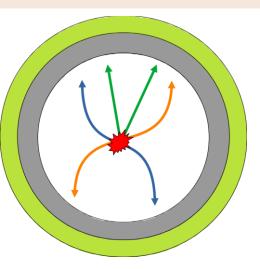
Hadron Cluster Finding in the SPD/NICA

D. Budkouski^{1,2}A. Tumasyan³, S. Shmatov¹

¹JINR (Dubna)


² INP BSU (Minsk)

⁴ ANSL (Yerevan)

Motivation

- Partons products of hadron-hadron hard scattering are not accessible for direct measurement
- We can get an information about these particles from the final state products resulting from harmonization of quark-gluon shower created by the initial parton
- If the energy of parton-initiator is high in the final state a jet of particles will be formed, which will correspond to initial parton
- The goals of this study:
 - Understand the admissibility of such approximation at low energies
 - Study processes of parton production at energy region between non-pQCD and pQCD

Problem statement

Performance of reconstruction for particles clustered production

- Search for clustered production of particles (efficiency)
- Reconstruction of parton-initiator kinematics depending on reconstructed jet characteristic

Clustering algorithms and parameters

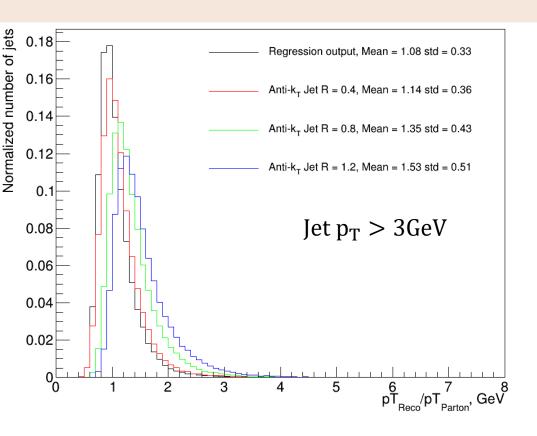
- Cluster/Jet reconstruction algorithm (Iterative Cone, kT, Anti-kT, Cambridge-Aachen, etc.)
- Radius parameter
- Inputs of clustering algorithms as objects of reconstruction and their kinematic thresholds
- Energy/momentum of reconstructed cluster

Machine learning algorithms

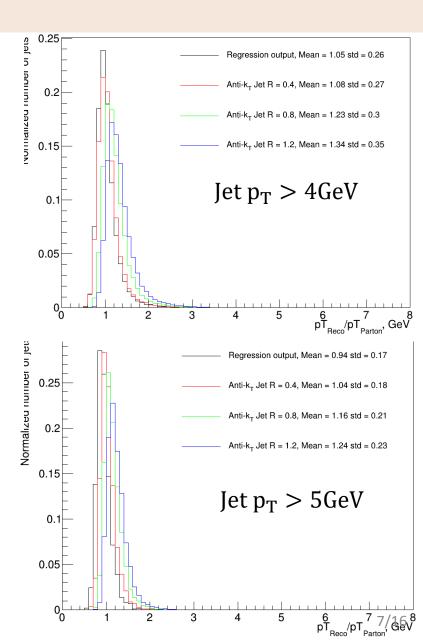
- Boosted decision tree with gradient boosting
- Use regression to reconstruct kinematics of parton-initiator

Event generation

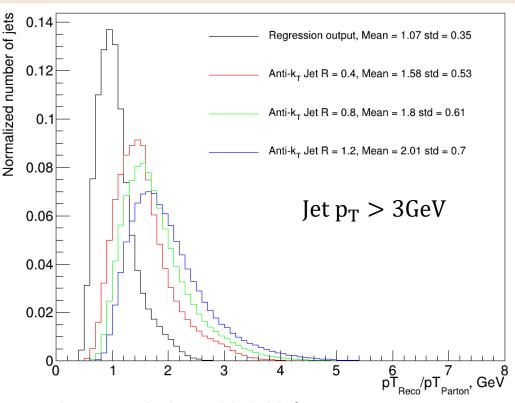
- We use Pythia8 generator and FastJet package
- Energy of collisions $\sqrt{s} = 27 \text{ GeV}$
- anti-kt algorithm with parameter R = 0.4, 0.8, 1.2 was used for jet clustering
- Jet was clustered from final state particles with $p_T > 0.25$ GeV and $\eta < 5$
- Clustered jets are matched to hard scattered parton (status = 23)
- Jet should have at least two particles
- Considered cases:
 - $\rightarrow qg \rightarrow q\gamma$ process (with and without prompt photon selections)
 - All QCD processes (inclusive case)

