K-isomers in heavy and superheavy nuclei

Nikolay Minkov (Николай Минков)

Institute of Nuclear Research and Nuclear Energy Bulgarian Academy of Sciences, Sofia, Bulgaria Research Group on Complex Deformed Atomic Nuclei

SHE "50 Years of Cold Fusion", Yerevan, 23 Nov. 2024

K-isomers in heavy deformed nuclei	Deformed and two-center shell models in K isomers	Skyrme HFBCS approach to <i>k</i>

Contents

- 1 K-isomers in heavy deformed nuclei
- **2** Deformed and two-center shell models in *K* isomers
- **3** Skyrme HFBCS approach to *K*-isomers
- **Two-quasiparticle isomers in Hafnium isotopes and** N = 106 isotones
- 5 Two-quasiparticle isomers in heavy actinide and superheavy nuclei. The ²⁷⁰Ds isomer.
- **6** Concluding remarks and perspective

00

K-isomers in heavy deformed nuclei Deformed and two-center shell models in K isomers Skyrme HFBCS approach to P

Nuclear deformation and K-isomers

P. Walker, G. Dracoulis, Nature 399, 35 (1999); Rep. Prog. Phys. 79, 076301 (2016) K-isomeric states in even-even nuclei:

Broken nucleon pairs \Rightarrow coupled s.p. orbitals \Rightarrow two- or multiquasiparticle (qp) excitations with high K under axial symmetry conditions $\Rightarrow \Delta K$ suppressed transitions $\Rightarrow K$ isomeric states K-isomeric states in odd-mass nuclei: Different K bandheads and axial symmetry

High-K isomers in 178 Hf

S. M. Millins, G. D. Dracoulis et al, PLB 400, 401 (1997)

DSM+BCS analysis of 2gp energies and magnetic moments

DSM+BCS with guadrupole and octupole deformations

 $H = H_{sn}(V_{ws}(\beta_2, \beta_3)) + H_{pair}$

Pairing constants: $G_{n/p} = (g_0 \mp g_1 \frac{N-Z}{A})/A$, $g_0 = 17.8$ MeV, $g_1 = 7.4$ MeV

Two-quasiparticle energies

 $E_{2ap}^{K\pi} = E_{1ap}^{\Omega_1\pi_1} + E_{1ap}^{\Omega_2\pi_2}$, $E_{1ap}^{\Omega\pi} = \sqrt{(E_{sp}^{\Omega\pi} - \lambda)^2 + \Delta^2}$ $K = \Omega_1 + \Omega_2$; $\pi = \pi_1 \cdot \pi_2$ ($\beta_3 = 0$), $\pi = \operatorname{sign}\langle \pi_1 \rangle \cdot \operatorname{sign}\langle \pi_2 \rangle$ ($\beta_3 \neq 0$) Magnetic moment of the 2qp configuration

$$\mu = \mu_N \left[g_R \frac{I(I+1) - K^2}{I+1} + g_K \frac{K^2}{I+1} \right]$$
$$g_K = \frac{1}{K} \sum_{n=1,2} \langle \mathcal{F}_{\Omega_n} | g_s \cdot \Sigma + g_I \cdot \Lambda | \mathcal{F}_{\Omega_n} \rangle$$

 $g_R = Z/A$, $g_s = 0.6g_s^{free}$

Neutron s.p. levels in ²⁴⁴Pu in dependence on the octupole deformation β_3 at fixed guadrupole deformation β_2

Two-quasiparticle energy and magnetic moment for the $K^{\pi} = 8^{-}$ $\{\nu 7/2[624] \otimes \nu 9/2[734]\}$ configuration in 244 Pu

[P. M. Walker and N. Minkov, Phys. Lett. B 694, 119-122 (2010)]

Two-quasiparticle energy and magnetic moment for the $K^{\pi} = 6^{-1}$ $\{\nu 5/2[633] \otimes \nu 7/2[743]\}$ configuration in ²³⁴U

