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Objectives  
 Presently, there are two major methods of the cooling: the electron 

cooling and stochastic cooling.  
 The stochastic cooling can be additionally separated on (1) the 

microwave stochastic cooling, (1) the optical stochastic cooling (OSC) 
and (3) the coherent electron cooling (CEC).  
 OSC and CEC are essentially extensions of microwave stochastic cooling 

operating in 1-10 GHz frequency range to the optical frequencies 
corresponding to 30-300 THz frequency range.  
 The OSC uses undulators as a pickup and a kicker, and an optical amplifier 

for signal amplification,  
 while the CEC uses an electron beam for all these functions. 

 In these 3 lectures we consider electron and stochastic cooling mostly 
concentrating on cooling of high energy heavy particles (protons or ions) 
in the high energy colliders. Further in all equations we assume protons – 
the most challenging case.  

 Later in the lectures 15 and 16 we consider the stochastic cooling at 
optical wavelengths  
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Electron cooling 
 Invented in 1966 by A. M. Budker 

 In the beam frame - heavy particles come into 
equilibrium with electron gas 

 Tested experimentally in BINP, Novosibirsk, in 
1974-79 at NAP-M 
 35 keV electron beam (65 MeV protons) 
 Magnetized electron cooling 

 
 Many installations since then, up to 300 kV 

electron beam (GSI, Darmstadt) 
 FNAL 4.3 MeV cooler – next step in 

technology 
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Electron Cooling at FNAL (1) 
 Fermilab made the next step in the electron cooling technology 
 Main Parameters 

 4.34 MeV pelletron  
 0.5 A DC electron beam with radius of about 4 mm 
 Magnetic field in the cooling section - 100 G 
 Interaction length – 20 m (out of 3319 m of Recycler circumference) 
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Stochastic Cooling 
 Invented in 1969 by Simon van der Meer 
 Naïve transverse cooling model 

 90 deg. between pickup and kicker 
 g  

 Averaging over betatron oscillations yields 
222 2
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 In accurate analytical theory the cooling  
process is described by Fokker-Planck equation  
 The theory is built on the same principle as plasma theory – which is a 

perturbation theory (large number of particles in the Debye sphere 
versus large number of particles in the sample)  
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Requirements for Cooling in Collision Mode 
 Cooling time is typically set by IBS.  

 20-40 minutes for ep collider for 275 GeV protons 
 Cooling acceptances 

 Good beam lifetime in the presence of beam-beam effects 
requires cooling range to be > 5 - 6 .  

 Overcooling in the bunch center has to be avoided  
 Overcooling greatly amplifies beam-beam effects 
 Ideally the cooling force should be proportional to particle 

amplitudes   



Lectures 12-14: High Energy Cooling, V. Lebedev     Page | 7 

Historical Remarks 
 Maximum beam energy achieved in electron cooling with 8 GeV 

protons was demonstrated in Fermilab in the course of Tevatron Run 
II (2001 -2011).  
 This energy is well below required for most of modern proton colliders. 

There are few ideas how energy increase can be accomplished but no 
definite plans to demonstrate it in experiment 

 The stochastic cooling was absolutely essential for stacking and 
cooling antiprotons in SPPS (CERN) and Tevatron (Fermilab).  
 Up to 2021, the stochastic cooling has been only operating at the 

microwave frequencies (f < 8 GHz).  
 BNL demonstrated SC of bunched heavy ions at RHIC 

 First cooling at optical frequencies – the OSC - was demonstrated in 
Fermilab with electrons in 2021. 
 Passive OSC for now 
 A usage of electrons greatly decreased the cost of the experiment but 

still enabled us to study the physics in detail  
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Electron versus Stochastic Cooling 
 The electron and stochastic cooling are based on completely different 

principles.  
 The electron cooling is dissipative in its principle of operation and 

therefore the Liouville theorem is not applicable. That enables direct 
reduction of the beam phase space.  