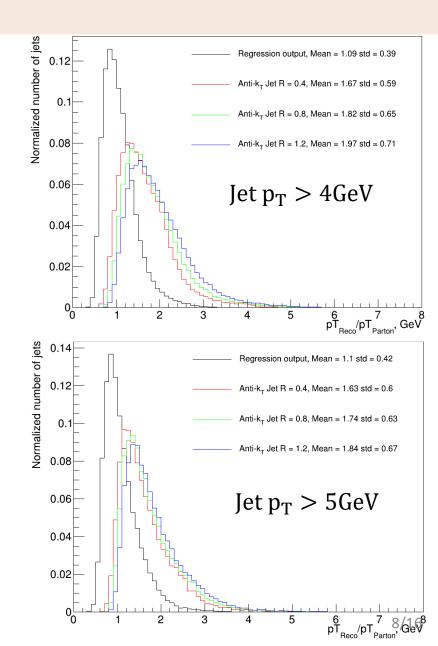

Selection strategies

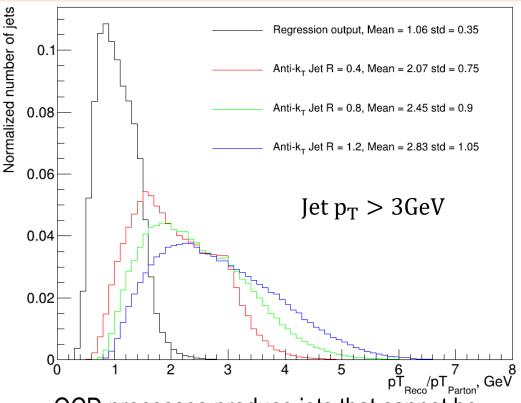
- $qg \rightarrow q\gamma$ process with prompt photon cuts
 - \triangleright Leading jet p_T cuts: $p_{T, iet}$ >3 GeV, >4 GeV, >5 GeV.
 - \triangleright Leading photon p_T cuts: $p_{T,photon}$ >3 GeV, >4 GeV, >5 GeV
 - \triangleright Photon and jet are back to back: $\Delta \phi > 2.7$
- $qg \rightarrow q\gamma$ process without prompt photon cuts
 - \triangleright Leading jet p_T cuts: $p_{T, iet}$ >3 GeV, >4 GeV, >5 GeV.
- QCD processes (Inclusive case)
 - \blacktriangleright Leading jet p_T cuts: $p_{T, jet}$ >3 GeV, >4 GeV, >5 GeV.
 - At least 2 jets in event
 - \triangleright Secondary jet $p_T > 2$ GeV

