Charge-dependent simplified PID for π/K/p in BiBi@9.2 GeV (part-2)

M. Malaev, D. Ivanishchev, V. Riabov

Outline

- Need $\pi^{\pm}/K^{\pm}/p^{\pm}$ results for the second collaboration paper
- Last time (17.09) presented results for charge-integrated $\pi/K/p$ differential p_T spectra with simplified approach based on n-sigma method for TPC/TOF:
 - ✓ minimization of model-dependent corrections → minimization of systematic uncertainties
 - \checkmark robust \rightarrow most appropriate for the first-day analysis & results
 - ✓ best coverage at low- p_T , limited p_T range at higher momenta, however, > 95% of the yield sampled → good for dN/dy, $\langle p_T \rangle$ and β/T (BW-fits) measurements, bad for intermediate and high- p_T
- Background level and purities are different for "+" and "-" particles at NICA energies due to charge asymmetry of yields

• Today: charge-dependent analysis

PID strategy

- Event selection: |z-vertex| < 100 cm; centrality 0-92%
- Track selection:
 - ✓ TPC-hits > 24
 - ✓ DCA-to-PV $\leq 2\sigma_{x,y,z}$ ($\leq 1\sigma_{x,y,z}$ for antiprotons)
 - ✓ $|\mathbf{y}| < 0.5$
- Two quasi-independent measurements for $\pi/K/p$:
 - 1st: (**TPC-TOF**)
 - ✓ TPC 2 σ -PID selection for a given specie ($\pi/K/p$)
 - ✓ If track is 2 σ -matched to TOF then TOF 2 σ -PID selection for a given specie ($\pi/K/p$)
 - ✓ TPC 3 σ -veto-PID for other species (for π e/K/p veto, for K e/ π /p veto, for p e/ π /K veto)
 - 2nd: (**TOF-TPC**)
 - ✓ TOF 2 σ -PID selection for a given specie ($\pi/K/p$)
 - ✓ TPC 2 σ -PID selection for a given specie ($\pi/K/p$)
 - ✓ TOF 3 σ -veto-PID for other species (for π e/K/p veto, for K e/ π /p veto, for p e/ π /K veto)
- Spectra are reconstructed while purity > 95%:
 - ✓ spectra are corrected for impurities → impose 50% uncertainty for the correction value = 0.5 * 5% = 2.5%p_T-correlated systematic uncertainty for spectra
- **TPC-TOF** and **TOF-TPC** spectra are combined for final results for minimum total uncertainties

Pions

• Accepted p_T range is defined by purity > 95% \rightarrow whole range is fine

• No difference for π^+ and π^- for minimum bias (shown) and centrality intervals

V. Riabov, Cross-PWG Meeting, 08.10.2024

Kaons

• Accepted p_T range is defined by purity > 95% \rightarrow whole range is fine

• No big difference for K⁺ and K⁻ for minimum bias (shown) and centrality intervals

V. Riabov, Cross-PWG Meeting, 08.10.2024

Protons

• Accepted p_T range is defined by purity > 95% \rightarrow whole range is fine

Antiproton spectrum is mostly contaminated by back-scattered protons \rightarrow no simple way of suppression by PID cuts (same selections for protons and antiprotons), use tighter DCA-to-PV cut of $|DCA| < 1\sigma_{xyz}$

Particle sources - Pions

• Fraction of primaries in the measured spectrum (primaries – produced at a distance < 1 cm from PV)

• Production radius of soft pions

• Larger feed-down for π^{-} , negligible background from materials

V. Riabov, Cross-PWG Meeting, 08.10.2024

Particle sources - Kaons

• Fraction of primaries in the measured spectrum (primaries – produced at a distance < 1 cm from PV)

• Very clean raw sample

V. Riabov, Cross-PWG Meeting, 08.10.2024

Particle sources - Protons

• Fraction of primaries in the measured spectrum (primaries – produced at a distance < 1 cm from PV)

• Significant feed-down for (anti)protons, ~ 10-15% admixtures to raw protons from the beam pipe

Combined spectra - Pions

• Relative statistical uncertainties for **TPC-TOF** and **TOF-TPC** spectra

• Set transition point to $p_T = 0.95 \text{ GeV/c}$

Combined spectra - Kaons

• Relative statistical uncertainties for **TPC-TOF** and **TOF-TPC** spectra

• Set transition point to $p_T = 0.4 \text{ GeV/c}$

Combined spectra – (anti)protons

• Relative statistical uncertainties for **TPC-TOF** and **TOF-TPC** spectra

• Set transition point to $p_T = 0.7 \text{ GeV/c}$

Final spectra, pions

• Combined, centrality-dependent spectra

- Start at $p_T \sim 100 \text{ MeV/c}$
- Measured spectra sample ~ 91% of the total yield, loose 4% at low p_T and 5% at high p_T

Final spectra, kaons

• Combined, centrality-dependent spectra

- Start at $p_T \sim 100 \text{ MeV/c}$
- Measured spectra sample > 93% of the total yield, loose 1% at low p_T and < 6% at high p_T

Final spectra, protons

• Combined, centrality-dependent spectra

- Start at $p_T \sim 200 \text{ MeV/c}$
- p: measured spectra sample > 98% of the total yield, loose 2% at low p_T and 0% at high p_T
- \bar{p} : measured spectra sample > 92% of the total yield, loose 2% at low p_T and <6% at high p_T

Summary

- A very straightforward approach for $\pi/K/p$ measurements is proposed \rightarrow good for the firstday measurements
- Provides good enough coverage for dN/dy, $\langle p_T \rangle$ and β/T (BW-fits) measurements, unmeasured low- p_T range is as small as possible given current track reconstruction techniques & methods, sampled yields > 92% for all species