZ 2014 PRC89
Nucleus	Ζ	N	A	Fi	rst bar	rier	Sec	Second barrier		
				AS	TA	Emp	AS	TA	Emp	
²³⁰ Th	90	140	230	5.03	3.96	6.10	6.80	6.37	6.50	
²³² Th	90	142	232	4.94	4.12	5.80	6.70	6.18	6.70	
²³² U	92	140	232	5.71	4.81	4.90	6.20	5.64	5.40	
²³⁴ U	92	142	234	6.15	5.09	4.80	6.20	5.55	5.50	
²³⁶ U	92	144	236	6.40	5.11	5.00	6.15	5.31	5.70	
²³⁸ U	92	146	238	6.54	5.03	6.30	6.20	5.42	5.50	
²⁴⁰ U	92	148	240	6.58	4.96	6.10	6.38	5.43	5.80	
²³⁸ Pu	94	144	238	7.72	5.96	5.60	6.05	5.56	5.10	
²⁴⁰ Pu	94	146	240	7.98	5.92	6.05	6.24	5.60	5.20	
²⁴² Pu	94	148	242	8.05	5.77	5.85	6.43	5.74	5.10	
²⁴⁴ Pu	94	150	244	7.85	5.40	5.70	6.26	5.49	4.90	
²⁴⁶ Pu	94	152	246	7.37	4.76	5.40	5.84	4.96	5.30	
²⁴² Cm	96	146	242	8.80	6.49	6.65	5.72	4.85	5.00	
²⁴⁴ Cm	96	148	244	9.04	6.34	6.18	5.90	4.88	5.10	
²⁴⁶ Cm	96	150	246	8.89	5.84	6.00	5.40	4.62	4.80	
²⁴⁸ Cm	96	152	248	8.43	5.35	5.80	4.10	—	4.80	
²⁵⁰ Cm	96	154	250	7.77	4.79	5.40	2.60	_	4.40	
²⁵⁰ Cf	98	152	250	8.87	5.70	5.60	2.40	<u> </u>	3.80	
²⁵² Cf	98	154	252	8.41	5.26	5.30	1.20		3.50	Empirical values: Capote.

-014323

...2009 NDC110-3107 (RIPL-3)

											Lu Zhao Zhao SGZ 2014 PRC89-014323
	Nucleus	Ζ	N	A	Fi	rst bar	rier	Sec	ond ba	rrier	
C-PKI					AS	TA	Emp	AS	TA	Emp	
	²³⁰ Th	90	140	230	5.03	3.96	6.10	6.80	6.37	6.50	Nichia (EUSION17).
	²³² Th	90	142	232	4.94	4.12	5.80	6.70	6.18	6.70	$\mathbf{NISIIIO}(\mathbf{F} \cup \mathbf{SIONI} /).$
	²³² U	92	140	232	5.71	4.81	4.90	6.20	5.64	5.40	
	²³⁴ U	92	142	234	6.15	5.09	4.80	6.20	5.55	5.50	
	²³⁶ U	92	144	236	6.40	5.11	5.00	6.15	5.31	5.70	$B_{\rm f} = 5.5 {\rm ~MeV} {\rm ~for} {\rm ~}^{240}{\rm U}$
	²³⁸ U	92	146	238	6.54	5.03	6.30	6.20	5.42	5.50	1
	^{240}U	92	148	240	6.58	4.96	6.10	6.38	5.43	5.80	
	²³⁸ Pu	94	144	238	7 72	5 96	5 60	6.05	5 56	5 10	
	^{240}U		9	92	148	24	40	6.:	58	4.9	6 6.10 6.38 5.43 5.80
	²⁴⁴ Pu	94	150	244	7.85	5.40	5.70	6.26	5.49	4.90	
	²⁴⁶ Pu	94	152	246	7.37	4.76	5.40	5.84	4.96	5.30	
	²⁴² Cm	96	146	242	8.80	6.49	6.65	5.72	4.85	5.00	
	²⁴⁴ Cm	96	148	244	9.04	6.34	6.18	5.90	4.88	5.10	
	²⁴⁶ Cm	96	150	246	8.89	5.84	6.00	5.40	4.62	4.80	
	²⁴⁸ Cm	96	152	248	8.43	5.35	5.80	4.10		4.80	
	²⁵⁰ Cm	96	154	250	7.77	4.79	5.40	2.60		4.40	
	²⁵⁰ Cf	98	152	250	8.87	5.70	5.60	2.40		3.80	\checkmark
	²⁵² Cf	98	154	252	8.41	5.26	5.30	1.20		3.50	Empirical values: Capote2009
											NDC110-3107 (RIPL-3)