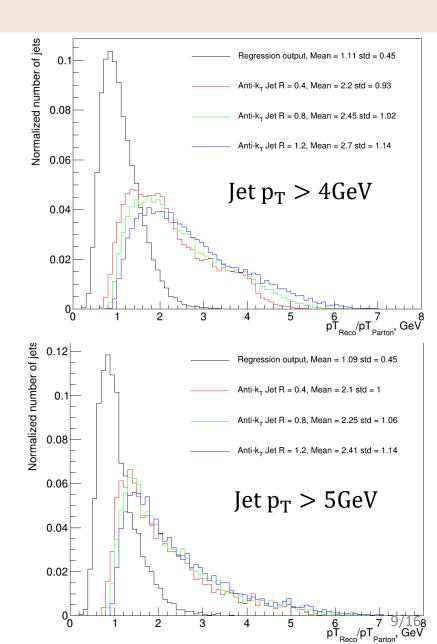

Boosted decision tree training

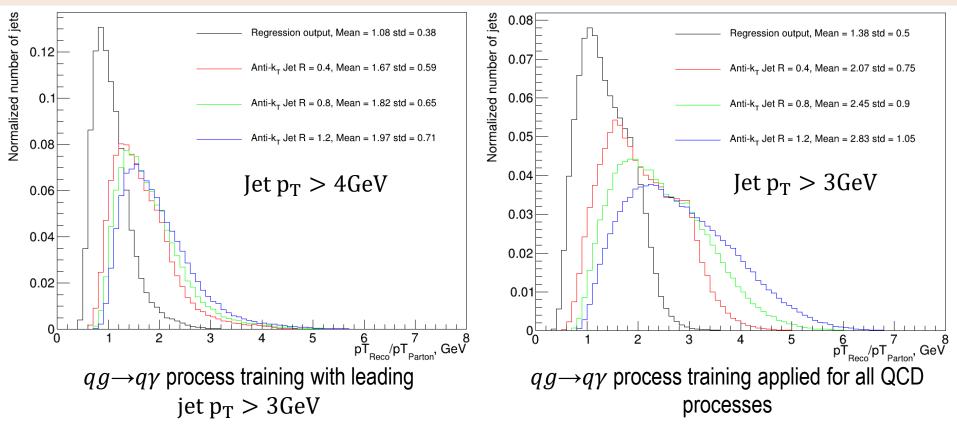
- $qg \rightarrow q\gamma$ process training parameters
 - $\triangleright p_x$, p_y of leading jet
 - leading jet η
 - leading jet particle multiplicity
 - \triangleright Mean p_T of jet particles
 - $\triangleright p_x$, p_y of leading and secondary particles in jet
- Inclusive case training parameters
 - $\triangleright p_x$, p_y of secondary jet in addition to already mentioned parameters
- Jets reconstructed with different R are used together for training
- Training and analyzed samples were created independently
- Analyzed sample has two times more events


$qg \rightarrow q\gamma$ process with prompt photon cuts


- High p_T jets have good association with initial parton
- Regression improve σ but not significantly


$qg \rightarrow q\gamma$ process without prompt photon cuts

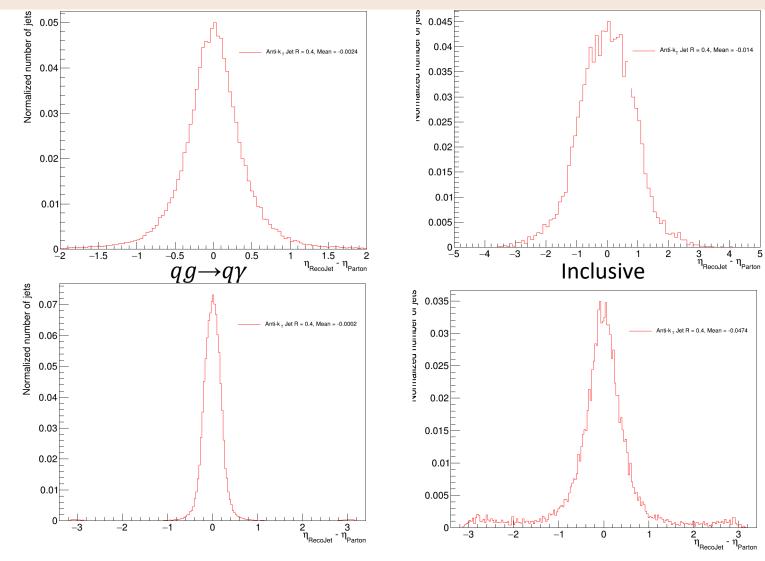

- Jet association with initial parton got worse
- Regression solve this problem and represent result that is close to shown on previous slide
- Since cuts on photon reduce number of events in 10 times we can use regression without cuts to increase statistics


All QCD processes

- QCD processes produce jets that cannot be simply associated with initial parton
- Problem is caused by events with high p_T jets and low p_T parton
- Regression gives reasonable results for initial parton p_T

Different training and analyzed samples

- Training from the same channel with one cut on jet pt could be applied for samples with different pt cuts
- Applying training from one channel to sample from different channel needs to be studied


Conclusion and plans

- Kinematical properties of hard scattered partons and clustered jets was compared on generator level
- Cuts on leading photon p_T and back to back condition between jet and photon together with cut on leading jet p_T select jets which could be associated with initial parton
- It seems to be impossible to select jets in inclusive case which could be associated with initial parton
- Using regression could be a solution to reconstruct kinematics of initial parton in inclusive case

- Plans:
 - Compare different algorithms of regression
 - > Find out additional parameters to improve training
 - > Try to realize unified training for different channels
 - > Repeat this study with full simulation of detector

Back up

Clustered jet (ϕ, η) vs parton (ϕ, η)