 The stochastic cooling is a “Hamiltonian” process which formally does not 
violate the Liouville theorem and cooling happens due to the phase space 
mapping so that phase space volumes containing particles are moved to 
the beam center while the rest mostly moves out. That makes stochastic 
colling rates strongly dependent on the beam particle density.  

 Each method has its own domain where it achieves a superior efficiency. 
The electron cooling is preferred at a smaller energy and momentum 
spread, and its efficiency weakly depends on the particle density in the 
cooled beam. While the stochastic cooling is preferred at a higher 
energy, but its efficiency reduces fast with increase of particle phase 
density.   
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Cooling Force in non-magnetized Cooling 
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 By-Gaussian distribution of electrons in velocity 
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 Similar to the IBS, the following formula  

enables to reduce the cooling force to single dimensional integral  
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Cooling Force  
 For Tbeam=0 the cooling force is  

4
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 The force saturates at velocity where the 
plasma perturbation theory stops to work: 
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min max or v / 2e n m    

 
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maxF e n  
The velocity, where the maximum is 
achieved, is orders of magnitude smaller 
than rms velocity in the proton beam 

 For electrostatic acceleration temperatures are: 
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|
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 Strong accompanying magnetic field freezes out T (magnetized cooling) 
 That greatly increases cooling force at small velocities. However, it is 

not helpful for collider cooling where Tproton_beam is much larger  
 It only makes overcooling in the distribution center 

|| (F||(v||, v=0) and  (F(v||=0, v)  
cooling forces on particle velocity; 

4 2
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Cooling Rates for Highly Relativistic El. Cooling 
 For practical applications  

 

 

|| 03/24 4
|| || ||

05 4 2
||

4 2
,

1.083 /
2 .

2
,

2 /

e e p c
cs

e e p c
cs

n r r L
L f

n r r L
L f




  

 


  

 





 


     





   

 

2 2
|| || ||

2 2

,

,

e p

e p

 

   

  

    

 Beam power grows fast with beam energy. For fixed Lcsf0 one has 
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 For the 275 GeV proton beam one needs ~100 A electron beam 

current. It corresponds ~10 GW reactive beam power 
 Typical rms angles in proton beam is ~10 - 20 rad for 275 GeV  

 The straightness of magnetic field should be better  
– the extremely challenging problem  
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Possible Implementation of HE Electron Cooling 

 
 Acceleration beam in induction linac with subsequent beam recirculation for 

~10,000 turns (limited by IBS in e-beam). P~1 MW 
 The number of turns is limited by IBS in the electron beam 

 Derbenev’s transform is used to optimally match proton and electron 
velocities in the cooling section   
 Fully coupled ring optics  
 Electron gun cathode emersed in long. magnetic field to create rotational modes  

 Major challenges: (1) space charge in electron beam, (2) beam stability (CSR 
impedances), (3) emittance growth due to interaction with proton bunches 
(suppressed by integer number of electron rotations in the cooling section) 
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Derbenev’s Adapter (Transform)  
 Transformation of rotational betatron modes to flat uncoupled beam 

 Achieved by system of skew-quads making 90o difference in betatron 
phase advances for 2 planes (directed along quad planes) 
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Why Do We Need Derbenev’s Adapter  
 In the absence of magnetic field x and y norm. emittances are equal 

and are conserved in further beam motion/manipulations; 4n=xnyn  
 Introduction of magnetic field enables controlled redistribution of 

mode emittances; 4n=xnyn 
4

1 ,2 2 2
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n n
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where  2
0 / /e na    is the effective beta-function, ae is the electron beam 

radius in the cooling section,  and  are the relativistic factors, B0 is the 
magnetic field in the cooling solenoid, and 2

0 / (2 )r eeB m c   is its focusing 
strength. 
 independent control of the beam size and transverse angles 
 It enables to avoid large -functions which makes beam optics more stable  

 There was recently published a paper suggesting electron cooling for 
ep-collider without magnetic field in the cooling section  
 For the suggested parameters the interaction with proton beam space 

charge destroys the electron beam emittance at a fraction of cooling 
section length  
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Discussion on High Energy Electron Cooling 
 Cooling at proton energies above ~20 GeV cannot be done as a 

classical electron cooling with electrostatic acceleration 
 That leaves the following possibilities (or their combination): 