Other approaches:

■ PES calculations by H. L. Liu and F. R. Xu, PRC 87, 067304 $(2013) - (\beta_2 \sim 0.22, \beta_3 \sim 0.03)$ Skyrme HFBCS calculations by L. Bonneau, P. Quentin, N. M. et al, Bulg. J. Phys. 46, 366 (2019) – ($\beta_2 \sim 0.25$, $\beta_3 \sim 0.05$)

Two-quasiparticle energy and magnetic moment for the $K^{\pi} = 8^{-1}$ $\{\nu 7/2[624] \otimes \nu 9/2[734]\}$ configuration in 254 No

[N. Minkov and P. M. Walker, Phys. Scripta 89, 054021 (2014)]

2qp energy and magnetic moments for $K^{\pi} = 9^{-}, 10^{-}$ isomer in ²⁷⁰Ds

[N. Minkov and P. M. Walker, Phys. Scripta 89, 054021 (2014)]

Systematics of 2qp energy minima

Phys. Scr. 89 (2014) 054021

N Minkov and P Walker

Table 1. Positions and depths of the 2qp energy minima in the (β, β) -surfaces obtained by DSM+BCS calculations for isomeric states of several heavy and superheavy nuclei. See the text for details.

Nucleus	K [#]	Configuration	β_2^{\min}	β_3^{\min}	Depth (MeV)
²³⁴ U	$K^{\pi} = 6^-$	$\{\nu 5/2 [633] \otimes \nu 7/2 [743] \}$	0.228	0.162	0.432
²³⁶ U	$K^{\pi} = 4^{-}$	$\{\nu 1/2 [631] \otimes \nu 7/2 [743]\}$	0.235	0.070	0.021
²³⁸ Pu	$K^{\pi} = 4^{-}$	$\{\nu 1/2 [631] \otimes \nu 7/2 [743]\}$	0.235	0.064	0.016
²⁴⁴ Pu	$K^{\pi} = 8^{-}$	$\{\nu 7/2 [624] \otimes \nu 9/2 [734]\}$	0.262	0.076	0.031
²⁴⁴ Cm	$K^{\pi} = 6^+$	$\{\nu 5/2 [622] \otimes \nu 7/2 [624] \}$	0.256	0.102	0.075
²⁴⁶ Cm	$K^{\pi} = 8^{-}$	$\{\nu 7/2 [624] \otimes \nu 9/2 [734]\}$	0.261	0.076	0.032
²⁴⁸ Cm	$K^{\pi} = 8^{-}$	$\{\nu 7/2 [613] \otimes \nu 9/2 [734]\}$	0.231	0.000	0.000
²⁵⁰ Fm	$K^{\pi} = 8^{-}$	$\{\nu 7/2 [624] \otimes \nu 9/2 [734]\}$	0.257	0.078	0.037
²⁵⁶ Fm	$K^{\pi} = 7^{-}$	$\{\pi 7/2 [633] \otimes \pi 7/2 [514]\}$	0.238	0.000	0.000
²⁵⁰ No	$K^{\pi} = 6^{+}$	$\{\nu 5/2 [622] \otimes \nu 7/2 [624]\}$	0.253	0.108	0.084
²⁵² No	$K^{\pi} = 8^{-}$	$\{\nu 7/2 [624] \otimes \nu 9/2 [734]\}$	0.257	0.080	0.040
²⁵⁴ No	$K^{\pi} = 8^{-}$	$\{\nu 7/2 [624] \otimes \nu 9/2 [734]\}$	0.302	0.212	0.317
²⁷⁰ Ds	$K^{\pi} = 9^{-}$	$\{\nu 7/2 [613] \otimes \nu 11/2 [725]\}$	0.282	0.18	0.139
²⁷⁰ Ds	$K^{\pi} = 10^{-1}$	$\{\nu 9/2[615] \otimes \nu 11/2[725]\}$	0.238	0.09	0.026
¹⁵⁴ Nd	$K^{\pi} = 4^{-}$	$\{\nu 5/2 [642] \otimes \nu 3/2 [521]\}$	0.284	0.108	0.137
¹⁵⁶ Nd	$K^{\pi} = 5^{-}$	$\{\nu 5/2 [642] \otimes \nu 5/2 [523]\}$	0.292	0.000	0.000
¹⁶⁰ Sm	$K^{\pi} = 5^{-}$	$\{\nu 5/2 [642] \otimes \nu 5/2 [523]\}$	0.286	0.000	0.000
¹⁵⁴ Gd	$K^{\pi} = 7^{-}$	$\{\nu 3/2 [402] \otimes \nu 11/2 [505]\}$	0.327	0.168	0.137
¹⁵⁶ Gd	$K^{\pi} = 7^-$	$\{\nu 3/2 [402] \otimes \nu 11/2 [505]\}$	0.362	0.170	0.126

