

Joint Institute for Nuclear Research SCIENCE BRINGING NATIONS

Диссертационный совет ОИЯИ.02.01.2024.П по физике частиц при Лаборатории физики высоких энергий им. В. И. Векслера и А. М. Балдина

Плотников Василий Александрович

Рождение π⁺ и K⁺-мезонов в аргон-ядерных взаимодействиях при энергии пучка 3.2 АГэВ в эксперименте BM@N на Нуклотроне

ДИССЕРТАЦИЯ на соискание учёной степени кандидата физико-математических наук Специальность: 1.3.15 Физика атомных ядер и элементарных частиц, физика высоких энергий

Руководитель: д. ф.-м. н. М. Н. Капишин

Работа выполнена в Лаборатории физики высоких энергий им. В. И. Векслера и А. М. Балдина Объединенного института ядерных исследований, г. Дубна

Актуальность темы

Экспериментальное и теоретическое изучение свойств сильно взаимодействующей ядерной материи при высоких плотностях и температурах является одним из наиболее интересных исследовательских направлений ядерной физики высоких энергий. По современным теоретическим моделям процессы при столкновении тяжелых ионов описываются **уравнением состояния** ядерной материи при высоких барионных плотностях. Теоретические предсказания предполагают возникновение условий, при которых произойдет фазовый переход с образованием состояния, называемого **«кварк-глюонной плазмой»**. В качестве процессов, по которым можно отслеживать состояние ядерной материи, предпочтительными, но не единственными, являются процессы рождения частиц со странными кварками, которые не входят в состав первичных нуклонов, а возникают в процессе взаимодействия ядер. Кинематические распределения по таким переменным, как продольная быстрота, поперечный импульс и множественность частиц в конечном состоянии, являются наблюдаемыми для исследования.

В настоящее время эксперименты по столкновению тяжелых ионов проводятся на ускорителях **LHC** и **SPS** в европейском центре ядерных исследова ний CERN, Женева, **RHIC** в лаборатории BNL, Брукхейвен, и **SIS18** в институте GSI. Строящиеся масштабные установки, такие как Facility for Antiproton and Ion Research (**FAIR**) в Дармштадте, Германия, и Nuclotron-based Ion Collider fAcility (**NICA**), предоставят уникальные возможности для создания и изучения ядерной материи с плотностями, которые предсказываются в ядрах нейтронных звёзд.

Эксперимент **BM@N** (Baryonic Matter at Nuclotron) на ускорительном комплексе **NICA** это первый эксперимент, уже набравший экспериментальные данные, результатам анализа которых посвящена данная работа.

Цели и задачи работы І

Целью данной работы является изучение процессов образования положительно заряженных пионов и каонов в столкновениях пучка ионов аргона с твёрдыми фиксированными мишенями (C, Al, Cu, Sn, Pb) при кинетической энергии пучка 3.2 АГэВ, измеренных в эксперименте BM@N.

Решённые задачи:

- 1. Разработан и применён алгоритм экстраполяции треков частиц из центральной трековой системы во внешние детекторы, позволивший учесть потери энергии и рассеяние частиц в материале детекторов, а также погрешности измерения магнитного поля анализирующего магнита
- 2. Реализован метод восстановления координатной информации по сигналам в катодностриповой камере CSC и выполнено выравнивание внешних детекторов по трекам из центральной трековой системы, что позволило отфильтровать ложные реконструированные треки и обеспечило возможность получать для частицы её импульс, длину и время пролёта
- 3. Разработан и применён алгоритм идентификации заряженных частиц на основе метода времени пролёта, обеспечивший возможность определения типа заряженных частиц
- 4. Разработан и применён алгоритм получения эффективности триггерных детекторов, центральной трековой системы и внешних детекторов CSC и ToF-400 на основе экспериментальных данных, что позволило учесть потери информации о частицах из-за неидеальности детекторов и алгоритмов реконструкции

Цели и задачи работы II

- В моделировании реализованы алгоритмы реконструкции треков и идентификации заряженных частиц, применяемые для экспериментальных данных, а также методика учёта экспериментальной эффективности детекторов, что позволило получить эффективности реконструкции для π⁺ и K⁺-мезонов
- Получены эффективности реконструкции сигналов π⁺ и K⁺-мезонов и оценка фона, использованные для получения дифференциальных сечений и множественностей π⁺ и K⁺мезонов
- 7. С учетом эффективности реконструкции восстановлены спектры (выходы) π⁺ и K⁺-мезонов по продольной быстроте и поперечному импульсу, параметры обратных наклонов поперечных спектров, а также множественности π⁺ и K⁺-мезонов в событии, выполнена оценка систематических неопределённостей результатов от различных источников
- 8. Проведено сравнение полученных физических спектров с результатами других экспериментов и предсказаниями микроскопических транспортных моделей

Содержание

- 1. Область исследований
 - Физические задачи эксперимента BM@N
 - Модели ядро-ядерных взаимодействий
- 2. Установка ВМ@N
- 3. Идентификация типов заряженных частиц
- 4. Эффективность детекторов
- 5. Измерение сечений и множественности π⁺ и K⁺ и систематические погрешности
 - Этапы анализа данных
 - ✓ Систематические неопределённости
- 6. Физические результаты по образованию π^+ и K^+
- 7. Заключение, положения и т.д.

1. Область исследований

В. А. Плотников, ЛФВЭ, ОИЯИ

Физические задачи ВМ@N

BM@N

Ch. Fuchs and H.H. Wolter, EPJA 30 (2006) 5

soft EOS (K=240 MeV) / hard EOS (K=350) MeV 2.52.5

Hyperon yield in 4A GeV Au+Au:

Уравнение состояния (УС): связь плотности, давления, температуры, энергии и изоспиновой асимметрией

$$\begin{split} &\mathsf{E}_{\mathsf{A}}(\rho,\delta) = \mathsf{E}_{\mathsf{A}}(\rho,0) + \mathsf{E}_{\mathsf{sym}}(\rho) \cdot \delta^2 \\ & \text{with } \delta = (\rho_n - \rho_p) / \rho \end{split}$$

Кривизна определяется несжимаемостью ядерной материи: К = 9p² d²(E/A)/dp²

▶ Изучение УС симметричной материи при ρ=3-5ρ₀
→ подпороговое образование странных мезонов и

гиперонов

→ определение продуктов распада по результатам идентификации

→ определение типа УС: мягкое (K~200 MeV) или жёсткое (K>300 MeV)

• Поиск сигналов деконфайнмента

В. А. Плотников, ЛФВЭ, ОИЯИ

Threshold energy, GeV

Физические задачи BM@N

Уравнение состояния ядерной материи при высоких плотностях Образование частиц при (под)пороговых энергиях через множественные последовательные столкновения Пример: подпороговое рождение K⁺ в GSI

Идея: выходы К⁺ ~ плотность ~ сжимаемость

В. А. Плотников, ЛФВЭ, ОИЯИ

DCM-SMM

DCM-SMM – Дубненская каскадная модель + модель статистической мультифрагментации. Является развитием модели **DCM-QGSM**.

