

Разработка микро-ОФЭКТ системы на базе детектора Timepix для доклинических исследований на лабораторных животных

(по материалам кандидатской диссертации)

Научный руководитель: Жемчугов А.С.

Рожков Влад

24.10.2024

Prototype (pharmacophore)

Molecular Imaging

Molecular Imaging

Цели и задачи

Целью кандидатской диссертации является разработка и экспериментальная проверка микро-ОФЭКТ системы на основе гибридного пиксельного детектора Timepix с CdTe-сенсором для применения в доклинических исследованиях на лабораторных животных.

Задачи исследования:

•Разработать прототип микро-ОФЭКТ системы с использованием гибридного пиксельного детектора Timepix и кодирующей апертуры MURA, с высоким пространственным разрешением.

•Измерить критические характеристики системы, такие как: пространственное разрешение, контрастность, линейность, эффективность.

•Оценить эффективность системы при работе с фантомами, измерив такие параметры, как линейность, однородность, пространственное разрешение и контрастность.

•Разработать методику улучшения отношения сигнал/шум в реконструкции изображений с использованием методов машинного обучения.

•Провести сравнение с существующими системами микро-ОФЭКТ и доказать преимущество предлагаемого подхода для доклинических исследований.

Эмиссионная томография

Камера Ангера

Поперечный разрез блока детектирования гамма-камеры Ангера:

1 – исследуемый объект; 2 – коллиматор; 3 – сцинтиллятор; 4 – выходное окно сцинтиллятора;
5 – световод; 6 – фотоэлектронные умножители; 7 – цепи передачи импульсов; 8 – светозащитный кожух

Timepix detector

1. Medipix – counting mode

2. Time-over-Threshold (TOT) each pixel records the energy deposite of particles interaction with corresponding sensor segment

3. Time-of-arrival (TOA) - each pixel records the arrival time of particles interaction with corresponding sensor segment

Timepix detector

1. Medipix – counting mode

2. Time-over-Threshold (TOT) each pixel records the energy deposite of particles interaction with corresponding sensor segment

3. Time-of-arrival (TOA) - each pixel records the arrival time of particles interaction with corresponding sensor segment

Пинхольный коллиматор

Кодирующая апертура

Image Sensor Satellite

Кодирующая апертура

Coded observation

Кодирующая апертура

Thickness	0.5 mm
Material	Tungsten
Mask type	MURA
Mask rank	31
Hole radius	160-180 um
Work area	22.01 x 22.01 mm

Установка

$$FoV = \frac{(m-d)(L-f)}{f}$$

Energy, keV

dx.doi.org/10.1364/OE.24.025129

16

Energy, keV

147,5

145,0

142,5

140,0

137,5

135,0

132,5

130,0

0

keV

Energy,

Bias

ABORATORY of NUCLES

.

THELEPON

Визуализация точечного источника

Поле зрения = 30мм х 30мм

Пространственное разрешение ~ 0,95 mm

²⁴¹Am spectrum

0°

Медное кольцо

Внешний диаметр = 11,9 мм внутренний диаметр = 10,2 мм

Размер кольца = 11,6 мм

²⁴¹Am Эксперимент / моделирование

Моделирование хорошо воспроизводит экспериментальные данные, поэтому далее, для оценки характеристик ОФЭКТ-системы с другими изотопами, мы используем моделирование.

Расстояние между источниками = 2.5 мм (диаметр источника)

¹²⁵I (30 кэВ)

Расстояние между источниками = 1.1 мм (Диаметр источника = 1 мм) Эффективность регистрации (1 мм CdTe) = 40% Эффективность регистрации (2 мм CdTe) = 40% Активность ~ 20 МБк

^{99m}Tc (140.5 кэВ)

Расстояние между источниками = 1.1 мм (Диаметр источника = 1 мм) Эффективность регистрации (1 мм CdTe) = 15% Эффективность регистрации (2 мм CdTe) = 23% Активность ~ 20 МБк