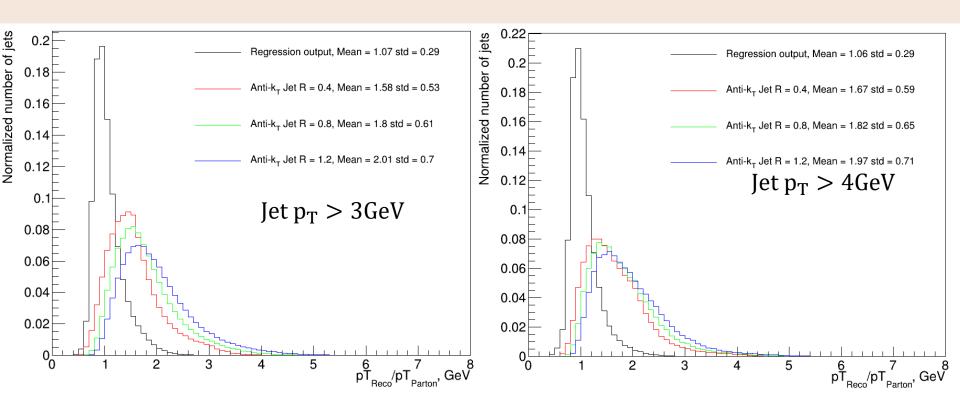
Jets and partons moves in the same direction

Jets at low energies in other experiments

- Jets at low energies was studied in 70s-80s in many experiments: PETRA, SFM 412,
 Pisa–Stony Brook, AFS etc.
- lacktriangleright Since there was not good enough clustering algorithms, single high p_T hadrons and clusters of particles were considered as jets
- Main idea of those experiments was in confirmation of events with jets and measurement cross sections

https://inspirehep.net/literature/179516 https://inspirehep.net/literature/153610 https://inspirehep.net/literature/100764 https://inspirehep.net/literature/188734

Optimization of parameters


- We studied different cuts on observed parameters and compare clustering algorithms:
 - η regions: 0/0.5/1/1.5/2/3
 - Minimal jet p_T: 2, 2.5, 3, 3.5, 4, 4.5, 5
 - Minimal particle p_T: 0.25, 0.5, 0.75, 1
 - \rightarrow Anti-kt/Kt/CA algorithms with R = 0.4, 0.8, 1.2, 1.5

 Different clustering algorithms find similar jets

algorithm	mean	σ	σ/mean
Anti-kt, R=0.4	1.5466	0.4573	29.57
Kt, R=0.4	1.5513	0.4606	29.69
CA, R=0.4	1.5478	0.4583	29.61
Anti-kt, R=0.8	1.7480	0.5257	30.07
Kt, R=0.8	1.7478	0.5319	30.43
CA, R=0.8	1.7388	0.5250	30.19

• The table was prepared for η from 0 to 3, $p_{T,jet}>2$ GeV and $p_{T,particle}>0.25$ GeV $_{_{15/1}}$

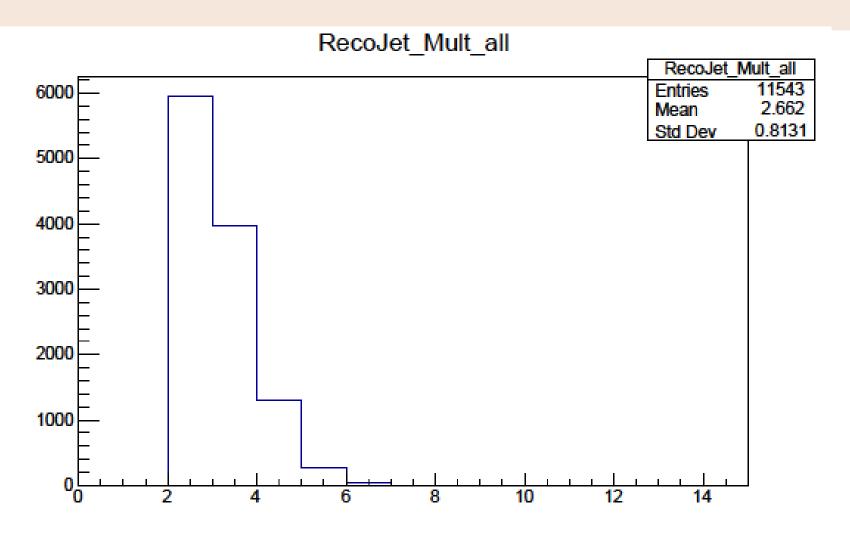
$qg \rightarrow q\gamma$ process without prompt photon cuts (photon in training)