Основные компоненты

- ✓ DCM Монте-Карло решение релятивистского кинетического уравнения Больцмана-Уэлинга-Уленбека (БУУ)
- ✓ Ядро-ядерное столкновение некогерентная суперпозиция бинарных взаимодействий
- ✓ Приближение чёрного диска критерий сечения бинарного взаимодействия
- ✓ Ядро Ферми-газ нуклонов в потенциале Вуда-Саксона. Движение по прямой между столкновениями
- 🗸 Принцип Паули (запрета)
 - 4 стадии модели DCM-QGSM
 - ✓ Быстрые бинарные столкновения с рождением частиц (внутриядерный каскад)
 - ✓ Коалесценция вторичных нуклонов
 - ✓ Предравновесное испускание сильно возбуждённых ядер-фрагментов
 - ✓ Последовательное испарение и/или деление

Параметры, влияющие на выход частиц

✓ Модификация адронов в плотной ядерной материи (сейчас не реализована)

✓ Выход и время жизни резонансов (Δ, ρ, ω и т.д.). Резонансов рождается больше, чем π⁺ и K⁺

DCM

✓ $E_{lab} < 4.5 \text{ Afg}B$ B: p, n, N*, Δ, Λ, Σ, Ξ, Ω✓ адроны → адроныX → M: ρ, ω, η, φ✓ N + N → BBM + B → BX✓ N + N → BBXM + M → X	SMM для более точного описания образованияфрагментов промежуточной массыM. Baznat et al. «MonteCarlo Generator of Heavy IonCollisions DCM-SMM». In: Phys. Part. Nucl. Lett. 17(2020), pp. 303–324.
---	--

UrQMD

UrQMD – Модель ультрарелятивистской молекулярной динамики (версия 3.3)

По аналогии с DCM-SMM решается **кинетическое уравнение БУУ**. Однако частицы представляются в виде волновых пакетов, что позволяет эффективно учитывать факторы квантовых статистик (запрет Паули и усиление Бозе). Из-за указанной способности учёта квантовых особенностей модели содержат в названии **QMD**.

Основные компоненты

- ✓ Внутриядерный каскад
- ✓ Используются сечения свободных адрон-адронных столкновений
- ✓ Учитывает все барионные резонансы вплоть до инвариантной массы порядка 2.25 ГэВ (их около 50 штук) и все мезонные резонансы вплоть до 1.95 ГэВ (их примерно столько же)
- ✓ Не учитывается внутриядерное изменение свойств адронов
- ✓ Большие неопределённости сечений взаимодействий, включающих резонансы
- ✓ Вводят дополнительные (нефизические) резонансы, чтобы описать сжатую фазу ядерной материи
- ✓ Различные потенциалы взаимодействия между частицами (Юкавы, Кулона, Паули и т.п.)
- ✓ UrQMD разваливает ядерные фрагменты после взаимодействия до протонов и нейтронов

S. A. Bass et al. «Microscopic models for ultrarelativistic heavy ion collisions». In: Prog. Part. Nucl. Phys. 41 (1998), pp. 255-369.

PHSD

PHSD – Модель партонной адронной струнной динамики (версия 4)

Модель **PHSD** представляет собой ковариантный динамический подход (**киральную динамику**) к описанию сильно взаимодействующих систем, сформулированный на основе **уравнений Каданова-Байма**, или на основе транспортных уравнений вне массовой поверхности в представлении фазового пространства.

Основные компоненты

- Внутриядерный каскад
- ✓ Учитывает внутриядерное изменение свойств адронов (резонансы, в частности векторные мезоны, имеют ширину)
- ✓ Действительная часть собственных энергий квантов поля связана с потенциалами среднего поля
- ✓ Мнимая часть их собственных энергий даёт информацию о времени жизни времяподобных частиц
- ✓ Есть дополнительная (**партонная**) **фаза** с восстановлением киральной симметрии при энергиях MPD и выше
- ✓ Использует собственные аппроксимации для сечений реакций, которые либо измерены с большими погрешностями, либо вовсе неизвестны
- ✓ В модели **PHSD** не образуются стабильные фрагменты

W. Cassing, E. L. Bratkovskaya «Parton transport and hadronization from the dynamical quasiparticle point of view». In: Phys. Rev. C 78 (2008), 034919.

2. Установка ВМ@N

Установка BM@N в аргонном сеансе •

Детекторы, использованные в анализе: пучковые детекторы (1), детекторы множественности, ST (3), GEM (4), CSC (6), TOF 400 (7).

Центральная трековая система

✓ Полупроводниковые

GEM

- ✓ Газовые электронные умножители
- ✓ Один дрейфовый, два ускоряющих и один индукционный промежуток

✓ При реконструкции хитов в GEM учитывается лоренцовское смещение

Передние кремниевые стриповые детекторы (ST)

В. А. Плотников, ЛФВЭ, ОИЯИ

Внешние детекторы

Катодно-стриповая камера (CSC)

Детектор времени пролёта (ToF-400)

- Многозазорные резистивные плоские камеры (mRPCs) расположены на расстоянии ~4 м от мишени
- ✓ 20 mRPCs
- Вертикальные стрипы. Сигнал снимается с двух концов стрипа

- Горизонтальные анодные проволоки посередине
- ✓ Две стриповые катодные плоскости X и X' по краям
- 🗸 "Горячая" и "холодная" зоны

