# Topological Semimetals: Weyl Semimetals, Dirac Semimetals

K. K. K.

BLTP, JINR

October 21, 2024

K. K. K. (BLTP, JINR)

Top. Semimetals

**H** 5 October 21, 2024

1/20

• • • • • • • • • • •

## Some basic definitions

#### Fermi Surface (FS)

- The surface created by the highest occupied electronic states in the momentum space (k<sub>x</sub>, k<sub>y</sub>, k<sub>z</sub>) is known as FS.
- Schematics of FS of non interacting electrons:



Density of states (DOS)

- Number of states lying in the energy range dE around energy E(k).
- It is defined as:

$$D(E) = \int dk_x dk_y dk_z \frac{1}{|\nabla_k E(k_x, k_y, k_z)|}$$
(1)

| κ. | K. | κ. <i>ι</i> | BIT | FP. I | INR' |
|----|----|-------------|-----|-------|------|
|    |    |             |     |       |      |

イロト イヨト イヨト

## DOS and FS in 0D, 1D, 2D, 3D



・ロト ・日下・ ・ ヨト・

## Band gap appears due to crystal potential

Appearance of band gap when free electron is put in the weak periodic potential.



5/20

## Band structure of real materials is more complicated



イロト イヨト イヨト イ

## Metals, Semimetal, Semiconductor, Insulator

- <u>Metal</u>: Conduction and Valence band overlaps at Fermi Energy  $(E_F)$ . DOS has large values at  $E_F$ .
- <u>Semimetal</u>: Conduction and Valence band touch each other at  $E_F$ , but vanishing DOS at  $E_F$
- <u>Semiconductor</u>: Conduction and Valence band don't touch each other at  $E_F$ , and DOS at  $E_F$  is zero. The band gap is  $E_g \gtrsim k_B T$ .
- <u>Insulator</u>: Conduction and Valence band don't touch each other at  $E_F$ , and DOS at  $E_F$  is zero. The band gap is  $E_g \gg k_B T$ .



 Figure: Distribution of DOS in valence (lower, black) and conduction (upper, white)

 bands at Fermi energy.

 K. K. K. (BLTP, JINR)

 Top. Semimetals

 October 21, 2024

7/20

## Representation of Hamiltonian at band touching points

- The simplest case is the two bands touching each other at as single points in momentum space.
- The (hermitian) Hamiltonian at the band touching point can be written in terms of the Pauli matrices.

$$H = \begin{bmatrix} a(k) + b(k) & c(k) + id(k) \\ c(k) - id(k) & a(k) - b(k) \end{bmatrix} = a(k)\sigma_0 + c(k)\sigma_1 + d(k)\sigma_2 + b(k)\sigma_3$$
(2)

where  $k \equiv [k_x, k_y, k_z]$ .

• The solution (energy) of the Hamiltonian is:

$$E = a(k) \pm \sqrt{c(k)^2 + d(k)^2 + b(k)^2}$$
(3)

• The band touching points (gapless) occurs when b(k) = c(k) = d(k) = 0; gap appears when either of b(k), c(k), d(k) is non-zero.

8/20

イロト イヨト イヨト

## Hamiltonian of the Graphene

• The Hamiltonian of Graphene with nearest neighbour hopping:

$$H = \begin{bmatrix} 0 & \sum_{i=1}^{3} e^{ika_i} \\ \sum_{i=1}^{3} e^{-ika_i} & 0 \end{bmatrix} = t_1 \left( \sum_i \cos ka_i \right) \sigma_x + t_1 \left( \sum_i \sin ka_i \right) \sigma_y.$$
(4)





・ロト ・日下・ ・ ヨト・

k,

## A way to open a gap: break inversion symmetry

• Adding a single mass term the Hamiltonian reads:

$$H = \begin{bmatrix} M & \sum_{i=1}^{3} e^{ika_i} \\ \sum_{i=1}^{3} e^{-ika_i} & -M \end{bmatrix} \cdot = t_1 \left( \sum_i \cos ka_i \right) \sigma_x + t_1 \left( \sum_i \sin ka_i \right) \sigma_y + M\sigma_z.$$
(5)



| ĸ | ĸ | ĸ | (BLT   | PI | INR) |
|---|---|---|--------|----|------|
|   |   |   | ( 22 - | ., |      |