 Acceleration in the energy recovery SC linac  
 Bunching of electrons reduces current in comparison with DC beam  
 Small number of turns in a ring was also considered to additionally 

reduce linac current (problem with frequent injection & extraction) 
 Acceleration in energy recovery linac with beam storage in a ring for 

long time. Fast cooling of electrons to prevent IBS (Possibilities: SR 
cooling with wigglers, OSC)  

 Acceleration in induction linac with beam circulation in a ring for many 
turns  

 Only last proposal was elaborated in some details 
 Still there are not answered questions (chromaticity of Derbenev adapter) 

 All choices are extremely challenging and require both theoretical 
and experimental studies  
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Methods of Longitudinal (Microwave) Stochastic Cooling 
 Palmer cooling 

 Diff. pickup signal is proportional to particle 
momentum. It is measured by pickup at high 
dispersion location  

 Example: FNAL Accumulator 
 Filter cooling 

 Signal proportional to particle momentum is 
obtained as difference of particle signals 
for two successive turns (notch filter) 

0 0 0( ) ( ) 1
p du p

U t u t u t T T T
p dt p

 
   

       
    

 Examples: FNAL Debuncher and Recycler 
 Transient time cooling 

 No signal treatment 
 The same expression for kick as for FC 
 Larger diffusion => less effective than FC 
 Examples: OSC, CEC  

Kicker voltage excited by single 
particle in a system with constant 

gain in 4-8 GHz band 
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Before we start: Basics of Stochastic Cooling Theory 
 SC theory is closely related to the plasma perturbation theory 

 Similar to the Vlasov equation with Landau collision term  
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 No coherent motion (otherwise too large power) 
 only / t   is left in the left-hand side 

 Friction -> Cooling force 
 Diffusion due to collisions -> Diffusion due to particle interaction 

through cooling system 
 Diffusion coefficient is proportional to the spectral density of 

Schottky noise (slow process => non-resonant terms are negligible)  
o At betatron sidebands for  cooling 
o At revolution harmonics for || cooling 

 Signal suppression due to particle interaction through cooling system 
 Reduces both Cooling Force and Diffusion 

 In most practical cases one can neglect cross-plane diffusion (Dij=0, ij) 
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Schottky Noise 
Fourier transform:  applicable if ( ) 0tf t   
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Schottky Noise in Circulating Beam 
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 This equation correctly describes noise even if 
Schottky bands overlap 

 In vicinity of n-th harmonic for constant  one 
obtains: 
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 Compute integral around one harmonic: 

(accounting negative frequency will double it)  

  
2 2 0

0
0

1
( )

2 2
n

n n I n n n

eIeI
I I P d d

n n

    
    

 
         

 
   compare to 2 2I eI f    

 i.e. integral around each harmonic does not depend on n and 
the relative current fluctuations at n-th harmonic are:  

 Schottky bands overlap when:  

2
0

2
0

1

2
nI e

I I N





 



Lectures 12-14: High Energy Cooling, V. Lebedev     Page | 22 

Effect of Random Noise on Oscillator 
Noise spectral density and correlation function  
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Growth of particle amplitude due to noise 
 Equation of motion 
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   2
0 02

0 0 0

1
( ) ( ) ( )sin ( ) sin ( )

t t

x t dt dt f t f t t t t t 


          =>     
2

02
0

2
( ) ( )

t
x t P

 


  

Growth of particle amplitude due to kicker noise in a ring 
 Only resonance harmonics 

contributes to d/dt  
 1/2 in d/dt due to 

oscillatory motion  

 0
0 0

1
( ) ( )sin ( )

t

x t f t t t dt


   

2
2 20

0

2
2 20

0

( ) , ( )
2

1
( ) ( ( )) , ( )

4

n

n

d
P n P d

dt

d d
x t P n P d

dt dt  

    


     
 



 
 




 

   

   

 