В. А. Плотников, ЛФВЭ, ОИЯИ

3. Идентификация типов заряженных «

Метод времени пролёта

K. Alishina, V. Plotnikov et al., Phys. Part. Nucl. 53 (2022), 470–475

В. А. Плотников, ЛФВЭ, ОИЯИ

Коррекции СSC и ТоF-400

Зависимость невязок в CSC и ToF-400 от р в 🥮

До коррекций ✓ Отклонение возрастает с уменьшением р ✓ Отклонение зависит от типа частиц ✓ Отклонение из-за потерь энергии, многократного рассеяния и погрешностей измерения магнитного поля

Невязки в ToF-400 коррелируют с невязками в CSC

После π⁺-коррекций

✓ Координаты X и Y точки экстраполяции скорректированы с точностью лучше 3 мм

✓ Окно сопоставления по X и Y 2.5σ_{л+}(р)

4. Эффективность детекторов

24.10.2024

В. А. Плотников, ЛФВЭ, ОИЯИ

20

Эффективность детекторов

✓ Ячейки 1х1 см²

Отбор событий

- ✓ Реконструированная первичная вершина (PV)
- ✓ PV в области мишени
- ✓ Более 2 треков с >3 хитами (из 9 детекторов)

Отбор треков

✓ Трек из PV

- ✓ Более 3 хитов (из 9 детекторов)
- ✓ Для ST (GEM) эфф. 2 (4) хита (из 3 (6) станций)
- ✓ Импульс трека 2<p<5 ГэВ/с</p>

 ✓ Два глобальных счётчика: знаменатель и числитель

V.A. Plotnikov et al., Phys. Part. Nucl. Lett. 20 (2023), 1392–1402

Эффективность детекторов

Результаты настройки эффективности в МК в соответствии с экспериментом

В. А. Плотников, ЛФВЭ, ОИЯИ

Учёт эффективности в моделировании 🕬

- В моделировании такая же цепочка реконструкции, как и для экспериментальных данных
- Случайное подавление сигнала в моделировании
- ✓ Итеративное приближение к экспериментальным данным с использованием коэффициентов коррекции двух типов (СС) (Eff_{EX}/ Eff_{MC} и Eff_{EX}-Eff_{MC})
- Оптимальный выбор КК зависит от детектора и части детектора
- ✓ Обычно 2-3 итерации достаточно
- Метод был автоматизирован и интегрирован в программное обеспечение для анализа

5. Измерение сечений и множественности π⁺ и K⁺ и систематические погрешности

Критерии отбора событий

Подавление гало пучка и наложения событий во временном окне считывания, число сигналов в стартовом детекторе: BC1=1, число сигналов в пучковом счётчике: BC2=1, число сигналов в счётчике вето вокруг пучка: Veto=0;

 ✓ Триггерные условия в детекторах множественности: число сигналов BD≥m, m ∈ [2;4], SiMD≥n, n ∈ [2;4] и комбинации триггеров SiMD и BD (зависят от рана).

Число зарегистрированных событий, потоки пучка и интегральные светимости, набранные для пучка Ar 3.2 AГэB (*ToF-400* (*ToF-700*))

Взаимод. (толщи- на мишени)	Число триг- геров / 10 ⁶	Интегр. поток пучка / 10 ⁷	Интегральная светимость / 10 ³⁰ см ⁻²		
Ar+C (2мм)	11.7 (11.3)	10.9 (8.7)	2.06 (1.97)		
Ar+Al (3.33мм)	30.6 (29.2)	15.4 (10.2)	2.30 (2.05)		
Ar+Cu (1.67мм)	30.9 (28.7)	15.9 (11.3)	1.79 (1.60)		
Ar+Sn (2.57мм)	30.0 (25.9)	15.1 (9.5)	1.11 (0.91)		
Ar+Pb (2.5мм)	13.7 (13.7)	7.0 (4.9)	0.50 (0.40)		

S. Afanasiev, V. Plotnikov et al., JHEP 2023 7 174

- Интенсивность пучка: единицы 10⁵ ионов на спил
- ✓ Длительность спила: 2–2.5 с
- Толщина твердых мишеней (вероятность взаимодействия с ядрами аргона): ~3%
- ✓Число событий для анализа: ~16.3М

- ✓ Область псевдобыстрот: $1.6 \le \eta \le 4.4$
- ✓ Сила анализирующего магнита: ~2.1T·m
- ✓ Разрешение расстояния от трека до PV в плоскости X-Y: 2.4 мм
- ✓ Разрешение по времени ToF-400: 84 пс

Относительное разрешение по импульсу как функция импульса

Критерии отбора π^+ и K^+

Сокращение:

✓ PV – первичная вершина

- ✓ Число хитов в 6 GEM на трек > 3
- ✓ Число треков в PV > 1
- ✓ РV около мишени: -3.4 < $Z_{_{PV}} Z_{_0} < 1.7$ см
- ✓ Диапазон импульсов треков для ToF-400: *p* > 0.5 ГэВ/с
- ✓ Расстояние от трека до PV в плоскости X-Y: *dca* < 1 см (треки из PV)
- ✓ *х*²/*NDF* для треков из PV < 3.5²
- ✓ Расстояние экстраполированных треков до хитов *CSC* и *ToF-400*: $|resid_{X,Y}| < 2.5\sigma$ распределения

невязок хит-трек

В. А. Плотников, ЛФВЭ, ОИЯИ

Сигналы π^+ и K^+ во взаимодействиях $Ar + A^{\mathsf{B}}$

Данные для ToF-400. Вертикальные линии показывают области сигналов идентифицированных л⁺ и К⁺-мезонов. Красные символы с усами ошибок показывают фон, оцененный из "смешанных" событий.

Реконструированные сигналы π^+ и K^+ для *ToF-400*

Particle, Detector	Target						
	С	C Al Cu		Sn	Pb		
π ⁺ , ToF-400	4020±66	21130±152	28010±175	32060±186	22420±156		
K ⁺ , ToF-400	45±10	278±25	538±31	729±36	570±32		

Сравнение экспериментальных данных и МКвм@р

Распределения невязок хитов в Хпроекции (ось отклонения магнитом) относительно реконструированных треков: (слева) – в первой плоскости ST, (справа) – в первой плоскости GEM. Экспериментальные данные показаны красными крестиками, данные симуляции показаны в виде синих гистограм.

Сравнение экспериментальных распределений (красные маркеры) и реконструированные распределения МК GEANT событий, сгенерированных по модели DCM-SMM (синие линии): DCA; χ^2 /NDF реконструированных треков; число треков, реконструированных в PV; число хитов на трек, реконструированных в 3 ST и 6 GEM.