Isotope	Energy [keV]	Spatial resolution [mm]	Registration efficiency, % (with the collimator)		SNR	
			CdTe 1 mm	CdTe 2 mm	1	
¹²⁵ I	30	0.88	40	40	- 96]3
⁶⁷ Ga	93.3	0.89	28	36	- 90	
¹⁷⁷ Lu	113	0.89	23	31	88	$\left \right\rangle$
^{201}Tl	135	0.89	16	27	87	
^{99m} Tc	140.5	0.89	15	23	87]
^{117m} Sn	158.6	0.90	11	20	86	
¹²³ I	159	0.90	11	20	85	
^{201}Tl	167	0.90	10	18	85	
¹¹¹ In	171.3	0.90	10	17	84]
⁶⁷ Ga	184.6	0.91	8	16	83	
¹⁷⁷ Lu	210	0.91	7	12	81	
¹¹¹ In	245.4	0.91	5	10	78	
⁶⁷ Ga	300	0.92	4	7	74	
^{133}Xe	350	0.92	3	6	69	\`

¹²⁵I (30 кэВ)

Расстояние между источниками = 1.1 мм (Диаметр источника = 1 мм) Эффективность регистрации (1 мм CdTe) = 40% Эффективность регистрации (2 мм CdTe) = 40% Активность ~ 20 МБк

^{99m}Tc (140.5 кэВ)

Расстояние между источниками = 1.1 мм (Диаметр источника = 1 мм) Эффективность регистрации (1 мм CdTe) = 15% Эффективность регистрации (2 мм CdTe) = 23% Активность ~ 20 МБк

Activity — 100,7 MBq Time — 5 min

Пространственное разрешение

Vertical profile

Толщина нити — 150 мкм Активность — 30 МБк Время — 3 мин

FWHM (vertical) = 0.79 мм FWHM (horizontal) = 0.74 мм

1,5

Distance, mm

2,0

0,5

1,0

2,5

3,0

Гамма-визор -> ОФЭКТ

(b)

38-

Фантом Ящака

Фантом Ящака

Активность 84.8 МБк

10 мин

Измерения с фантомами

- Пространственное разрешение
 - Линейность
 - Контрастность
 - Эффективность регистрации
 - Чувствительность
 - Отношение сигнал/шум

HELEPON

Contrast Phantom

Contrast Phantom

Contrast Phantom

Активность = 75 МБк Отношение активностей 40/60 = 0,67 Измеренное отношение активностей = 0,68±0,01

Активность(Tc) — 47 МБк Активность(I) — 84.8 МБк Время — 5 минут

Тс+I I (84 МБк)

Тс (47 МБк)

Linear Phantom

Linear Phantom

Активность = 84 МБк FoV = 57mm x 57mm

Cap #	TSR, mm
1	2,35
2	2,35
3	2,87

- Wiener filter Kroschel, K. (2004). Wiener-Filter. In: Statistische Informationstechnik. Springer, Berlin, Heidelberg. <u>https://doi.org/10.1007/978-3-662-10041-7_8</u>
- Modified uniformly redundant array (MURA) Stephen R. Gottesman and E. E. Fenimore, "New family of binary arrays for coded aperture imaging," Appl. Opt. 28, 4344-4352 (1989) <u>https://doi.org/10.1364/AO.28.004344</u>
- Maximum likelihood expectation maximization (MLEM) Boudjelal A, Elmoataz A, Attallah B, Messali Z. «A Novel Iterative MLEM Image Reconstruction Algorithm Based on Beltrami Filter: Application to ECT Images.» Tomography. 2021 Jul 28;7(3):286-300. doi: 10.3390/tomography7030026. PMID: 34449726; PMCID: PMC8396201.
- Convolutional Encoder-Decoder Network (CED) Y. Zhang and H. Yu, «Convolutional neural network based metal artifact reduction in X-ray computed Tomography», IEEE Trans. Med. Imag. 37 (2018) 1370.