 
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Signal Suppression in Longitudinal Cooling   
 Denote: /x p p   
 No particle interaction  

 => evolution of particle distribution:  

  

   
   
   

2 1 1

3 2

3 0

2

1

, , ( )

( )

, ,

)/

( )

, ,

f x t x t T x

x t x t T

p tx p

x

x t t

 

 

 

  


 
  

   

 
where        
 
 

 Expending the last Eq. => 

and performing Fourier transform 
     
     
      

2 1 1

3 2 2

1 3 0 0

exp ( )

exp ( )

( ) / /

x x i T x

x x i T x

x x df x dx p p

 

 

  

  

  

  

  


 
  

 
 
 

 

2/1   is the slip-factor, and we 
call 1 and 2 the partial slip-factors 

 

1 10 0 1

2 0 0 22

0

( ) ...

( ) ...

( ) 1 ...

T x T T x

T x T T x

T x T x




   


  
   

   1 2( ) ( ) 0
2 2

0

( )i T x i T x d x p
x e x e

dx p
  

 
      

   3
0

0
1

( )
,

) (
,

d x
x t x

p

x

t
t

p d

    
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Signal Suppression in Longitudinal Cooling (2) 
 Introduce Longitudinal Cooling Gain (most general case) 

      20 0
2

0 0

1 ( ) , ( )i T i Textp p
e A e G x x dx

p p
  


            
A()=0 – Palmer cooling, A()=1 – filter cooling 

 On other hand, pickup signal at frequency  depends 
on hor. particle coordinate ( /X D p p Dx   ) 

     
 ker ker ( )/

0 2 50
( , ) ( , ) kic kic k ampl

ampl

E eU Z Z

pickup p Z
U I Z x x dx   

    

     0

2 2

( , ) ( )
, ( )p k

ampl

eI Z x Z
G x K

mc Z

 
 


  

 Combining we obtain Eq. for  

       20 01 2( ) ( ) 0
2 2

0

( )
1 ( ) ( ) , 0i T i Ti T x i T x extd x p

x e e e A e dx x G x
dx p

   
 

                    
 

   

 Solving we obtain pickup signal excited by external perturbation 

    2 ( )

( )
0

0
2

0

,( )
( ) ,

(1

1

) )(

i T x
x

i T x
e t

G x ed x
S dx x G x dx

p

dx ep



  


 








   

 
   

     2 2

0

( ) (0)

0
( )

0

,( )
( ) 1 1 ( )

(1 )

i T x T
i T

i T x

G x ed x
A e dx

dx e







  









  
   

     02 0
0 0

0

,( )1
( ) 1 1 ( ) , 1

2 sign( )

Far away
from band in y
overlap

G x nd x
A n e dx n y

in dx x y i n
 



     
   



     
   

 2f x

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Discussion: Signal Suppression in Long. Cooling 
 For cooling of fixed number of particles, signal suppression is negligible  

(i.e. ≈1) at the beginning and becomes important with cooling 
 Simplified formula can be used 

 For particle accumulation the signal sup- 
pression is negligible at the process beginning  
and becomes important at full intensity  
if system operates near or at band overlap 
 Exact formula has to be used 

 Palmer cooling:  , nG x G x    - near nth harmonic  
0 0

0 0

( ) ( )
( ) 1 1 1

2 sign( ) 2 sign( )
n nG d x G d xxdx y

y dx
in dx x y i n in dx x y i n 

 
       

  

   
         

     

0

0

( )
( ) 1

2 sign( )
nG d x dx

y i y
n dx x y i n


   




 

   where 0/ ( )ny n     

 Filter cooling:    0, nG x iG n iG      - near n-th harmonic 

  0( ) 12
0 2 1

1 ( ) 2A nin y
in y

A n e in y 
      => 

0

0

( )
( ) 1

sign( )n

d x dx
y iG y

dx x y i n


 



 
   

 For constant gain: suppression is decreased with harmonic number as ~1/n 
for Palmer cooling, and stays the same in Filter cooling  
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Theory of Longitudinal Stochastic Cooling 
Cooling force 
 The gain was introduced as 