Эффективность реконструкции π^+

ТоF-400 (открытые красные кружки) и **ТоF-700 (заполненные синие кружки)**. Результаты показаны для π⁺-мезонов образованных во взаимодействиях Ar+Sn.

 $\boldsymbol{\varepsilon}_{rec}(\boldsymbol{y},\boldsymbol{p}_{T}) = N_{rec}(\boldsymbol{y},\boldsymbol{p}_{T})/N_{gen}(\boldsymbol{y},\boldsymbol{p}_{T}),$

где N_{rec} – число реконструированных π^+ (K^+), N_{gen} – число сгенерированных π^+ (K^+). Эффективность реконструкции π^+ и K^+ рассчитана в интервалах по продольной быстроте у и поперечному импульсу p_T . Она учитывает геометрический аксептанс, эффективность детекторов, эффективность кинематических и пространственных ограничений и потери π^+ и K^+ из-за распадов на лету.

Эффективность триггеров (ЭТ)

Эффективность получения триггерного сигнала, зависящая от количества сработавших каналов в детекторах BD (SiMD) ε_{trig} вычислена для событий с восстановленными π^+ и K⁺ с использованием эксперим. событий, записанных с независимым триггером, основанном на детект. SiMD (BD):

$\boldsymbol{\varepsilon}_{trig}(BD \ge m) = N(BD \ge m, SiMD \ge n)/N(SiMD \ge n),$

где m и n – минимальные числа сработавших каналов BD и SiMD, варьирующиеся от 2 до 4. Были учтены зависимости ЭT от множественности треков в PV и положения X/Y PV. Комбинированные ЭT для BD и SiMD вычислялись как произведение ЭT BD и SiMD. **Систематические неопределённости** включают разности сигналов π^+ , K^+ , полученные с использованием $< \varepsilon_{trig} >$ вместо $\varepsilon_{trig}(N_{tr}, X_{PV}, Y_{PV})$, а также разницу ε_{trig} , полученных из ограниченной статистики событий, зарегистрированных с использованием BT.

Сечения и выходы

Дифференциальные сечения $d^2\sigma_{\pi,K}(y, p_T)/dydp_T$ и выходы $d^2N_{\pi,K}(y, p_T)/dydp_T \pi^+$ и K⁺ во взаимодействиях Ar+C, Al, Cu, Sn, Pb рассчитаны в интервалах (*y*, *p*_T) в соответствии с формулами:

 $d^{2}\sigma_{n,K}(y,p_{T}) / dydp_{T} = \sum (d^{2}n_{n,K}(y,p_{T},N_{tr}) / \varepsilon_{trig}(N_{tr})dydp_{T}) \cdot 1 / (\varepsilon_{rec}(y,p_{T}) \cdot L)$ $d^{2}N_{n,K}(y,p_{T}) / dydp_{T} = d^{2}\sigma_{n,K}(y,p_{T}) / dydp_{T} / \sigma_{inel}$

где *L* - светимость,

 ε_{rec} – эффективность реконструкции π^+ и К⁺-мезонов,

 ε_{trig} – эффективность триггеров (приводит экспериментальные данные к minimum bias),

 σ_{inel} – сечение minimum bias неупругих взаимодействий Ar+A.

Сечение для неупругих взаимодействий Ar+C, Al, Cu, Sn, Pb получено из предсказаний модели DCM-SMM, которые согласуются с результатами вычислений по формуле: $\sigma_{inel} = \pi R_0^2 (A_p^{1/3} + A_T^{1/3})^2$, где $R_0 = 1.2 \text{ фм} -$ эффективный радиус нуклона, A_p и A_T - атомные номера ядер пучка и мишени.

Взаимод.	Ar+C	Ar+Al	Ar+Cu	Ar+Sn	Ar+Pb
<i>σ_{inel}</i> , мб	1470±50	1860±50	2480±50	3140±50	3970±50

Полные систематические неопределённости выходов π^+ и K^+ -мезонов вычислены как корень квадратный суммы квадратов неопределённостей от нескольких источников.

Средние систематические неопределённости в интервалах (у, p_т) π⁺ и K⁺-мезонов.

Мишень	π^{*}				Target	$K^{\scriptscriptstyle +}$					
Система- тика	C , sys%	Al , sys%	Cu , sys%	Sn , sys%	Pb, sys%	Systematics	C , sys%	Al , sys%	Cu, sys%	Sn, sys%	Pb, sys%
L	2.0				L	2.0					
σ_{inel}	3.4	2.7	2.0	1.6	1.3	σ_{inel}	3.4	2.7	2.0	1.6	1.3
<i>E</i> _{trig}	9	7	7	7	7	<i>E</i> _{trig}	31	14	9	8	8
n, E _{rec}	14	12	12	10	10	n, E _{rec}	25	23	14	13	15
Полные	17	14	14	13	13	Полные	40	27	17	16	17

Систематические неопределённости выходов π^+ и K^+ -мезонов и ε_{rec} в каждом бине (*y*,*p*_{*T*}) вычисля-

лись, как корень квадратный из суммы квадратов неопределённостей от следующих источников:

Sys1: систематические неопределённости эффективности детекторов центрального трекера;

Sys2: систематические неопределённости сопоставления треков из центрального трекера с хитами CSC и ToF-400;

Sys3: систематические неопределённости эффективности реконструкции из-за остаточной разницы в распределениях положения первичной вершины по Х/Ү в моделировании относительно экспериментальных данных;

Sys4: систематические неопределённости вычитания фона под сигналами π⁺ и K⁺ в спектре квадрата масс идентифицированных частиц.

Нормализующие неопределённости выходов π^+ и K^+ -мезонов вычислялись для полной измеренной по (y, p_T) области, как корень квадратный из суммы квадратов статистической неопределённости эффективности триггера, неопределённостей эффективности трековых детекторов, эффективности сопоставления треков с хитами CSC и ToF-400, неопределённости светимости и сечения неупругих взаимодействий.

Выходы были также получены с использованием другого набора внешних детекторов: **DCH** и **ToF-700**. В пределах погрешностей результаты совпали с результатами для **CSC** и **ToF-400**. Разница была использована в качестве дополнительного источника систематической погрешности.