High p_T jets have good association with initial parton

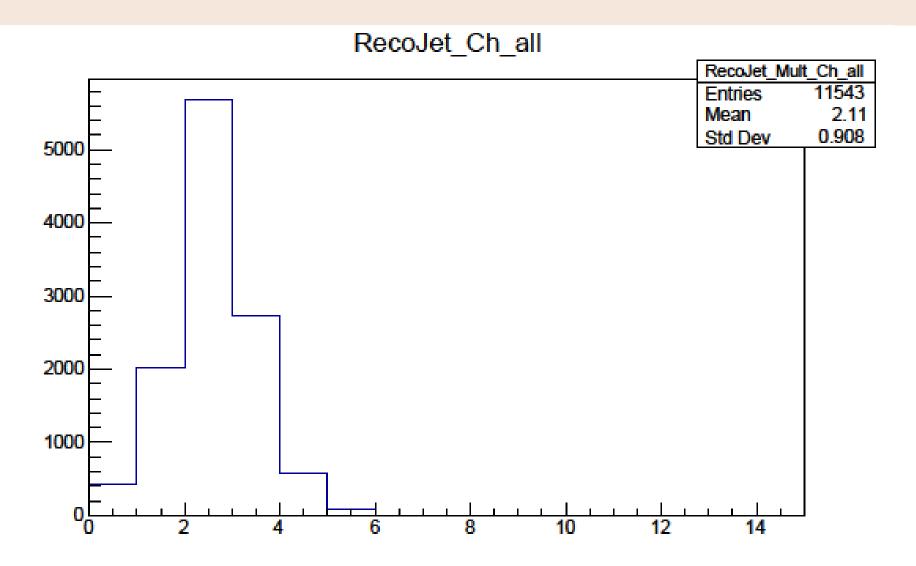
Objects definition

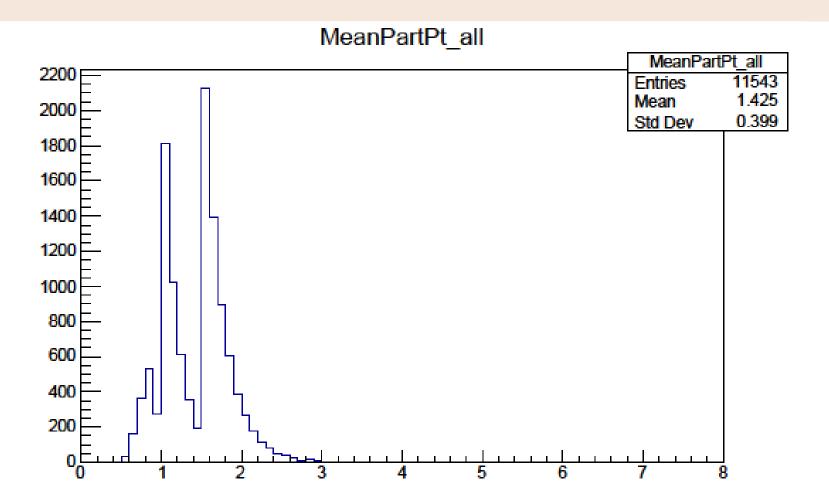
- Clustering algorithms can find many jet-like objects in single event
- But we want to choose only objects, which could be associated with initial parton
- Clustered jets (with gen information)
 - \blacktriangleright We take leading p_T jet and check, at least one jet constituent originated from hard scattered parton
- Clustered jets (only observable parameters)
 - \triangleright We take leading p_T jet, but skip the jet with leading photon among jet constituents

Anti- k_t algorithm


- Jets are clustered with anti-k_t algorithm
- Distance between objects in anti- k_t algorithm defined as $d_{ij} = \min\left(\frac{1}{k_{ti}^2}, \frac{1}{k_{tj}^2}\right) \frac{\Delta_{ij}^2}{R^2}$, where $\Delta_{ij}^2 = (y_i y_j)^2 + (\varphi_i \varphi_j)^2$
- The functionality of the algorithm can be understood by considering an event with a few hard particles and many soft ones
 - ➤ If hard particle 1 has no hard neighbours within a distance 2R then we have one perfectly conical jet
 - If another hard particle 2 is present such that $R < \Delta_{12} < 2R$ then we have two jets with some overlapping parts
 - \triangleright If distance between particles 1 and 2 Δ_{12} < R then both formed one jet

Process $qg \rightarrow q\gamma$ cross section ($\sqrt{s} = 27 \text{ GeV}$)




- Expected instantaneous luminosity $10^{32} cm^{-2} s^{-1}$
- For 100 days of work integral luminosity ~ $10^5 nb^{-1}$
- We have enough statistics even for high p_T partons
- For partons with $p_T > 3 GeV$ we expect ~ 10^6 events

Full Multiplicity

Charged Multiplicity