< □ > < □ > < □ > < □ > < □ >

### Another way to open gap: Haldane model

- A periodic local magnetic field such that the total flux through a unit cell is zero.
- Second-neighbor hopping: each hop along the arrows has a complex hopping  $-t_2e^{i\phi}$  (The consequence of Aharonov-Bohm effect)

$$H = \begin{bmatrix} t_2 \sum \left( e^{i\phi} e^{-ikb_i} + e^{-i\phi} e^{ikb_i} \right) & t_{b1} \sum e^{ika_i} \\ t_1 \sum e^{-ika_i} & t_2 \sum \left( e^{-i\phi} e^{-ikb_i} + e^{i\phi} e^{ikb_i} \right) \end{bmatrix}.$$
(6)  
$$H = t_1 \left( \sum_i \cos ka_i \right) \sigma_x + t_1 \left( \sum_i \sin ka_i \right) \sigma_y \\ + 2t_2 \cos \phi \left( \sum \cos kb_i \right) \sigma_0 - 2t_2 \sin \phi \left( \sum \sin kb_i \right) \sigma_z.$$
(7)



Band structure with  $t_2=0.1t_1 {\rm and} \; \varphi=\pi/2$ 

#### Band-inversion Top. Insulator

- Each lattice site has two orbital *s* and *p*.
- *M* indicates the potential difference of two orbitals.
- Hopping  $t_1$  indicates the coupling between s and p orbitals.
- Hopping t<sub>2</sub> indicates the intra-orbital hopping.

$$H = t_1 \sin(k_x a_x) \sigma_x + t_1 \sin(k_y a_y) \sigma_y t_2 \left[ \frac{M}{t_2} - \cos(k_x a) - \cos(k_y a) \right] \sigma_z.$$
(8)

•  $-2 < M/t_2 < 2$  - non-trivial (band-inversion insulator); otherwise (trivial insulator)



## 3D topological system: Weyl semimetal

• Hamiltonian of half-filled 3D two band model:

$$H = [2t_x (\cos k_x - \cos k_0) + m (2 - \cos k_x - \cos k_z)] \sigma_x + 2t_y \sin k_y \sigma_y + 2t_z \sin k_z \sigma_z.$$
(9)

This model breaks time reversal symmetry and hosts two weyl nodes at ± (k<sub>0</sub>, 0, 0).



| Κ. | K. | κ. ι | BIT | P. II | NR) |
|----|----|------|-----|-------|-----|
|    |    |      |     |       | ,   |

## Weyl semimetals from the band theory

- Consider the bands are filled upto fermi levels and we have band touching points  $\pm (\pm k_x \mp k_0, k_y, k_z)$ .
- Expanding hamiltonian at these high symmetry points:

$$H_{pm} = v_x \left[ p_{\pm} \right]_x \sigma_x + v_y \left[ p_{\pm} \right]_y \sigma_y + v_z \left[ p_{\pm} \right]_z \sigma_z$$
  
$$E = \left[ v.p_{pm} \right]^2.$$
(10)

Here,  $v_x = 2t_x \sin k_0$ ,  $v_{y,z} = -2t_{y,z}$ .

Above Hamiltonian is closely related to the Weyl hamiltonian:

$$H_{\text{Weyl}}^{\pm} = \pm c\mathbf{p}.\sigma$$

(日) (四) (日) (日) (日)

## General description of Weyl semimetals

 More generally the low-energy theory of a Weyl point is in general an anisotropic version of the above Weyl equation:

$$H = \sum_{i} v_i \left( \hat{n}_i \cdot \mathbf{p} \right) \sigma_i + v_0 \left( \hat{n}_0 \cdot p \right) I.$$
(11)

- v<sub>i</sub>: Anisotropy of Weyl points
- $\hat{n}_i$ : Principal direction
- Helicity of the weyl points  $\kappa = \text{sign} [\hat{n}_1 (\hat{n}_2 \times \hat{n}_3)].$

(日) (四) (日) (日) (日)

## Motivation of the paper

- Large SOC is needed to generate spin current through electric current.
- This spin current will apply the spin orbit torque (SOT) to create effective magnetic field.
- Large SOT is generated through large current, which give rise to the Joule effect.
- To avoid the Joule loss we need the large SOT at low current.