Дополнительно была сделана оценка систематической неопределённости выходов π^+ и K^+ мезонов из разницы выходов, полученных с использованием моделей **UrQMD** и **LAQGSM**. Величина полученной неопределённости не превышает 5%.

6. Физические результаты по образованию π⁺ и K⁺

Спектры π^+ -мезонов по продольной быстроте π^+ -мезонов по продольной быстроте

24.10.2024

В. А. Плотников, ЛФВЭ, ОИЯИ

36

И
Спектры К⁺-мезонов по продольной быстротемен

Вертикальные отрезки представляют статистические погрешности, прямоугольники показывают систематические погрешности. Предсказания моделей DCM-SMM, UrQMD и PHSD показаны в виде красных, зелёных и фиолетовых линий.

Спектры π^+ -мезонов по поперечному импульсу p

 $1/p_T \cdot d^2 N/dp_T dy = C \cdot m_T \cdot exp(-(m_T - m_{\pi,K})/T_0)$

где $m_T = \sqrt{(m_{\pi,K}^2 + p_T^2)}$ – поперечная масса, *C* – нормировка (свободный параметр), T_0 – обратный наклон (свободный параметр), *dy* – ширина измеренного бина по *y*, dp_T – ширина измеренного бина по p_T .

24.10.2024

Спектры К⁺-мезонов по поперечному импульсу рвм@м

Вертикальные отрезки представляют статистические погрешности, прямоугольники показывают систематические погрешности. Результаты фитирования показаны в виде красных кривых.

Спектры К⁺-мезонов по поперечному импульсу рвм@ь

Интегральные спектры для всей измеренной области по продольной быстроте. Результаты фитирования показаны в виде красных кривых.

Параметры обратного наклона T_o для π^+ вм@м

Вертикальные отрезки представляют статистические погрешности, прямоугольники показывают систематические погрешности. Предсказания моделей DCM-SMM, UrQMD и PHSD показаны в виде красных, зелёных и фиолетовых линий.

Параметры обратного наклона T_o для К⁺вм@р

Вертикальные отрезки представляют статистические погрешности, прямоугольники показывают систематические погрешности. Предсказания моделей DCM-SMM, UrQMD и PHSD показаны в виде красных, зелёных и фиолетовых линий.

 $N_{\pi+}/A_{part}$, N_{K+}/A_{part} , N_{K+}/N_{τ}

Множественности π^+ и K⁺, нормированные на A_part. Вертикальные отрезки представляют статистические погрешности, прямоугольники показывают систематические погрешности. Результаты ВМ@N предсказаниями сравнены С моделей DCM-SMM, UrQMD и PHSD аргон-ядерных для взаимодействий, показанными Β зелёных виде красных, И фиолетовых линий.

Экстраполяция и А

Представлены факторы экстраполяции в полную кинематическую область и число нуклонов, участвующих во взаимодействии, A_part

1) Факторы экстраполяции усреднены по предсказаниям моделей DCM-SMM, PHSD и UrQMD. В качестве погрешности взята максимальная разница между модельными факторами и их средним значением.

2) Число нуклонов-участников из предсказаний модели DCM-SMM.

3.2 AGeV	С	Al	Си	Sn	Pb
Фактор экстрап. для π ⁺	3.25 ± 0.18	3.73 ± 0.13	4.45 ± 0.07	5.12 ± 0.26	5.91 ± 0.55
Фактор экстрап. для К ⁺	2.81 ± 0.66	3.02 ± 0.67	3.34 ± 0.65	3.7 ± 0.58	4.1 ± 0.43
A _{part} , DCM-SMM	14.8	23.0	33.6	48.3	63.6

Результаты ВМ@N сравнены с мировыми измерениями. Чёрная кривая соответствует мировым данным по нуклон-нуклонным столкновениям. $N_{\pi}^{tot} = N_{\pi^+} + N_{\pi^-} + N_{\pi^0}$.

Результаты BM@N сравнены с мировыми измерениями.

Взаимод. ядра / Кинет. энергия пучка / Эксперимент	$T_{eff} \text{ at } y^* = 0$ (HADES,FOPI,KaoS), $y^* \approx 0.5 (\pi^+, BM@N),$ $y^* \text{ in meas. range } (K^+, BM@N)$
<i>Ar+KCl</i> , 1.76 АГэВ, HADES	82.4±0.1 ^{+9.1} _{-4.6} (π , A _{part} = 38.5) 89±1±2 (K ⁺ , A _{part} = 38.5)
Ni+Ni, 1.93 АГэВ, FOPI	110.9 \pm 1.0 (K^+ , $A_{part} = 75$)
Ni+Ni, 1.93 АГэВ, КаоS	97±7 (K^+ , $A_{part} \sim 5$) 107±10 (K^+ , $A_{part} \sim 100$)
<i>Ar+Cu</i> , 3.2 АГэВ, ВМ@N	$69\pm1 (\pi^+, A_{part} = 33.6)$ 74±5 (K ⁺ , A _{part} = 33.6)
<i>Ar+Sn</i> , 3.2 АГэВ, ВМ@N	78±1 (π^+ , $A_{part} = 48.3$) 78±5 (K^+ , $A_{part} = 48.3$)

BM@

Заключение І

- Получены физические результаты по рождению π⁺-мезонов в кинематической области 0.1<p_T<0.6 ГэВ/с, 1.5<y<3.2 и К⁺-мезонов в кинематической области 0.1<p_T<0.5 ГэВ/с, 1.0<y<2.0. Указанные результаты основаны на измерениях, проведённых на ускорительном комплексе NICA/Нуклотрон в рамках эксперимента ВМ@N в аргон-ядерных взаимодействиях на твёрдых мишенях (C, Al, Cu, Sn, Pb) при кинетической энергии пучка 3.2 АГэВ. Представляемые результаты получены на данных сталкивающихся ядрах при энергиях Нуклотрона впервые
- 2. Были получены спектры по быстроте и поперечному импульсу, а также обратные наклоны спектров по поперечному импульсу указанных частиц
- 3. Определены множественности π⁺ и K⁺-мезонов и их отношение в зависимости от числа нуклонов–участников ядро-ядерных столкновений
- 4. Обнаружено, что полученные результаты для Al и более тяжёлых мишеней хорошо согласуются с предсказаниями моделей DCM-SMM, UrQMD, PHSD и с результатами других экспериментов

