Light hadron spectra obtained with MPDRoot

Natalia Kolomoyets

LHEP, JINR

8.10.2024

The task

- Obtain spectra of π^{\pm} , K^{\pm} , and p with MPDRoot.
- Fit spectra, obtain physical parameters.
- Integrate spectra and obtain yields.

• See into PID by STAR as an alternative method.

Contents

- MpdHadronSpectra wagon
- Processing of spectra
- pidAM vs pidSTAR
- Conclusions

MpdHadronSpectra wagon

Initial developer: Alexander Mudrokh

mpdroot/physics/MpdHadronSpectra/

- MpdHadronSpectraParams.h (*.cxx): input file readers
- MpdHadronSpectra.h (*.cxx): main source files
- MpdHadronSpectraLinkDef.h
- CMakeLists.txt

How to run the MpdHadronSpectra wagon:

- In mpdroot/physics/CMakeLists.txt add line add_subdirectory(MpdHadronSpectra)
- In mpdroot/physics/pairKK/macros/RunAnalyses.C add lines

MpdHadronSpectra pSpec("pHS", "pHS"); man.AddTask(&pSpec);

• \$ root -b -q -l RunAnalyses.C

MpdHadronSpectra.cxx (principally)

```
#include "MpdTrack.h"
#include "MpdMCTrack.h"
#include "MpdVertex.h"
ClassImp(MpdHadronSpectra);
void ProcessEvent(MpdAnalysisEvent &event){...}
void FillMcSpectra(MpdAnalysisEvent &event){...}
void FillMcTOFSpectra(MpdAnalysisEvent & event){...}
void FillRcSpectra(MpdAnalysisEvent & event){...}
void FillTPCefficiency(MpdAnalysisEvent & event){...}
void FillTOFefficiency(MpdAnalysisEvent & event){...}
void FillTOFMCefficiency(MpdAnalysisEvent & event){...}
void FillPIDefficiency(MpdAnalysisEvent & event){...}
void FillDCAcontribution(MpdAnalysisEvent & event){...}
void FillCoordEfficiency(MpdAnalysisEvent & event){...}
void FillSplitting(MpdAnalysisEvent & event){...}
bool selectEvent(MpdAnalysisEvent & event){...}
double Eloss Pi(double *x, double *par){...}
double Eloss Kplus(double *x. double *par){...}
double Eloss Kminus(double *x, double *par){...}
double Eloss Proton(double *x, double *par){...}
double Eloss AntiProton(double *x, double *par){...}
```

 $p_t^{(RC)}$ vs $p_t^{(MC)}$

|y| < 0.1, centrality 0-10% (4000 events)

5/28 8.10.2024

MpdHadronSpectra wagon

A. Mudrokh:

MpdHadronSpectra.cxx (principally)

<pre>#include "MpdTrack.h" #include "MpdMCTrack.h" #include "MpdMCTrack.h"</pre>					
ClassImp(MpdHadronSpectra);					
<pre>void ProcessEvent(MpdAnalysisEvent &event){}</pre>					
<pre>void FillMcSpectra(MpdAnalysisEvent &event){} void FillMcTOFSpectra(MpdAnalysisEvent &event){} void FillRcSpectra(MpdAnalysisEvent &event){}</pre>					
<pre>void FillTPCefficiency(MpdAnalysisEvent &event){} void FillTOFefficiency(MpdAnalysisEvent &event){} void FillTOFMCefficiency(MpdAnalysisEvent &event){} void FillPIDefficiency(MpdAnalysisEvent &event){} void FillDCAcontribution(MpdAnalysisEvent &event){} void FillSordEfficiency(MpdAnalysisEvent &event){}</pre>					
<pre>bool selectEvent(MpdAnalysisEvent &event){}</pre>					
<pre>double Eloss_Pi(double *x, double *par){} double Eloss_Kplus(double *x, double *par){} double Eloss_Kminus(double *x, double *par){} double Eloss_Proton(double *x, double *par){} double Eloss_AntiProton(double *x, double *par){}</pre>					