Реконструкция с применением фильтров

Реконструкция с применением фильтров

Реконструкция с применением фильтров

Для оценки пространственной неоднородности используются интегральная и дифференциальная неоднородности, указывающие соответственно на наличие артефактов во всей области сенсора и их появление от пикселя к пикселю. Для вычисления данных параметров использовался плоский фантом размером 45×50×5 мм. Фантом размещался таким образом, чтобы он полностью попадал в поле зрения установки, составляющее 57×57мм. Активность раствора 99mTc в фантоме составляла 1 МБк. В связи с малой удельной активностью для увеличения статистики в каждом пикселе к декодированному изображению был применен бининг 2×2.

Интегральная неоднородность – 56% Дифференциальная неоднородность – 16% Для оценки пространственной неоднородности используются интегральная и дифференциальная неоднородности, указывающие соответственно на наличие артефактов во всей области сенсора и их появление от пикселя к пикселю. Для вычисления данных параметров использовался плоский фантом размером 45×50×5 мм. Фантом размещался таким образом, чтобы он полностью попадал в поле зрения установки, составляющее 57×57мм. Активность раствора 99mTc в фантоме составляла 1 МБк. В связи с малой удельной активностью для увеличения статистики в каждом пикселе к декодированному изображению был применен бининг 2×2.

В.Ю. Плахотник. Восстановление томографической информации в системах визуализации гаммаизлучения с кодированными апертурами

В.Ю. Плахотник. Восстановление томографической информации в системах визуализации гаммаизлучения с кодированными апертурами

Системные параметры

Детектор	Timepix CdTe 2 мм	
Поле зрения	57 мм х 57 мм	
Энергетическое разрешение	22% (140 кэВ)	
Чувствительность	35 cps/MBq	
Линейность	99,9%	
Время сканирования	<2 мин/проекцию	
Энергетический диапазон РФП	30 – 180 кэВ	
Отношение сигнал/шум	>70%	

Эффективность

Параметр	Вклад в эффективность	
Геометрический фактор	3,4 10-4	
Ослабление в воздухе	0,57	
Системная эффективность регистрации, включая:	0,21	
Коллиматор	0,39	
Ослабление в воздухе	0,88	
Эффективность регистрации детектора	0,6	

Современные системы диагностики

Name	FoV, mmxmm	Spatial Res, mm	Spatial Linearity, mm	Spatial uniformity, mm
Infinia Hawkeye	540x540	7.4	0.5	3
MONICA	49x92	2.2	-	<3
Ergo	396x311	3	-	<5
EZ SCOPE	32x32	2.2	-	4.5
Mediprobe (0.35 pinhole)	28x28	1.09	-	-
Mediprobe (coded mask 0.07 mm)	6.25x6.25	0.49	-	-
TCA	57x57 30x30	1.44 0.8	0.2 0.2	-

Заключение

- Создан прототип системы ОФЭКТ для однофотонной эмиссионной компьютерной томографии (ОФЭКТ), на основе маски с кодирующей апертурой типа MURA и гибридного пиксельного детектора Timepix с CdTe сенсором
 - Разработано программное обеспечение для управления ОФЭКТ-системой.
- Разработаная методика определения оптимальных параметров детектора и времени экспозиции
 - Разработана методика и создано программное обеспечение для предобработки проекций и восстановления томографических изображений
- Проведены испытания полученной ОФЭКТ-системы с разными типами источников излучения. Получены проекционные и томографические изображения.
- Разработаны конструкции фантомов для измерения характеристик ОФЭКТ-системы. Определены пространственное разрешение, контрастность, линейность, однородность и эффективность регистрации (для радиопрепарата Tc-99m)
- Представлены результаты реконструкции ОФЭКТ изображений с использованием различных способов фильтрации. Обоснован выбор метода фильтрации с помощью сверточных нейронных сетей, как обеспечивающего наилучшее пространственное разрешение