Coriolis mixing in 1qp isomers of N = 153 isotones, T. Shneidman, N. M., G. Adamian, N. Antonenko PRC 106, 014310 (2022)

²⁵¹Cf: $I^{\pi}, K^{\pi}[Nn_z\Lambda] = 7/2^+, 1/2^+[620] \rightarrow E = 105.7 \text{ keV};$ $I^{\pi}, K^{\pi}[Nn_z\Lambda] = 7/2^+, 7/2^+[613] \rightarrow E = 106.3 \text{ keV}$

Nucleus	²⁴⁹ Cm	²⁵¹ Cf	²⁵³ Fm
$E_{7/2^{\pm}}$ (keV)	39.0 (58.8)	105.9 (106.3)	118.2
$B(E^2, 7/2^+ \rightarrow 3/2^+_{K-1/2})$ (W.u.)	$0.93 \times 10^{-3} (2.7 \times 10^{-3})$	0.124 (0.47)	0.368×10^{-3}
$B(E2, 7/2^+ \rightarrow 5/2^+_{K-1/2})$ (W.u.)		0.017 (<0.032)	0.762×10^{-3}
$B(M1, 7/2^+ \rightarrow 5/2^+_{K-1/2})$ (W.u.)		$4.66 \times 10^{-5} (> 2.1 \times 10^{-5})$	4.91×10^{-7}
T _{1/2}	73.4 µs (23 µs)	45 ns (38 ns)	$3.65 \ \mu s$

Skyrme HFBCS in K-isomers

- Hartree-Fock (HF) plus BCS energy-density functional
- Selfconsistent blocking of two s.p. states (2qp isomer configuration)
- SIII Skyrme force with spin and current vector time-odd fields
- Deformed HO basis with axial symmetry: $N_0 + 1 = 17$ (for actinides and SH) and $N_0 + 1 = 15$ (for rare-earths) major oscillator shells; $NG_z=30$ (Gauss - Hermite in z), $NG_r=15$ (Gauss-Laguerre in \perp) quadrature mesh points; basis parameters b, q optimized
- Pairing strengths G_n , G_p : overall adjustment to experimental Mol $1/(2\mathfrak{J}) = E(2_1^+)/6 \rightarrow G_n = 16$ MeV, $G_p = 15$ MeV in r-earths
- HFBCS 2qp K-isomer energy: $E_{th}^*(K^{\pi}) = E_{tot}^{2qp}(K^{\pi}) E_{tot}^{GS}$

$K^{\pi} = 6^+$ and $K^{\pi} = 8^-$ isomers in Hf isotopes and N = 106 isotones

P. Walker, G. Dracoulis, Rep. Prog. Phys. 79, 076301 (2016)

HFBCS description of $K^{\pi} = 6^+$ isomer energies in Hf isotopes. Configurations: $\nu 5/2^-[512] \otimes \nu 7/2^-[514]$; $\pi 5/2^+[402] \otimes \pi 7/2^+[404]$