N. Kolomoyets (LHEP, JINR)

MpdHadronSpectra wagon

pHS.txt

oHS.root

hMcd2Ndydpt_<particle>_k hMcd2Nptdydpt_<particle>_k

hMcTOFd2Ndydpt_<particle>_k hMcTOFd2Nptdydpt_<particle>_k

hRcd2Ndydpt_<particle>_k hRcd2Nptdydpt_<particle>_k

hEv_k

h<FracPart><EffCont>_<particle>_k

ff	CoordEff	SecondariesEff	TOFMatchEff	TOFMatchMCEff
\mathtt{ont}	CoordCont	${\tt SecondariesCont}$	${\tt TOFMatchCont}$	
nas)	<particle></particle>	: Piplus, Piminus, A	Kplus, Kminus, P	roton, AntiProton
	<fracpart></fracpart>	: Num, Denom	Example:	

k – number of centrality bin

Light hadron spectra

hNumPIDeff_Kplus_4

Phase Spaces

N. Kolomoyets (LHEP, JINR)

Light hadron spectra

Efficiencies & Contaminations

Total efficiency:

W -	$\prod_i \operatorname{Eff}_i$				
<i>vv</i> =	$\overline{\prod_j (1 - \operatorname{Cont}_j)}$				

 $\mathrm{TPCeff} = \mathrm{TPCeff} = \frac{N_{\mathrm{RC}}[\mathrm{TOFMC}, \, \mathrm{PRIMMC}, \, \mathrm{PIDMC}, \, \mathrm{CELLMC}]}{N_{\mathrm{MC}}[\mathrm{TOFMC}, \, \mathrm{PRIMMC}, \, \mathrm{PIDMC}, \, \mathrm{CELLMC}]}$

 $\text{TOFeff} = \frac{N_{\text{RC}}[\text{TOFRC}\&\text{TOFMC}, \text{PRIMMC}, \text{PIDMC}, \text{CELLMC}]}{N_{\text{RC}}[\text{TOFMC}, \text{PRIMMC}, \text{PIDMC}, \text{CELLMC}]} \quad \text{TOFcont} = \frac{N_{\text{RC}}[\text{TOFRC}, \text{PRIMMC}, \text{PIDMC}, \text{CELLMC}]}{N_{\text{RC}}[\text{TOFMC}, \text{PRIMMC}, \text{PIDMC}, \text{CELLMC}]}$

 $\text{SecEff} {=} \frac{N_{\text{RC}}[\text{TOFRC, PRIMC&PRIMMC, PIDMC, CELLMC]}}{N_{\text{RC}}[\text{TOFRC, PRIMMC, PIDMC, CELLMC]}} \quad \text{SecEff} {=} \frac{N_{\text{RC}}[\text{TOFRC, PRIMC, PIDMC, CELLMC]}}{N_{\text{RC}}[\text{TOFRC, PRIMC, PIDMC, CELLMC]}} \quad \text{SecEff} {=} \frac{N_{\text{RC}}[\text{TOFRC, PRIMC, PIDMC, CELLMC]}}{N_{\text{RC}}[\text{TOFRC, PRIMC, PIDMC, CELLMC]}} \quad \text{SecEff} {=} \frac{N_{\text{RC}}[\text{TOFRC, PRIMC, PIDMC, CELLMC]}}{N_{\text{RC}}[\text{TOFRC, PRIMC, PIDMC, CELLMC]}} \quad \text{SecEff} {=} \frac{N_{\text{RC}}[\text{TOFRC, PRIMC, PIDMC, CELLMC]}}{N_{\text{RC}}[\text{TOFRC, PRIMC, PIDMC, CELLMC]}} \quad \text{SecEff} {=} \frac{N_{\text{RC}}[\text{TOFRC, PRIMC, PIDMC, CELLMC]}}{N_{\text{RC}}[\text{TOFRC, PRIMC, PIDMC, CELLMC]}} \quad \text{SecEff} {=} \frac{N_{\text{RC}}[\text{TOFRC, PRIMC, PIDMC, CELLMC]}}{N_{\text{RC}}[\text{TOFRC, PRIMC, PIDMC, CELLMC]}}$

 $\text{TOFcont} = \frac{N_{\text{RC}}[\text{TOFRC}\&(!\text{TOFMC}), \text{ PRIMMC}, \text{ PIDMC}, \text{ CELLMC}]}{N_{\text{RC}}[\text{TOFRC}, \text{ PRIMMC}, \text{ PIDMC}, \text{ CELLMC}]}$

$$\label{eq:secCont} \begin{split} \text{SecCont} = \frac{N_{\text{RC}}[\text{TOFRC}, \text{PRIMRC}(\text{!PRIMMC}), \text{PIDMC}, \text{CELLMC}]}{N_{\text{RC}}[\text{TOFRC}, \text{PRIMRC}, \text{PIDMC}, \text{CELLMC}]} \end{split}$$