²⁷⁰Hs: A doubly magic deformed SHN

Möller_Nilsson_Nix1974_NPA229-292 Čwiok_Pashkevich_Dudek_Nazarewicz1983_NPA410-254 Möller_Leander_Nix1986_ZPA323-41 Sobiczewski_Patyk_Čwiok1987_PLB186-6 Patyk_Skalski_Sobiczewski_Cwiok1989_NPA502-591c Patyk_Sobiczewski1991_NPA533-132

²⁷⁰Hs: A doubly magic deformed SHN

Möller_Nilsson_Nix1974_NPA229-292 Čwiok_Pashkevich_Dudek_Nazarewicz1983_NPA410-254 Möller_Leander_Nix1986_ZPA323-41 Sobiczewski_Patyk_Čwiok1987_PLB186-6 Patyk_Skalski_Sobiczewski_Cwiok1989_NPA502-591c Patyk_Sobiczewski1991_NPA533-132

Patyk_Sobiczewski1991_NPA533-132

²⁷⁰Hs: ground state properties

	$R_{\rm m}~({\rm fm})$	$R_{\rm c}~({\rm fm})$	β_2	$E_{\rm B}~({\rm MeV})$	
Meng_Lu_Zhou2020	6.23	6.167	0.261	1967.40	MDC-RMF (PC-PK1)
ci. China-Phys. Mech. Astron. 63, 212011	Sci			1969.65	AME2016 [140–142]
Patyk_Sobiczewski1991			0.229	1969.20	MMM [40]
Ren2002	6.209	6.152	0.22	1971.80	RMF (TMA) $[143, 144]$
	6.333	6.251	0.274	1969.22	RMF (NLZ2) [143, 144]
Wu_Xu 2004			0.22	1968.5	$\mathbf{MMM} [51]$
Geng 2005; Geng2006	6.199	6.142	0.222	1971.93	RMF (TMA) $[145, 146]$
			0.26	1968.45	HFB-24 [148]
Zhang 2012			0.26	1974	RMF (NL3) [147]
			0.217	1970.27	$WS4 \ [152]$
			0.222	1971.48	FRDM (2012) [153]
Xia 2018	6.180	6.132		1952.65	RCHB (PC-PK1) $[122]^{1}$
Shi 2019		6.132		1969.20	RCHB (PC-PK1) + RFB $[162]^{2}$

²⁷⁰Hs: ground state from MDC-RMF calc.

0г

-1

-2

-3

-4

-5

-6

-7

-8 Ľ

ε_p (MeV)

1/2- [5 1 0]

11/2+ [6 1 5] 3/2 - 5 1 2 9/2 - 5 0 5

5/2- [5 1 2]

9/2+ [6 2 4]

1/2- [5 2 1]

[6 3 |6 4

642 521 642

514400

550

11/2- [5 0 5]

3/2+ [4 0 2]

1/2 1/2

6

proton

108

neutron

162

-4

-5

-6

-7

-8

-9

-10

-11

[]]-12

 $\epsilon_{n}~(\text{MeV})$

13/2 - [7 1 6] 3/2+ [6 1 1]

5/2+ [6 1 3]

7/2+ [6 1 3] 11/2- [7 2 5]

1/2+ [6 2 0]

3/2+ [6 2 2]

9/2+ [6 1 5] 9/2- [7 3 4] 1/2- [5 0 1] 1/2+ [6 6 0]

50 62 74

50 75 75

[6 0 6]

[5 0 3]

3/2+ [6 3 1] 1/2+ [6 6 0] 7/2+ [6 2 4]

3/2-|3/2+

5/2-

Meng Lu Zhou2020 Sci. China-Phys. Mech. Astron. 63, 212011

Xu Meng (孟旭), PhD thesis (2019)

Nuclear shapes

Courtesy of Bing-Nan Lu (吕炳楠)

Changes in $E_{\rm B}$ & s.p. shell gap (in MeV)

