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Some basic definitions

Fermi Surface (FS)

@ The surface created by the highest occupied electronic states in the
momentum space (ky, ky, k,) is known as FS.

@ Schematics of FS of non interacting electrons:
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Some basic definitions

Density of states (DOS)
@ Number of states lying in the energy range dE around energy E(k).

@ It is defined as:
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D(E) = / dk.dk, dk,
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DOS and FS in 0D, 1D, 2D, 3D
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Band gap appears due to crystal potential

Appearance of band gap when free electron is put in the weak periodic potential.
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Band structure of real materials is more complicated
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Metals, Semimetal, Semiconductor, Insulator

@ Metal: Conduction and Valence band overlaps at Fermi Energy (Er). DOS
has large values at Ef.

@ Semimetal: Conduction and Valence band touch each other at Ef, but
vanishing DOS at Ef

@ Semiconductor: Conduction and Valence band don't touch each other at Ef,
and DOS at Ef is zero. The band gap is E; L kg T.

@ Insulator: Conduction and Valence band don't touch each other at Ef, and
DOS at Ef is zero. The band gap is E; > kg T.

p-type intrin. n-type
Metal  Semimetal Semiconductor Insulator

Figure: Distribution of DOS in valence (lower, black) and conduction (upper, white)

bands at Fermi energy.
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Representation of Hamiltonian at band touching points

@ The simplest case is the two bands touching each other at as single points in
momentum space.

@ The (hermitian) Hamiltonian at the band touching point can be written in
terms of the Pauli matrices.

| a(k) + b(k) c(k) +d(k)

H= c(k) — 1d(K) a(k) — b(k) | = a(k)oo + c(k)or + d(k)oz2 + b(k)os (2)

where k = [k, ky, k;].
@ The solution (energy) of the Hamiltonian is:

E = a(k) + \/c(k)? + d(k)? + b(k)2 (3)

@ The band touching points (gapless) occurs when b(k) = c(k) = d(k) = 0;
gap appears when either of b(k), c(k), d(k) is non-zero.
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Hamiltonian of the Graphene

@ The Hamiltonian of Graphene with nearest neighbour hopping:

3
0 Z ezka,-
H=|, i=1 =t (Z cos ka,-) ox+ 1 (Z sin ka,-) oy. (4)
Z efzka,- 0 i i
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A way to open a gap: break inversion symmetry

@ Adding a single mass term the Hamiltonian reads:

M 23: ezka,-
i=1

H=|, : =1 (Z cos ka,-) ox+1t <Z sin ka,-) o,+Mo,.
i i

hBN lattice
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Another way to open gap: Haldane model

@ A periodic local magnetic field such that the total flux through a unit cell is
zero.

@ Second-neighbor hopping: each hop along the arrows has a complex hopping
—tye'? (The consequence of Aharonov-Bohm effect)

- t Z (eque—zkb; + e—quezkb,') th1 Z ezka,' (6)
t Z efzka,- t Z (efquefzkb,- + equezkbl-) .

H=t <Z cos ka,-> ox+ t1 <Z sin ka,—) oy
+ 2t cos ¢ (Z cos kb;) 0o — 2tz sin ¢ (Z sin kb,-) 0.

(7)

Band structure with t, = 0.1¢t,and ¢ = /2
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Band-inversion Top. Insulator

Each lattice site has two orbital s and p.

M indicates the potential difference of two orbitals.
Hopping t; indicates the coupling between s and p orbitals.
Hopping t, indicates the intra-orbital hopping.

M
H =ty sin(keax)ox + tysin(kyay)oy, t L — cos(kya) — cos(kya)| o,.  (8)
2

—2 < M/t, < 2 - non-trivial (band-inversion insulator); otherwise (trivial
insulator)
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3D topological system: Weyl semimetal

@ Hamiltonian of half-filled 3D two band model:

H = [2t, (cos ky — cos ky) + m (2 — cos k, — cos k;)] o«
+ 2t, sin k,o, + 2t, sin k,0,.

(9)

@ This model breaks time reversal symmetry and hosts two weyl nodes at
+ (ko, 0,0).
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Weyl semimetals from the band theory

o Consider the bands are filled upto fermi levels and we have band touching
points =+ (k. F ko, ky, k).

@ Expanding hamiltonian at these high symmetry points:

Hom = vx [Pl 0x + vy [p£], 0y + vz [P£], 02
) (10)
E=[v.ppm] .

Here, v, = 2t sinkg, v, , = —2t, ;.

@ Above Hamiltonian is closely related to the Weyl hamiltonian:

H\f,eyl = *cp.o
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General description of Weyl semimetals

@ More generally the low-energy theory of a Weyl point is in general an
anisotropic version of the above Weyl equation:

H= Zv, A -p)oi + vo (g - p) 1. (11)

e v;: Anisotropy of Weyl points
e Aj: Principal direction
o Helicity of the weyl points x = sign [A1 (A2 X A3)].
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Motivation of the paper

@ Large SOC is needed to generate spin current through electric current.

@ This spin current will apply the spin orbit torque (SOT) to create effective
magnetic field.

@ Large SOT is generated through large current, which give rise to the Joule
effect.

@ To avoid the Joule loss we need the large SOT at low current.
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Use of non-dissipative transport

@ To generate SOT one can use the transverse Hall current which uses the
topological band properties (topological SOT).

@ Using linear response theory and mixed berry curvature (MBC) it is found
that topological SOT is large compared to the bulk SOT in Ti;MnAl.

® chirality + WPs
@ @ T2 @Mn @Al @ chirality - WPs

FIG. 1. (a) Crystal structure of Ti,MnAl Ti and Mn
are responsible for the compensated ferrimagnetic ordering.
(b) The energy dispersion around the WPs on k, = 0 plane.
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Comparison of topological and bulk SOT driven parameters
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FIG. 3. (a) The effective magnetic fields form dissipative
and topological response, acting on the compensated ferri-
magnetic ordering n (b) The energy dependences of the re-
sponse coefficients x4 and X3P () The density of states and
one of the energy dispersion around WPs. The inversion sym-
metry breaking in Ti;MnAl causes energy dlff(‘l(‘n(‘(‘§ between
WPs. (d) The energy dependences of effic s of SOT g2
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Comparison of topological and bulk SOT driven parameters
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FIG. 4.  Relaxation time dependences for response coeffi-
cients x& and X4 when (a) Ef is located at the energy of

the WPs and (b) FF is away from the energy of the WPs.
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MBC

MBC is a BC extended in the composite parameter space k, /i spanned by the
momentum k and the ferrimagnetic ordering 7.
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FIG. 5. The mapping of the yz component of (a) the BC
—QFF and (b) the MBC —Qp¥ on k. = 0.1[1/a] at Er. In mo-
mentum space, the positions of the peaks/valleys of —fo/ﬁk
correspond to the positions of the WPs.
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