 $\text{PIDeff} = \frac{N_{\text{RC}}[\text{TOFRC, PRIMRC, PIDRC = PIDMC, CELLMC]}}{N_{\text{RC}}[\text{TOFRC, PRIMRC, PIDRC, CELLMC]}} \quad \text{PIDcont} = \frac{N_{\text{RC}}[\text{TOFRC, PRIMRC, PIDRC, CELLMC]}}{N_{\text{RC}}[\text{TOFRC, PRIMRC, PIDRC, CELLMC]}}$

 $\text{CELLeff} = \frac{N_{\text{RC}}[\text{TOFRC, PRIMRC, PIDRC, CELLRC]}}{N_{\text{RC}}[\text{TOFRC, PRIMRC, PIDRC, CELLRC]}} \quad \text{CELL_{\text{cont}} = \frac{N_{\text{RC}}[\text{TOFRC, PRIMRC, PIDRC, CELLRC]}}{N_{\text{RC}}[\text{TOFRC, PRIMRC, PIDRC, CELLRC]}}$

 $\text{TOFMCeff} = \frac{N_{\text{MC}}[\text{TOFMC}, \text{ PRIMMC}, \text{ PIDMC}, \text{ CELLMC}]}{N_{\text{MC}}[\text{PRIMMC}, \text{ PIDMC}, \text{ CELLMC}]}$

N. Kolomoyets (LHEP, JINR)

Efficiencies & Contaminations: π^+

Efficiencies & Contaminations: K⁺

Efficiencies & Contaminations: Proton

Total Efficiency

N. Kolomoyets (LHEP, JINR)

Light hadron spectra

Spectra

N. Kolomoyets (LHEP, JINR)

Light hadron spectra

Spectra Fitting: Thermal Exponential

N. Kolomoyets (LHEP, JINR)

Light hadron spectra

Spectra Fitting: Sum of Two Thermal Exponentials

N. Kolomoyets (LHEP, JINR)

Light hadron spectra

Spectra Fitting: Blast Wave

$$\frac{\mathrm{d}^2 N}{p_T \mathrm{d} p_T \mathrm{d} y} = C(y) \cdot m_T \int_0^1 \chi \mathrm{d} \chi \exp\left[-\frac{m_T \mathrm{ch} \,\rho \,\mathrm{ch}(y-\eta)}{T}\right] I_0\left(\frac{p_T \mathrm{sh} \,\rho}{T}\right)$$

Boost angles: $\rho = \operatorname{arth} \beta_r, \qquad \eta = \operatorname{arth} \beta_z$

Parametrization of transverse velocity:

 $\beta_r(r) = \beta_{\max} \left(\frac{r}{R}\right)^n = \beta_{\max} \cdot \chi^n; \qquad n = 1 \Rightarrow \text{ linear BW model}$

 $r \in [0; R];$ R is the radius of freeze-out surface.

 $C(y) \Leftrightarrow$ shape of freeze-out surface and chemical potential.

 I_0 – modified Bessel function.

For our spectra $ch(y - \eta) = 1$ is kept fixed.

Fit parameters: C(y), T, β_{max} .

Based on

[1] E. Schnedermann, J. Sollfrank and U. W. Heinz, Phys. Rev. C 48, 2462-2475 (1993) [arXiv:nucl-th/9307020 [nucl-th]].

N. Kolomoyets (LHEP, JINR)

Light hadron spectra

8.10.2024 17/28

Spectra Fitting: Blast Wave

N. Kolomoyets (LHEP, JINR)

Spectra Fitting: Estimation of Errors

The Jackknife method:

- data are divided into K portions;
- error for estimated parameter \hat{A} :

$$\delta \hat{A} = \sqrt{\frac{K-1}{K} \sum_{k=1}^{K} \left(\hat{A}_{(k)} - \hat{A} \right)^2},$$

$$\hat{A}_{(k)}$$
 – estimate of A without k-th portion.

- The method is not sensitive to the distribution of data.
- For uncorrelated data the result does not depend on *K*.
- For normally distributed uncorrelated data $\delta \hat{A} \rightarrow$ standard deviation.
- The method requires large enough statistics.