Заключение II

- 5. Обнаружены отклонения от предсказания моделей в результатах измерений для углеродной мишени, а также для каонов
- 6. Сделан вывод о том, что полученные результаты указывают на необходимость внести изменения в существующие модели
- 7. Для выполнения поставленных задач впервые для эксперимента BM@N были созданы и отработаны методики калибровки различных детекторов и коррекций результатов измерений, в том числе были созданы методика идентификации заряженных частиц по времени пролёта и методики расчёта и применения в моделировании эффективности детекторов. Разработанные методы должны обеспечить более быструю и качественную обработку экспериментальных данных эксперимента BM@N

- Спектры по продольной быстроте и поперечному импульсу положительно заряженных пионов в кинематической области 0.1<p_T<0.6 ГэВ/с, 1.5<y<3.2 и каонов в кинематической области 0.1<p_T<0.5 ГэВ/с, 1.0<y<2.0, рожденных во взаимодействиях пучка ионов аргона с кинетической энергией 3.2 АГэВ с ядрами твёрдых фиксированных мишеней из C, Al, Cu, Sn, Pb на основе данных, полученных в эксперименте BM@N
- 2. Параметры обратных наклонов в распределениях по поперечному импульсу для положительно заряженных пионов и каонов в столкновениях пучка ионов аргона с ядрами мишеней из C, Al, Cu, Sn и Pb при энергиях Нуклотрона
- 3. Множественности π⁺ и К⁺-мезонов и их отношение в зависимости от числа нуклонов участников ядро-ядерных столкновений
- 4. Алгоритмы идентификации заряженных частиц в эксперименте BM@N для выделения сигналов заряженных пионов и каонов, а также алгоритмы оценки эффективности детекторов для эксперимента BM@N и учёта указанной эффективности в моделиро вании полной реконструкции

Новизна и значимость

Новизна

✓ Впервые получены экспериментальные результаты по рождению положительно заряженных пионов и каонов в столкновениях ионов аргона с ядрами мишеней из C, Al, Cu, Sn, Pb при энергиях Нуклотрона. Энергия пучка составляла 3.2 АГэВ. Среди полученных новых результатов спектры по продольной быстроте и поперечному импульсу, множественности, а также параметры обратных наклонов спектров по поперечному импульсу.

Научная и практическая значимость

- ✓ Физические результаты по рождению положительно заряженных пионов и каонов впервые получены при столкновениях пучка ионов аргона с ядрами мишеней из C, Al, Cu, Sn и Pb при энергиях Нуклотрона. В текущий момент в данной области энергий мало экспериментальных данных, что не позволяет построить достаточно точные модели столкновений тяжёлых ионов в области высокой барионной плотности и приводит к отклонению существующих моделей от новых экспериментальных данных. Полученные физические результаты позволят улучшить наше понимание столкновений тяжёлых ионов в указанной области энергий и построить более точные модели с более высокой предсказательной способностью.
- ✓ Получены первые физические результаты на установке BM@N, что демонстрирует готовность эксперимента для решения основных физических задач проекта BM@N.
- ✓ Разработанные методики, а также полученный опыт могут быть использованы в будущих сеансах эксперимента BM@N и ускорить процесс получения новых физических результатов.

Публикации (ВАК)

- DM. Kapishin, V. Plotnikov et al. «Production of Hyperons, Strange Mesons and Search for Hypernuclei in Interactions of Carbon, Argon and Krypton Beams in the BM@N Experiment». In: Phys. Part. Nucl. 52 (2021), pp. 710–719. — DOI: 10.1134/S1063779621040304.
- K. Alishina, V. Plotnikov et al. «Charged Particle Identification by the Time-of-Flight Method in the BM@N Experiment». In: Phys. Part. Nucl. 53 (2022), pp. 470–475. — DOI: 10.1134/S106377962202006X.
- 3. S. Afanasiev, V. Plotnikov et al. (BM@N Collaboration) «Production of π⁺ and K⁺ mesons in argon-nucleus interactions at 3.2 AGeV». In: J. High Energ. Phys. 2023, 7, 174. DOI: 10.1007/JHEP07(2023)174. URL: https://doi.org/10.48550/arXiv.2303.16243.
- V.A. Plotnikov, L.D. Kovachev, A.I. Zinchenko «Detector Efficiency in the BM@N Experiment in an Argon Run with a Beam Energy of 3.2 AGeV at Nuclotron». In: Phys. Part. Nuclei Lett. 20 (2023), pp. 1392– 1402. — DOI: 10.1134/S1547477123060286.

Публикации (материалы конференций

- A. Galavanov, V. Plotnikov et al. «Performance of the BM@N GEM/CSC tracking system at the Nuclotron beam». In: EPJ Web Conf. (XXIV International Baldin Seminar on High Energy Physics Problems "Relativistic Nuclear Physics and Quantum Chromodynamics" (Baldin ISHEPP XXIV)) 204 (2019) 07009. —DOI: 10.1051/epjconf/201920407009.
- A. Galavanov, V. Plotnikov et al. «Status of the GEM/CSC tracking system of the BM@N experiment». In: JINST (The International Conference Instrumentation for Colliding Beam Physics (INSTR2020)) 15 (2020) C09038. — DOI: 10.1088/17480221/15/09/C09038.
- A. Galavanov, V. Plotnikov et al. «Study of the BM@N GEM/CSC tracking system performance». In: AIP Conf. Proc. 2163 (2019) 030003. DOI: 10.1063/1.5130089.

Апробация работы

- ✓ 73-ья международная конференция по ядерной физике «ЯДРО-2023: Фундаментальные вопросы и приложения», Саров, Россия, октябрь 2023
- ✓ Семинар «XXV International Baldin Seminar on High Energy Physics Problems» (Baldin ISHEPP XXV), Dubna, Russia, сентябрь 2023
- ✓ XV-ая Международная школа-конференция «The Actual Problems of Microworld Physics», Минск, Беларусь, сентябрь 2023 год
- ✓ 69-ая международная конференция по ядерной физике «Nucleus-2019. Fundamental Problems of Nuclear Physics, Nuclei at Borders of Nucleon Stability, High Technologies», Дубна, Россия, июль 2019
- ✓ Семинар «Workshop on physics performance studies at NICA (NICA2022)», МИФИ, Москва, Россия, декабрь 2022
- ✓ Семинар «Trigger efficiency, luminosity and fluxes in argon run», ЛФВЭ, ОИЯИ, февраль 2023
- ✓ Семинар «Секция методики, детекторов и прикладной физики», ЛФВЭ, ОИЯИ, июнь 2023
- ✓ Школа «The 2019 European School of High Energy Physics, CERN, JINR», Санкт-Петербург, Россия
- ✓ Все коллаборационные совещания эксперимента ВМ@N, проводившиеся каждые полгода с 2018 по 2022 годы

Благодарность

Хотел бы выразить свою признательность участникам коллаборации BM@N и сотрудникам лаборатории ЛФВЭ, благодаря которым эта работа смогла состояться.