[N.M., L. Bonneau, P. Quentin, J. Bartel, H. Molique, M.-H. Koh, Phys. Rev. C **109**, 064315 (2024)]

HFBCS description of $K^{\pi} = 8^{-}$ isomer energies in Hf isotopes. Configurations: $\nu 7/2^{-}[514] \otimes \nu 9/2^{+}[624]; \pi 7/2^{+}[404] \otimes \pi 9/2^{-}[514]$

HFBCS description of $K^{\pi} = 8^-$ isomer energies in N = 106 isotones. Configurations: $\nu 7/2^-[514] \otimes \nu 9/2^+[624]; \pi 7/2^+[404] \otimes \pi 9/2^-[514]$

HFBCS description of energies and magnetic moments in $K^{\pi} = 6^+$ and $K^{\pi} = 8^{-}$ isomers in Hf isotopes and N = 106 isotones

А	Ν	K^{π}	$E_{\rm th}^{*n}$	$E_{\rm th}^{*p}$	$E^*_{\rm exp}$	$\mu_{ ext{th}}^n$	$\mu^p_{ m th}$							
168	96	6^+	3.409	2.236		1.832	5.740							
		8-												
170	98	6^+	3.824	2.306	1.773	0.136	5.652							
		8-	4.667	2.266		0.148	7.348							
172	100	6+	2.941	2.341	1.685	0.036	5.670							
		8-	3.723	2.130	2.006	0.062	7.338							
174	102	6 ⁺	2.073	2.282	1.549	0.074	5.676							
		8	2.118	1.914	1.798	0.150	1.335							
170	104	8-	1.064	2.159	1.333	-0.029	5.697 7 343	Α	N	$E_{\rm th}^{*n}$	$E_{\rm th}^{*p}$	E^*_{\exp}	$\mu_{ ext{th}}^n$	$\mu^p_{ m th}$
178	106	6+	1 010	2 143	1.554	0.108	5 704	¹⁷⁰ Gd	64	1.117	6.748		0.331	7.491
110	100	8-	1.141	1.352	1.147	0.311	7.349	¹⁷² Dy	66	1.060	5.631	1.278	0.356	7.521
180	108	6^{+}	3.739	2.190	1.703	0.167	5.697	¹⁷⁴ Er	68	1.020	4.331	1.112	0.334	7.571
		8-	3.017	1.179	1.142	0.378	7.343	176 Yb	70	1.031	3.015	1.050	0.359	7.422
182	110	6^+	4.002	2.219	_	-2.051	5.757	¹⁷⁸ Hf	72	1.141	1.351	1.147	0.311	7.349
		8^-	3.193	1.085	1.173	-1.880	7.378	¹⁸⁰ W	74	1.308	2.532	1.529	0.256	7.354
184	112	6^+	4.042	2.258		-2.045	5.825	¹⁸² Os	76	1.412	3.434	1.831	0.253	7.391
		8-	3.214	1.031	1.272	-1.931	7.414	¹⁸⁴ Pt	78	1.455	4.341	1.840	0.273	7.401
186	114	6^+						100Hg	80	1.488	5.305	2.217	0.293	7.408
		8^{-}	3.204	1.071		-2.028	7.455	100Pb	82	1.564	6.031	2.577	0.288	10.226

Data on magnetic moments can favour the n or p configuration

Two-quasiparticle isomers in heavy actinide and SH nuclei

N. MINKOV et al.

PHYSICAL REVIEW C 105, 044329 (2022)

FIG. 1. Ratios $R_{4/2}$ outlining in the (N, Z) plane an area of good-rotor nuclei (with $R_{4/2} \ge 3.2$) within the actinide and transfermium region. The color code indicates the criteria under which the nuclei have been selected for this K-isomer study. The color coding is \blacksquare (yellow): nuclei with explicitly documented data on isomeric states [criteria (i) and (ii)]; \blacksquare (red): well-deformed nuclei with isomer-like excitations not explicitly adopted as K isomers [criterion (iii)]; \blacksquare (green): documented isomers in nuclei, assumed to be deformed, but with no data assessing the $R_{4/2}$ value [criterion (iii)].