 02 (0)
2

0 0

1 ( ) , ( )i Ti Textp p
e A e G x x dx

p p
 


           

For single particle: 0 0( , ) ( ) ( ( ))
( ) n

e
x t x x t t nT x

T x
  





      

summing for all harmonics yields: 
   2 20 0( ) ( ) ( )

0

1 ( ( )) , ( )n ni x T x T i x T
n n

n

p
e A x e G x x

p
         

 Cooling force 
 
      2 200 ( ) ( )1 ( )

0

, ( )1
( ) 1 ( )

( )
nn i x T x Tn i x T

n
n n

G x xdx
F x A x e e

dt T x



 






    

where we additionally accounted for signal suppression 
Diffusion 
 To obtain diffusion one needs  

 find noise spectral density at the pickup 
 Multiply by the transfer function (responses of pickup and kicker, & amplifier 

gain) 
 account for signal suppression 
 find effect of kicker noise on particle motion 
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Equations Describing Longitudinal Stochastic Cooling 
 Finally we can write 

  1
( ) ( )

2
F x D x

t x x x

              

(x) is the distribution function, /x p p   
 
      00 2

0
0

( ,
,

1
1

) 1n ni T x
n

i
n

n

Tn

n

dx
F x e n

dt T

G
A e x

x    
 

 







   

  
 
 0

22

0

2 , no band overlap
( )

1 , complete band

( , ) 1

overlap

n

n
n

i T
n nG x A e

x
N

D x n
T





   








 






 

    0 2

0

0

(1 )
0

( )
1

(1 )

,
1 ( )( )

i T x

i T x
i T ed x

N dx
dx

x
A e

e

G  

 




 












 



  

 Amplifier noise is not accounted (insignificant in most of real systems) 
 Note: the theory is built on the same principle as plasma theory – which is a 

perturbation theory (large number of particles in the Debye sphere versus 
large number of particles in the sample) 
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Equations Describing Transverse Stochastic Cooling  
 Fokker-Planck equation in the action-phase variables describes transverse 

cooling in the case of linear transverse motion 

  & Integrating ( , )
( ) ( ) ( ) ( , ) ( )I I x t
x I D x I x I x t D x

t I I I t

   
   

                 

(x) and D(x) do not depend on I 
(x,I) is the distribution function, || ( ) ( , )x x I dI     

 
 

 

 

2 20 2( ) 2 ( )

0

0

1
( ) Re ,

2
( ) ( ) (1 ) ( ) .

(

)

( )

)

(
ni T x T i x

n

n

n

n

x e
T i

n
x x n x x

T x

x

G x   

     

 


 






 

  
   

 

     


 

    2 ||

2

2

2
0 0

2 2
( ( ))

( )
( )

( ) ( )1
( )

2 ( )( ) ( )( ) 2
k nk

U n
ampn ln

n

I
G

x N xe Z x
P x

T mc
D

xZx
x

T x
x

n

 



    
 






 

 



 
  
 

 
  

 
 

  

     

     

2 20( )( )
2 1

||

0

sin 2 ( ) sin 2 ( )( )
( ) 1 ( )

2 cos ( ) cos 2 ( ) sin ( )

i T x Ti T xe x x eG N
x dx

T x x i T x





   
   










   
   

 Amplifier noise is referenced to the pickup output 
 Negligible in most of real systems   
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   , ; ( ) 0G x xG A    

0 2 0 2

p
t T x T

p
  

  

 max
max min 2

1

2
x

n n 




Form-factor of cooling rate reduction (KF()) for 
Gaussian distribution as function of n=xmax/ 

Cooling Force and Cooling Range for Palmer Cooling 
 Palmer cooling:  

  0 2
0

0

1
( ) ni T x

n

F x G n e
T

 




    

 P-K partial slip factor: 

 For a rectangular band with perfect phasing (
  min max, [ , ]; Im( ) 0G G G        ) 

  max min
0

2
( )( )