Я благодарен моему научному руководителю доктору ф.-м. наук М. Н. Капишину, проделавшему огромный труд, участвовавшему во всех этапах работы от организации эксперимента до анализа данных.

Признателен докторам ф.-м. наук М. В. Завертяеву и А. В. Ставинскому, учавствовавшим в обсуждении анализа данных, уделивших своё время диссертации и давших по ней ценные замечания.

Со стороны лаборатории ЛФВЭ труд по составлению рецензии на работу взял доктор ф.-м. наук **Б. В. Батюня**. Хотел бы поблагодарить его за внимательное прочтение работы и полезые комментарии, основанные на большом опыте в релятивистской ядерной физике, которыми он поделился.

Хотел бы сказать большое спасибо оппонентам докторам ф.-м. наук **С. П. Баранову** и **В. В. Куликову** за их кропотливый труд по прочтению и оценке диссертационной работы.

Очень благодарен **Л. Д. Ковачеву** за то, что разделил со мной многие этапы анализа и воспроизвёл их для времяпролётной системы ToF-700. Благодаря этому удалось проверить и подтвердить результаты, полученные мною с использованием детектора ToF-400.

Более подробно об участии уважаемых коллег, как упомянутых здесь, так и не упомянутых здесь, и моей признательности им попытался сказать в главе "Благодарности" диссертации.

Спасибо за внимание!

Дополнительные материалы

Выравнивание CSC и ToF-400

✓ Выравнивание ToF-400 по dx, dy, dz ✓ Вращение mRPC1 вокруг Z $dy = x \cdot tan(\alpha_z)$

Результаты выравнивания ТоF-400

✓ $\sigma_{\rm dz}$ < 1 см, $\sigma_{\rm dx}$ < 2 мм, $\sigma_{\rm dy}$ < 2 мм, $\sigma_{\rm zrot}$ < 10 мрад

Koppeкции времени (INL и slewing)

Коррекции на зависимость времени от амплитуды (slewing)

Левый рисунок – до коррекций, правый рисунок - после

Результаты коррекций

✓ INL – коррекции на интегральную нелинейность

24.10.2024

Коррекции времени (пик m_)

- Для каждого стрипа mRPC (~300 стрипов) ✓ p > 2 ГэВ/с
- ✓ о_д уменьшилось с 120 пс до 84 пс

-0.4

-0.2

n

0.2

0.4

dt, ns

0.6

0.6

-0.2

0

0.2

0.4

dt, ns

Разрешение по импульсу

4.5

$$\frac{dm^2}{m^2} = \sqrt{\left(\frac{2\,dp}{p}\right)^2} + \left(\frac{2}{1-\beta^2}\right)^2 \left(\frac{dt}{t}\right)^2 + \left(\frac{2}{1-\beta^2}\right)^2 \left(\frac{dL}{L}\right)^2$$

✓ dt/t < 0.5%, dL/L < 0.12%

✓ При малых р dm² определяется dp

✓ При больших р dm² определяется dt из-за лоренц-фактора

Зависимость невязок в СSC от р

Невязки в ToF-400 коррелируют с невязками в CSC

После π⁺-коррекций ✓ Координаты X и Y точки экстраполяции скорректированы с точностью лучше 3 мм ✓ Окно сопоставления по X и Y 2.5σ_{π+}(р). Отличие в каждом р-слайсе каждой mRPC < 5 мм

Эффективность ST/GEM

Eff_{SToutBeam}=80%, Eff_{GEM1,6}=80%, Eff_{GEM2-5}=90%

Эффективность ST/GEM

Иллюстрация нарушения и восстановление работы блоков стрипов в двух различных ранах для GEM6

Кратковременные высоковольтные наводки из-за нестабильности вывода интенсивности пучка приводили к уменьшению эффективности работы детекторов GEM.

Эффективность CSC

- ✓ Ячейки 4.5х4.5 см²
 Отбор треков
- ✓ Треки из PV
- ✓ Более 3 хитов GEM (из 6 детекторов)
- ✓ Более 4 хитов ST+GEM (из 9 детекторов)
- ✓ Импульс трека р>1 ГэВ/с
- ✓ Трек имеет хит в ToF-400

 ✓ Два глобальных счётчика: знаменатель и числитель

✓ Невязки Track_{ST/GEM}-Hit_{CSC} < 2.5 σ (р)

Эффективность CSC

✓ Глобальный знаменатель для CSC

✓ Eff_{CSC} только для у>-5 см (из-за GEM)
 ✓ Механическая поддержка около х=110 см

✓ Более низкая Eff_{CSC} в левой части, которая ближе к пучку

Эффективность ToF-400

- ✓ Ячейки 6х5 см²
 Отбор треков
- ✓ Треки из PV
- ✓ Более 3 хитов GEM (из 6 детекторов)
- ✓ Более 4 хитов ST+GEM (из 9 детекторов)
- ✓ Импульс трека р>1 ГэВ/с
- ✓ Трек имеет хит в CSC

✓ Два глобальных счётчика: знаменатель и числитель

✓ Невязки Track_{ST/GEM}-Hit_{ToF-400} < 2.5σ(р)

Эффективность ToF-400

- ✓ Eff_{тоF-400} только для х>0 см, у>-10 см
- ✓ Более низкая Eff_{тоF-400} в mRPC, которые ближе к пучку
- ✓ Eff_{pl0-2}~80 % (дальше от пучка) ✓ Eff_{pl5-7}~50 % (около пучка)

Сравнение эффективности в МК и данных вм

Систематическая неопределённость $\Delta Eff_{ST/GEM}$ =3%

Сравнение эффективности в МК и данных вм

Систематические неопределённости $\Delta Eff_{CSC} = \Delta Eff_{ToF-400} = 5\%$

24.10.2024

Mean BD trigger efficiency evaluated for events with reconstructed π^+/K^+ in interactions of the argon beam with the whole set of C, Al, Cu, Sn, Pb targets.