K. K. K. (BLTP, JINR)

Top. Semimetals

October 21, 2024

• • • • • • • • • • • •

## Use of non-dissipative transport

- To generate SOT one can use the transverse Hall current which uses the topological band properties (topological SOT).
- Using linear response theory and mixed berry curvature (MBC) it is found that topological SOT is large compared to the bulk SOT in Ti<sub>2</sub>MnAl.



FIG. 1. (a) Crystal structure of Ti<sub>2</sub>MnAl. Ti and Mn are responsible for the compensated ferrimagnetic ordering. (b) The energy dispersion around the WPs on  $k_y = 0$  plane.

| K. K. K. 🗉 | (BLTP, JINR) |  |
|------------|--------------|--|
|------------|--------------|--|

17/20

(日) (四) (日) (日) (日)

## Comparison of topological and bulk SOT driven parameters



FIG. 3. (a) The effective magnetic fields form dissipative and topological response, acting on the compensated ferrimagnetic ordering  $\hat{n}_{e}(\mathbf{b})$  The energy dependences of the response coefficients  $\chi_{xx}^{(a)}$  and  $\chi_{yx}^{(a)}$ . (c) The density of states and one of the energy dispersion around WPs. The inversion symmetry breaking in Ti<sub>2</sub>MnAl causes energy differences between WPs. (d) The energy dependences of efficiencies of SOT  $\theta_{xx}^{(i)}$ and  $\theta_{yx}^{(a)}$ .

| K. K. K. ( | BLTP.JINR) |  |
|------------|------------|--|
|            |            |  |

#### Top. Semimetals

October 21, 2024

< □ > < 同 > < 回 > < 回 >

## Comparison of topological and bulk SOT driven parameters



FIG. 4. Relaxation time dependences for response coefficients  $\chi_{xx}^{\text{dis}}$  and  $\chi_{yx}^{\text{top}}$  when (a)  $E_{\text{F}}$  is located at the energy of the WPs and (b)  $E_{\text{F}}$  is away from the energy of the WPs.

• • • • • • • • • • • •

#### MBC

MBC is a BC extended in the composite parameter space  $k, \hat{n}$  spanned by the momentum k and the ferrimagnetic ordering  $\hat{n}$ .

$$\begin{split} \Omega_{yx}^{\boldsymbol{kk}}(\boldsymbol{k}) &= 2 \operatorname{Im} \sum_{n \neq m} f_{n\boldsymbol{k}} \frac{\langle n\boldsymbol{k} | \partial_{k_y} H | \boldsymbol{mk} \rangle \langle \boldsymbol{mk} | \partial_{k_x} H | \boldsymbol{nk} \rangle}{(E_{n\boldsymbol{k}} - E_{\boldsymbol{mk}})^2}, \\ \Omega_{yx}^{\hat{\boldsymbol{nk}}}(\boldsymbol{k}) &= 2 \operatorname{Im} \sum_{n \neq m} f_{n\boldsymbol{k}} \frac{\langle n\boldsymbol{k} | \partial_{\hat{n}_y} H | \boldsymbol{mk} \rangle \langle \boldsymbol{mk} | \partial_{k_x} H | \boldsymbol{nk} \rangle}{(E_{n\boldsymbol{k}} - E_{\boldsymbol{mk}})^2}. \end{split}$$



FIG. 5. The mapping of the yx component of (a) the BC  $-\Omega_{yx}^{kk}$  and (b) the MBC  $-\Omega_{yx}^{nk}$  on  $k_z = 0.1[1/a]$  at  $E_{\rm F}$ . In momentum space, the positions of the peaks/valleys of  $-\Omega_{yx}^{kk/nk}$  correspond to the positions of the WPs.

• • • • • • • • • • •