Straw-Barrel status report

STRAW production line

- Productivity- 1m/min
- Length- 5.5m
- Diameter-from 10 mm
- Film thickness-36 microns
- •Number of employees-10FTE
- Coating thickness 50-100nm
- Coating is carried out in the RF

- Produced ~20km straw
- Installed ~8000 straw
- After 10 years of operation nonworking- 3 straw
- Film is available in Russia
- Number of employees-10FTE

New Straw production line and assembling place

- Area ~200 sq.m., clean room~100 sq.m, machine shop and assembling hall~50 sq.m and 8,5 m high
- Double Production line length~12m
- The deadline is the beginning of the 3rd quarter of 2024
- Commissioning works-the beginning of the 4th quarter of 2024
- Necessary materials and equipment have been purchased
- Planned volume ~60km straw

Prototyping

- Small prototype production (lab and test beam straw and readout performance studies)
- development and prototyping of the construction elements (gas supply, sealing)
- development and optimization of the electrical

Prototyping

Connectors, HV distribution board, new pin, assembling, grounding

Test beam periods 2024 at SPS and PS

- charge measurements for low momentum particles: PS T09

T9 PS		08/05-15/05				02/10-09/10	
H4 SPS	10/04-24/04		26/06-10/07		18/09-02/10		
H8 SPS dump	10/04-26/10						

Measurements of the straw performance and choice of the readout electronics parameters

- Spatial resolution (SPS)
 - influence of the readout parameters
 - electronics noise, threshold
 - influence of the wire displacement
 - different operation conditions (gas gain, pressure dependence)
 - measurements in the magnetic field (H4)
- Charge measurements (PS, low momentum pi, mu, e)
 - charge distribution for different particle momenta
 - multiple scattering probability
 - electronics dynamic range for PID (protons are required, under discussion)
 - measurements at PNPI under discussion

- sMDT telescope with total 16 tube layers (assembled in 4 mini-chambers, each with 4-layers, two in x and two in y directions); Single wire resolution ~100 μm, tracking slope ~0.4 mrad (in each direction). Tube diameter 15 mm
- Front-end electronics mezzanine mounted 3 ASD, 1 TDC 24 ch. With TDC resolution of 0.78ns
- MiniDAQ system capable to handle 100 kHz trigger rate and readout 500 channels

Minianamber4MultiLayer

beam

- Online monitoring
- Offline data analysis

The UM sMDT telescope 8-layers in x and y directions

sMDT front-end electronics – used for test beam readout

- ATLAS sMDT ASD (developed at MPI) and TDC (Michigan) are suitable • for the straw readout and tracking with similarly expected gas gain (2-5 $x10^4$) and a drift time of a few hundred ns.
- Initial measurements at H4 beam line showing promising result to fit the • 10mm straw readout within the charge/time dynamic rate of the sMDT Front-end electronics.

Stacked mezzanine card

Flat mezzanine card

ATLAS sMDT	ASD Spec.	ATLAS sMDT TDC Spec.		
Technology	CMOS 130nm	Technology	CMOS 130nm	
#. of channels	8	#. of channels	24	
Power consumption	10 mA/ch	Package	BGA 144	
Input capacitance	60pF	TDC LSB	0.78 ns	
Shaper	bipolar	Nonlinearity	+- 80 ps	
Peaking time	12 ns	Power consumption	360 mW per chip	
Dynamic range	5-100 fC	Dynamic range	17 bits (102µs)	
sensitivity	8 mV/fC	Output data rate	320 Mbps x 2	
ENC	1 fC	Max. hit rate	400 kHz/ch	
Charge readout	ADC, ToT	Mode	Lead/trail edge, pair	

The AIDA-2020 Zero-suppressed Acquisition Located at the East-Area (AZALEA) telescope

• Baseline: EUDET-type telescopes + AIDA2020 upgrades (WP5)

- Full package for the users: >99% eff. sensors \leftrightarrow TDAQ \leftrightarrow reconstruction SW
- 50 μ m thin sensor suitable for > ~1 GeV/c beam lines
- Active area < $2x1 \text{ cm}^2$ & Pointing resolution: > 1.8 μ m (Miomsa26 limits)
- Avg. trigger rate < 1MHz & Time resolution: > 781 ps (AIDA TLU limits)

- Additional downstream

TimePix4, sMDT drift tubes

Datataking: 02-09 October

Straw PS program

0.4

0.3

0.2

0.1

0

MPV as function of particle momentum. 0.1 mm distance to wire

Tried to veto muons behind the concrete block

Last two days :

---- Pion

12

Momentum (Gev/c)

14

16

--- Muon

---- Electron

- decreased momenta of primary protons (down to 15 GeV)
- => higher population of low momentum hadrons

Reference tracking performance

Analysis ongoing

Prompt results – just a first glance

Gas System: design requirement

Gas systems (as detectors) are subject to severe requirements on material & gas for safe detector operation:

- Mainly (or exclusively) stainless steel pipe and components
- Need to validate most of the gas system components
- Documentation for QA and operation/maintenance follow up
- Monitoring of gas system operation
- Monitor of supply gases and mixture composition
- Evaluation of operational cost
- Flexible design to accommodate detector requirements/upgrades
- Careful evaluation of
 - resources for operation
 - resources for maintenance activity
 - Stability required
 - Balance requirements vs safety (as much as possible)

Plans

- straw tracker prototyping
- new assembling and production lab spaces
 - recovery of the miniSPD setup
 - readout electronics prototyping
 - test beam measurements at SPS and PS, the corresponding data analysis and feedback to FEE developers
- - evaluating possibilities for the testbeam measurements at PNPI (Gatchina), INP (Almaty) and JINR
- concept development of the gas supply system
 - longevity study for straw and supporting element material
- LV and HV power supply development