G x
F x n n x

T


    

 The cooling range:  
 Cooling range  “Bad 

mixing”? 
 Good lifetime 

requires the cooling 
range >4  

 2 can be controlled by 
machine optics and  
cooling range can be  

   
 

max 2 min 2

max min 2

sin 2 s
(

i 2
)

n

2

n
x

x n x

n n x

   
 





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Cooling Force and Range for Transient Time Cooling 
 Transient time cooling is the only method 

which can work at optical frequencies  
 FC requires notch filter 

 Transient time cooling: 
       , ; ( ) 0n FG x iG A       

      22
0

0

1
( ) in x

F
n

F x iG n e
T

 




   

 For a rectangular band  
(   0 min max, [ , ]FG G     ) 

 
     2 max min0

2 max min
0 2

sin2
( ) sin

n n xG
F x n n x

T x







   

 The cooling range:  max
2 max min

1
x

n n


  

 Does not depend on   
 And is determined by 2  
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  
2

2
0

max

0

Re

( ) /

n

n

n

n

G

G n

d x

dt












 
 
 




Optimal Gain and Maximum Damping Rate 
 Optimum depends on particle distribution, technical and other limitations 

 
2

2

2

1
( ) ( ) 2

2 ref ref

G G
x dx

G G

d x
F x D x F D

t x x x dt

 
                         

  

where  ( ) ( ) , ( ) ( )
d

F xF x x dx D x xD x dx
dx

      

Differentiating over G yields optimal gain => optimal damping 

22

max

d x F

dt D
     

 
    

    
 

0 2 2

0

2

2
0

22max

2
0

,

( ,

1

)

( ) 1

( ) 1

n n

n

i T i T x
n

n n

n n

n
T

n

i
n

dx x x A e e
Td x

dt xd N
dx

G

x A e
dx T n

x

G x

  



 



 


 


















 
 

 
 
 
 
 




 

 Signal suppression (1/) affects both diffusion and cooling force and can be 
neglected 

 For major fraction of particles 
 

Replacing summation by integration we introduce 
the effective bandwidth  

  

  2

0

2

0

Re ( )

( ) /
eff

G f df
W

G f df f






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2

2
TTC FC

 


 
  

 

Optimal Damping Rate for Transient Cooling 
 Small amp. oscillations, Gaussian distribution, continuous beam & 

Rectangular band 

 Cooling range:  max
2 max min

1
x

n n


  

 Diffusion is much larger than for filter cooling 
 Noncompetitive to the filter cooling in the case of non-

overlapped bands 

o at optimum: 

 For completely overlapped bands  
o Diffusion does not depend on momentum deviation and 

momentum spread: 
2

02D NG W  
o signal suppression is negligible 

2

2

2
opt

W

Nn

    
max min max

0

, .
p

n n x
W n

T  


   
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
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Back to Signal Suppression  
Filter Cooling 
 For  min max, ,nG const n n n   the  

effective gain is proportional to n 
 signal suppression does  

not depend on n 
 Cooling force:  0Re ( ) / (x)n n nF F x   

 Diffusion: 
2

0 ( ) / (x)n n nD D x   

 Damping rate:  

 
 Numerical computation with signal suppression at optimal gain and for 

rectangular band yields only a few % correction 

Palmer cooling and Transient time cooling  
 Qualitatively - similar picture  
 Signal suppression is reduced when bands start to overlap 

 negligible for completely overlapped bands 
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Causality in Stochastic Cooling  
 Causality binds the real and imaginary parts of system response 
 The same as for the medium permeability, the Kramers–Kronig relations 

bind the real and imaginary parts of the gain for an amplifier  
 It is true for any system where causality works 

 But there are no causality limitations in a stochastic cooling system   
 Changing delay in the cable we can deliver signal earlier than particle 

will arrive  

 
Real and imaginary parts of system response for LPF*HPF*Delay (4th order Bessel filters) 

Negative delay makes a flat phase response but breaks Kramers-Kronig relationship 
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Typical Stochastic Cooling Block Diagram 
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