λ_{max}	2	4	6	8	10
$\Delta E_{\rm B}$	8.43				
$\Delta p_{\rm sh}$	0.66				
$\Delta^n_{ m sh}$	1.17				

Changes in $E_{\rm B}$ & s.p. shell gap (in MeV)

λ_{max}	2	4	6	8	10
$\Delta E_{\rm B}$	8.43	0.68			
$\Delta^{p}{}_{ m sh}$	0.66	1.28			
$\Delta^n_{ m sh}$	1.17	1.56			

Changes in $E_{\rm B}$ & s.p. shell gap (in MeV)

λ_{max}	2	4	6	8	10
$\Delta E_{\rm B}$	8.43	0.68	1.87		
$\Delta^{p}{}_{ m sh}$	0.66	1.28	1.30		
$\Delta^n_{\rm sh}$	1.17	1.56	1.84		

Changes in $E_{\rm B}$ & s.p. shell gap (in MeV)

λ_{max}	2	4	6	8	10
$\Delta E_{\rm B}$	8.43	0.68	1.87	0.03	
$\Delta^{p}{}_{ m sh}$	0.66	1.28	1.30	1.34	
$\Delta^n_{\rm sh}$	1.17	1.56	1.84	1.85	

Changes in $E_{\rm B}$ & s.p. shell gap (in MeV)

λ_{max}	2	4	6	8	10
$\Delta E_{\rm B}$	8.43	0.68	1.87	0.03	0.01
$\Delta p_{\rm sh}$	0.66	1.28	1.30	1.34	1.34
$\Delta^{n}_{\rm sh}$	1.17	1.56	1.84	1.85	1.85

Changes in $E_{\rm B}$ & s.p. shell gap (in MeV)

λ_{max}	2	4	6	8	10
ΔE_{B}	8.43	0.68	1.87	0.03	0.01
$\Delta p_{\rm sh}$	0.66	1.28	1.30	1.34	1.34
$\Delta^n_{\rm sh}$	1.17	1.56	1.84	1.85	1.85

Wang_Sun_SGZ2022_ChinPhysC46-024107

AS-RS: Axially-Symmetric & Reflection Symmetric

Courtesy of Xu Meng (孟旭)

AS-RS: Axially-Symmetric & Reflection Symmetric

AS-RA: Axially-Symmetric & Reflection Asymmetric

AS-RS: Axially-Symmetric & Reflection Symmetric

AS-RA: Axially-Symmetric & Reflection Asymmetric

TA-RS: TriAxial & Reflection Symmetric

AS-RS: Axially-Symmetric & Reflection Symmetric

AS-RA: Axially-Symmetric & Reflection Asymmetric

TA-RS: TriAxial & Reflection Symmetric

TA-RA: TriAxial & & Reflection Asymmetric

Meng_Lu_Zhou2020 Sci. China-Phys. Mech. Astron. 63, 212011

A systematic study of even-even superheavy nuclei

A systematic study of even-even superheavy nuclei

MDC-RMF calculations

- \ge 102 \le Z \le 128, proton drip line to neutron drip line
- Effective interaction: PC-PK1
- BCS w/ separable pairing force of finite range

Xiao-Qian Wang (王晓倩), PhD thesis (2024)

PECs of even-*N* Cn isotopes ($160 \le N \le 288$)

PECs of ²⁷⁴Cn

PECs of ^{282,284,286,288,290}**Cn isotopes**

A systematic study of even-even superheavy nuclei

Summary & perspectives

- Fission barrier is crucial for the description of fission & various shapes may appear during fission
- MultiDimensionally-Constrained Covariant Density Functional Theories
- □ Potential energy surfaces & fission barriers: ²⁴⁰Pu; actinides & ²⁷⁰Hs; superheavies
 - > Inner barrier: triaxial deformation
 - Outer barrier: octupole & triaxial deformations
 - > A systematic study of even-even superheavy nuclei (w/o triaxiality)

Summary & perspectives

- Fission barrier is crucial for the description of fission & various shapes may appear during fission
- MultiDimensionally-Constrained Covariant Density Functional Theories
- □ Potential energy surfaces & fission barriers: ²⁴⁰Pu; actinides & ²⁷⁰Hs; superheavies
 - Inner barrier: triaxial deformation
 - Outer barrier: octupole & triaxial deformations
 - > A systematic study of even-even superheavy nuclei (w/o triaxiality)

Thank you !