[N.M., L. Bonneau, P. Quentin, J. Bartel, H. Molique, D. Ivanova, PRC **105**, 044329 (2022)]

HFBCS description of K-isomer energies in actinides and SHs

Nucl.	Ν	K ^π	2qp config., Refs.	$\mu \ (\mu_N)$	E* (MeV)	E*exp (MeV)	$T_{1/2}^{\exp}$	Experiment Refs.
²³⁴ U	142	<mark>6</mark> -	$(\frac{7}{2}^{-},\frac{5}{2}^{+})_{n}$ [12]	+0.23	1.582	1.421	33.5 (20) µs	[25,27] E*=1.481 MeV
		5+	$(\frac{5}{2}^+, \frac{5}{2}^+)_n$ [29]	-0.02	2.425	1.553	2.20 (25) ns	[25,29] (BJP2019 Oct)
			$(\frac{7}{2}^+, \frac{3}{2}^+)_n$	+0.18	2.348			
²³⁶ U	144	4-	$(\frac{7}{2}^{-}, \frac{1}{2}^{+})_n$ [46]	+0.17	1.028	1.053	100 (4) ns	[25,27]
²³⁶ Pu	142	5-	$(\frac{5}{2}^{-}, \frac{5}{2}^{+})_{p}$ [47]	+4.23	1.138	1.186	1.2 (3) µs	[25,27]
		0-	$(\frac{5}{2}^{-}, -\frac{5}{2}^{+})_{p}$	0	1.289	1.312		[25]
²³⁸ Pu	144	5-	$(\frac{5}{2}^{-}, \frac{5}{2}^{+})_{p}$	+4.24	1.190			
		4-	$(\frac{7}{2}^{-}, \frac{1}{2}^{+})_n$ [29,48]	+0.23	1.033	1.083	8.5 (5) ns	[25]
²⁴⁰ Pu	146	3+	$(\frac{5}{2}^+, \frac{1}{2}^+)_n$ [29]	-0.04	1.367	1.031	1.32 (15) ns	[25]
			$(\frac{7}{2}^+, -\frac{1}{2}^+)_n$	+0.30	1.245			
		5-	$(\frac{5}{2}^{-}, \frac{5}{2}^{+})_{p}$ [49]	+4.24	1.295	1.309	165 (10) ns	[25,27]
²⁴⁴ Pu	150	8-	$(\frac{9}{2}^{-}, \frac{7}{2}^{+})_{n}$ [28]	+0.28	1.219	1.216	1.75 (12) s	[25,28]
244Cm	148	6+	$(\frac{7}{2}^+, \frac{5}{2}^+)_n$ [29,50]	+0.12	1.042	1.040	34 (2) ms	[25,27]
²⁴⁶ Cm	150	8-	$(\frac{9}{2}^{-}, \frac{7}{2}^{+})_n$ [51,52]	+0.32	1.227	1.180	1.12 (24) s	[25,51,52]
²⁴⁸ Cm	152	8-	$(\frac{9}{2}^{-}, \frac{7}{2}^{+})_n$ [52]	-1.72	2.025	1.461	146 (18) µs	[52]
²⁴⁸ Cf	150	8-	$(\frac{9}{2}^{-}, \frac{7}{2}^{+})_n$ [30,51]	+0.31	1.276	1.261		[25]
²⁴⁸ Fm	148	6+	$(\frac{5}{2}^+, \frac{7}{2}^+)_n$ [31]	+0.09	1.240	1.188	10.1 (6) ms	[31,53]
²⁵⁰ Fm	150	8-	$(\frac{9}{2}^{-}, \frac{7}{2}^{+})_n$ [26]	+0.32	1.374	1.199	1.92 (5) s	[26,27]
256Fm	156	7-	$(\frac{7}{2}^+, \frac{7}{2}^-)_p$ [12,54]	+6.31	1.312	1.426	70 (5) ms	[25,27]
252No	150	8-	$(\frac{9}{2}^{-}, \frac{7}{2}^{+})_n$ [51,55]	+0.36	1.501	1.253	109 (3) ms	[25,27]
²⁵⁴ No	152	8-	$(\frac{7}{2}, \frac{9}{2})_p$ [29,56]	+7.31	1.914	1.297	263 (2) ms	[25,27]
			$(\frac{5}{2}^+, \frac{11}{2}^-)_n$	-1.65	2.209			
			$(\frac{9}{2}^{-}, \frac{7}{2}^{+})_{n}$	-1.70	2.327			
		16^{+}	$(\frac{9}{2}^{-}, \frac{7}{2}^{+})_n(\frac{7}{2}^{-}, \frac{9}{2}^{+})_p$	+5.66	4.142	2.930	184 (2) µs	[25,27]
			$(\frac{5}{2}^+, \frac{11}{2}^-)_n(\frac{7}{2}^-, \frac{9}{2}^+)_p$	+5.71	3.892			
²⁵⁶ No	154	(5-)	$(\frac{11}{2}^{-}, -\frac{1}{2}^{+})_{n}$ [32]	+0.23	1.487	> 1.089	$7.8^{+8.3}_{-2.6} \ \mu s$	[32]
		(7-)	$(\frac{11}{2}^{-}, \frac{3}{2}^{+})_{n}$ [32]	+0.23	1.448			
254Rf	150	(8-)	$(\frac{9}{2}^{-}, \frac{7}{2}^{+})_{p}$ [33]	+0.36	1.647		4.7(1) μs	[25,33,34]
256Rf	152	(5-)	$(\frac{1}{2}^{-}, \frac{9}{2}^{+})_{p}$ [58]	+4.49	1.028	≈ 1.120	25(2) µs	[25,27]
		(8-)	$(\frac{7}{2}^{-}, \frac{9}{2}^{+})_{p}$ [58]	+7.33	1.748	≈ 1.400	17(2) µs	