[2] B. Efron, SIAM Review, 21(4), 460–480 (1979)
[3] B. Efron, "The Jackknife, the Bootstrap and Other Resampling Plans", SIAM (1982)
[4] M. Fukugita, M. Okawa and A. Ukawa, Nucl. Phys. B 337, 181-232 (1990)

N. Kolomoyets (LHEP, JINR)

Light hadron spectra

dN/dy

Yields

	π*			π			К*			к		
										King a state of the state of th		
Cent.	N	\tilde{N}	\tilde{N}_{MC}	N	\tilde{N}	\tilde{N}_{MC}	N	\tilde{N}	\tilde{N}_{MC}	N	\tilde{N}	\tilde{N}_{MC}
0-10%	300(2)	199.6	199.3	325(1)	218.5	218.1	51.1(1)	37.1	37.1	21.04(5)	16.5	16.5
10-20%	208(2)	133.3	132.9	226(1)	146.3	146.1	34.2(1)	24.5	24.6	14.06(4)	11.0	11.0
20-30%	146(1)	90.5	90.3	158(1)	100.0	99.7	23.3(1)	16.4	16.5	9.42(3)	7.43	7.42
30-40%	99(1)	59.9	59.7	107(1)	66.2	66.1	15.3(1)	10.7	10.7	6.22(3)	4.84	4.85
40-80%	49(1)	26.7	26.1	52(1)	29.7	29.6	6.86(3)	4.61	4.65	2.80(1)	2.14	2.15

$$f(y) = \frac{N}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{y^2}{2\sigma^2}\right] \quad \Rightarrow \quad N \qquad \qquad \tilde{N} = \int_{-1.1}^{1.1} f(y) \, dy$$

Light hadron spectra

pidAM vs pidSTAR: General Remarks

PID is based on 2 devices: TPC and ToF

pidAM (AM = A. Mudrokh) [MpdPid class]	pidSTAR
• based on $p = \vec{p} $.	• based on p_T .
• both TPC and ToF information is used for all <i>p</i> .	• TPC at low p_T , ToF at high p_T .
 PID is applied to each track. 	 PID is applied to the final set of tracks.
\Downarrow	\downarrow
For each track we know 'who' is it	We know, how many particles of a given sort are in the sample.
• Requires less memory/disk space.	• May be implemented in model-independent way.

pidSTAR implementation is based on

[5] L. Adamczyk *et al.* [STAR], Phys. Rev. C 96, no.4, 044904 (2017) [arXiv:1701.07065 [nucl-ex]].
[6] B. I. Abelev *et al.* [STAR], Phys. Rev. C 79, 034909 (2009) [arXiv:0808.2041 [nucl-ex]].
[7] J. Adam *et al.* [STAR], Phys. Rev. C 101, no.2, 024905 (2020) [arXiv:1908.03585 [nucl-ex]].
[8] M. S. Abdallah *et al.* [STAR], Phys. Rev. C 107, no.2, 024901 (2023) [arXiv:2208.00653 [nucl-ex]].
[9] [STAR], [arXiv:2311.11020 [nucl-ex]].

N. Kolomoyets (LHEP, JINR)

Light hadron spectra

8.10.2024 22/28

pidAM vs pidSTAR: dE/dx

N. Kolomoyets (LHEP, JINR)

Light hadron spectra

pidAM vs pidSTAR: dE/dx Results

N. Kolomoyets (LHEP, JINR)

Light hadron spectra

pidAM vs pidSTAR: m^2

Fit p_T sections with sum of StudentT PDFs.

$$f(x) = N \cdot \frac{\left(\frac{\nu}{\nu + (x - \mu)^2 / \sigma^2}\right)^{(1 + \nu)/2}}{\sqrt{\nu} \sigma \operatorname{B}\left(\frac{\nu}{2}, \frac{1}{2}\right)} \qquad \qquad \operatorname{B}(a, b) = \frac{\Gamma(a) \, \Gamma(b)}{\Gamma(a + b)} = \int_0^1 t^{a - 1} (1 - t)^{b - 1} dt \quad - \text{ beta-function}$$

N. Kolomoyets (LHEP, JINR)

pidAM vs pidSTAR: m^2 Results

pidAM vs pidSTAR: Comparison of Results

Right plot: w/o PID corections

N. Kolomoyets (LHEP, JINR)

Conclusions

- MpdHadronSpectra wagon is updated.
- Efficiency corrected invariant spectra for π^{\pm} , K^{\pm} , p are obtained.
- Yields for π^{\pm} and K^{\pm} are obtained.
- Trial implementation of STAR PID method is done. The results are compared with ones of pidAM method.