- Разработана система для однофотонной эмиссионной компьютерной томографии (ОФЭКТ), на основе маски с кодирующей апертурой типа MURA и гибридного пиксельного детектора Timepix с CdTe сенсором. Экспериментально продемонстрирована возможность применения этой системы для визуализации радиофармпрепаратов.
- Разработана методика измерения характеристик системы ОФЭКТ с высоким пространственным разрешением. Показано, что ОФЭКТ-система на основе маски с кодирующей апертурой типа MURA и гибридного пиксельного детектора Timepix с CdTe обеспечивает высокую пространственную разрешающую способность (< 1мм) и контрастность при поле зрения (57 мм х 57 мм). Экспериментально определены такие характеристики указанной системы, как линейость, контрастность, однородность, эффективность регистрации.
- Экспериментально обоснован выбор метода фильтрации с помощью сверточных нейронных сетей как обеспечивающего наилучшее пространственное разрешение в системах ОФЭКТ с высоким пространственным разрешением.

Публикации и апробация

- Visualization of radiotracers for SPECT imaging using a Timepix detector with a coded aperture. // <u>V.Rozhkov</u> et al. 2020 JINST 15 P06028. Doi: 10.1088/1748-0221/15/06/p06028
- *Timepix pixel detector data pre-processing for SPECT*. // <u>V. Rozhkov</u>, A. Zhemchugov, A. Leyva, P.Smolyansky. Journal of Physics: Conference Series DOI: https://doi.org/10.1063/5.0134345.
- Uniformity and sensitivity measurements for small field of view pixelated SPECT system with coded aperture // <u>V. Rozhkov</u>, A. Zhemchugov, A. Leyva, P. Smolyansky PEPLAN V. 19, №5, 2022 Doi:10.1134/S1547477122050363
- 3D visualization of radiotracers for SPECT imaging using a Timepix detector with a coded aperture. // <u>V.A.Rozhkov</u>, A.S. Zhemchugov, A. Leyva, P.I. Smolyanskiy Physics of Atomic Nuclei. V. 85, 2022. DOI:10.56304/s2d79562922030423
- Quantitative Comparison of Planar Coded Aperture Imaging Reconstruction Methods // T. Meißner, <u>V.Rozhkov</u>, J. Hesser, W. Nahm, N. Loew. JINST DOI: <u>http://dx.doi.org/10.1088/1748-0221/18/01/P01006</u>

Публикации и апробация

- 1. LXX International conference "NUCLEUS 2020" г. Санкт-Петербург. 2020. Доклад
- 2. ІХ летняя конференция молодых ученых и специалистов. г. Алушта, 26 сентября 3 октября 2020 г.
- 3. Молодёжная конференция по теоретической и экспериментальной физике. (26-29 Nov. 2019)
- 4. V International Symposium on «Physics, Engineering and Technologies for Biomedicine».
- 5. Medipix Collaboration meeting 2021 (18-19, Nov. 2021) in Prague
- 6. LXXI международная конференция NUCLEUS 2021, г. Санкт-Петербург. 20-25 сентября 2021 г.
- 7. Межвузовская молодёжная школа-конференция им. Б.С. Ишханова «Концентрированные потоки энергии в космической технике, электронике, экологии и медицине», 22-23 ноября 2021 г.
- 8. Молодёжная конференция по теоретической физике 2021. г. Москва 16-20 ноября 2021 г.
- 9. XXV international scientific conference of Young Scientists and Specialists (AYSS-2021) 11-15 Oct. 2021
- 10. JINR Association of Young Scientists and Specialists Conference «Alushta-2021» 8-15 June 2021
- 11. JINR Association of Young Scientists and Specialists Conference «Alushta-2022» 5-12 June 2022
- 12. XXV international scientific conference of Young Scientists and Specialists (AYSS-2022) 24-28 Oct. 2021
- 13. LXXII международная конференция NUCLEUS 2022, г. Санкт-Петербург. 11-16 июля 2022 г.
- 14. IV International Scientific Forum «Nuclear science and Technologies», г. Алматы, Казахстан, 26-30 сентября 2022г.
- 15. XVIII Workshop on Nuclear Physics, г. Гавана, Куба, 17-22 октября 2022 г.
- 16. XVIV Workshop on Nuclear Physics, г. Гавана, Куба, 7-11 октября 2024 г.

Спасибо за внимание!