N = 152 deformed shell gap issue

[N.M., L. Bonneau, P. Quentin, J. Bartel, H. Molique, D. Ivanova, PRC 105, 044329 (2022)]

HFBCS description of K-isomer radii and quadrupole moments

Nucleus	State	r	_c (fm)	Q	Q_c (b)		
		Theory	Expt. [41]	Theory	Expt. [42]		
²³⁴ U	GS	5.902	5.8291 52	10.08	10.35 10		
	$(6^{-})_{n}$	5.901		10.14			
²³⁶ U	GS	5.916	5.8431 38	10.36	10.809		
	$(4^{-})_{n}$	5.917		10.55			
	$(4^{-})_{p}$	5.910		10.14			
²³⁶ Pu	GS	5.932		10.85			
	$(5^{-})_{p}$	5.936		11.17			
²³⁸ Pu	GS	5.945	5.8535 378	11.10	11.269		
	$(4^{-})_{n}$	5.946		11.21			
	$(5^{-})_{p}$	5.948		11.39			
²⁴⁰ Pu	GS	5.958	5.8701 379	11.28	11.44 9		
	$(5^{-})_{p}$	5.960		11.54			
²⁴⁴ Pu	GS	5.980	5.8948 382	11.35	11.73 9		
	$(8^{-})_{n}$	5.980		11.50			
²⁴⁴ Cm	GS	5.998	5.8429 181	12.02	12.148		
	$(6^+)_n$	5.999		12.16			
²⁴⁶ Cm	GS	6.008	5.8562 184	12.01	12.268		
	$(8^{-})_{n}$	6.008		12.12			
²⁴⁸ Cm	GS	6.018	5.8687 <i>193</i>	11.99	12.28 8		
	$(8^{-})_{n}$	6.014		11.72			

HFBCS description of ²⁷⁰Ds K-isomer: test calculations

$$\begin{split} & E_{\text{isomer}}^{\text{exp}} = 1.348(66) \text{ MeV}, \ T_{1/2}^{\text{exp}} = 3.9(+13,-8) \text{ ms } ??, \ K^{\pi} = (10^{-}) \\ & \text{F. Kondev, G. Dracoulis, T. Kibedi, ADNDT$$
103-104 $, 50 (2015); \\ & \text{D. Ackermann et al., GSI Sci. Rep. 2011, p.208 (2011) [266Hs]$} \\ & E_{\text{isomer}}^{\text{exp}} = 1.13 \text{ MeV}, \ T_{1/2}^{\text{exp}} = 6.0(+82,-22) \text{ ms}, \ K^{\pi} = ? \\ & \text{S. Garg et al., ADNDT$ **150** $, 101546 (2023); \\ & \text{S. Hofmann et al., EPJA$ **10** $} \\ & \text{5 (2001); D. Ackermann, C. Theisen, Phys. Scr.$ **92** $, 083002 (2017)} \end{split}$

Configuration	$ \begin{array}{c} {{\cal E}_{\rm isomer}^{\rm HFBCS} ({\rm MeV}) \ / \ {\rm Skyrme \ force} \\ {\rm SIII}_{(s1)} \ {\rm SIII}_{(s2)} \ {\rm SkM}_{(s1)}^* \ {\rm SLy4}_{(s1)} \ {\rm SLy4}_{(s2)} \ {\rm SLyIII}_{(s1)} \end{array} $					
$9^{-}\{n_{\overline{2}}^{7+}[613], n_{\overline{2}}^{11-}[725]\}$	1.946	2.402	2.635	1.079	1.343	1.920
$10^{-}\{n_{2}^{9^{+}}[615], n_{2}^{11^{-}}[725]\}$	2.593	2.985	1.668	0.547	0.823	2.461

BCS pairing constants sets s1: $G_n = 15.8 \text{ MeV}$, $G_p = 14.2 \text{ MeV}$ (overall adjusted in actinides) s2: $G_n = 17.0 \text{ MeV}$, $G_p = 16.0 \text{ MeV}$

Reflection symmetry conserved

Concluding remarks

- DSM and TCSM approaches: Influence of octupole deformation on the formation of 2qp K-isomeric states in heavy and SH nuclei and their magnetic moments; Enhanced 1qp isomer decay resulting from Coriolis K-mixing.
- Skyrme HFBCS in Hf isotopes and N = 106 isotones: Good reproduction of the K^π = 6⁺ and K^π = 8⁻ isomer energies and magnetic moments, identified mixing of p and n configurations; Reproduced systematic behaviour of isomer energies.
- Skyrme HFBCS in heavy actinides and SHs: Overall good reproduction of 2qp isomer energies and GS radii and quadrupole moments; Skyrme SIII and N = 152 deformed shell gap; SLy4 in ²⁷⁰Ds; Possible readjustment of the Skyrme force including very heavy and SH nuclei.
- Further work: Tests of Skyrme interactions on multi-q.p. isomers; Odd-mass and odd-odd heavy and SH nuclei; Exploring the octupole mode.

Collaborators

- P. M. Walker University of Surrey
- T. M. Shneidman JINR, Dubna
- G. G. Adamian JINR, Dubna
- N. V. Antonenko JINR, Dubna
- L. Bonneau LP2i (CENBG) Universite de Bordeaux
- P. Quentin LP2i (CENBG) Universite de Bordeaux
- J. Bartel IPHC Universite de Strasbourg
- H. Molique IPHC Universite de Strasbourg
- M.-H. Koh Universiti Teknologi Malaysia
- D. Ivanova Military Medical Academy, Sofia
- N. Kontowicz LP2i (CENBG) Universite de Bordeaux