Trigger / Target π^+ mesons	С	Al	Си	Sn	Pb
ϵ_{trig} (BD>=2)	0.80±0.03	0.96 ± 0.01	0.98 ± 0.01	0.99 ± 0.01	0.99±0.01
ε_{trig} (BD>=3)	0.66±0.02	0.92±0.01	0.97±0.01	0.98 ± 0.01	0.99 ± 0.01
ε_{trig} (BD>=4)	0.48±0.02	0.88±0.01	0.95 ± 0.01	0.97±0.01	0.98±0.01
Trigger / Target <i>K</i> + mesons	С	Al	Си	Sn	Pb
Trigger / Target K+ mesonsε trig (BD>=2)	C 0.67±0.15	Al 0.97±0.02	<i>Cu</i> 0.98±0.01	Sn 0.99±0.01	Pb 0.99±0.01
Trigger / Target K^+ mesons ϵ_{trig} (BD>=2) ϵ_{trig} (BD>=3)	C 0.67±0.15 0.67±0.15	Al 0.97±0.02 0.96±0.02	Cu 0.98±0.01 0.97±0.01	Sn 0.99±0.01 0.99±0.01	Pb 0.99±0.01 0.99±0.01

Mean SiMD trigger efficiency evaluated for events with reconstructed π^+ and K^+ in interactions of the argon beam with the whole set of C, Al, Cu, Sn, Pb targets.

Trigger / Target π^+ mesons	С	Al	Си	Sn	Pb
ε _{trig} (SiMD>=2)	0.28±0.01	$0.40{\pm}0.01$	0.56 ± 0.01	0.65±0.01	0.72±0.01
ε _{trig} (SiMD>=3)	0.14±0.01	0.22±0.01	0.37±0.01	0.49 ± 0.01	0.58±0.01
ε _{trig} (SiMD>=4)	0.08±0.01	0.11±0.01	0.23±0.01	0.34±0.01	0.46±0.01
Trigger / Target <i>K</i> + mesons	С	Al	Си	Sn	Pb
Trigger / Target K+ mesonsε trig (SiMD>=2)	C 0.30±0.06	Al 0.40±0.03	<i>Cu</i> 0.64±0.03	Sn 0.74±0.03	Pb 0.82±0.03
Trigger / Target K^+ mesons ϵ_{trig} (SiMD>=2) ϵ_{trig} (SiMD>=3)	C 0.30±0.06 0.17±0.04	Al 0.40±0.03 0.23±0.02	Cu 0.64±0.03 0.45±0.03	Sn 0.74±0.03 0.61±0.03	Pb 0.82±0.03 0.73±0.03

Luminosity and fluxes

 $\mathbf{L} = \mathbf{N}_{\mathrm{b}} \cdot \mathbf{N}_{\mathrm{A}} \cdot \boldsymbol{\rho} \cdot \boldsymbol{l} / \mathbf{A} \cdot \operatorname{corr} = \mathbf{N}_{\mathrm{b}} \cdot \operatorname{coeff}$

- \checkmark N_b integrated ion flux through the target
- \checkmark N_A Avogadro number
- $\checkmark \rho \cdot l$ target thickness (g/cm²)
- \checkmark A target atomic weight
- \checkmark corr = 0.865±0.02 correction (see below)
- ✓ coeff transformation coefficient

- ✓ To count the beam flux (N_b) we use BT BT = BC1∧VC∧BC2
- Beam halo, pile-up suppression within the readout time window, number of signals in the start detector: BC1=1, number of signals in the beam counter: BC2=1, number of signals in the veto counter around the beam: VC=0;
- Beam flux for active (not busy) time of DAQ was integrated spill by spill for each target (C, Al, Cu, Sn, Pb)

Luminosity

Fig.5 (lumi.pdf). Run-7, X-Y of the primary vertices for different trigger conditions. Left: $BD \ge 3$, Right, $SiMD \ge 3$.

Fig.6 (lumi.pdf). Run-7, X-Y of the primary vertices within 3–olimits around the target.

- \checkmark 13.5% of the beam is missed the target by the edge of the target due to shifted beam position.
- \checkmark The systematic uncertainty for this measurement do not exceed 2%.
- ✓ The events collected with the Si-trigger near the upper edge of the target were recorded with higher efficiency relative the rest of the beam spot.

Impact parameters

Mean impact parameters of min. bias Ar+C, Ar+Al, Ar+Cu, Ar+Sn, Ar+Pb interactions with π^+ .

MC	<i>b</i> , fm (<i>Ar</i> + <i>C</i>)	b, fm (Ar+Al)	<i>b</i> , fm (<i>Ar+Cu</i>)	b, fm (Ar+Sn)	b, fm (Ar+Pb)
Events with gen. π^+	4.18	4.79	5.59	6.29	7.04
Events with gen. π^+ in the measured range of BM@N	3.75	4.29	5.03	5.70	6.43
Events with rec. π^+	3.51	3.91	4.61	5.29	6.13

Mean impact parameters of min. bias Ar+C, Ar+Al, Ar+Cu, Ar+Sn, Ar+Pb interactions with K^+ .

МС	<i>b</i> , fm (<i>Ar</i> + <i>C</i>)	b, fm (Ar+Al)	<i>b</i> , fm (<i>Ar+Cu</i>)	b, fm (Ar+Sn)	<i>b</i> , fm (<i>Ar</i> + <i>Pb</i>)
Events with gen. K^+	3.24	3.50	3.98	4.50	5.12
Events with gen. <i>K</i> ⁺ in the measured range of BM@N	3.17	3.42	3.90	4.44	5.13
Events with rec. K^+	3.25	3.55	4.13	4.72	5.46

π^+ and K^+ meson multiplicities

 π^+ and K⁺ meson multiplicities measured in Ar+C, Al, Cu, Sn, Pb interactions at the argon beam energy of 3.2 AGeV. The first error given is statistical, the second error is systematic. The third error given for the full π^+ and K⁺ multiplicities is the model uncertainty.

3.2 AGeV Ar beam	С	Al	Си	Sn	Pb
Measured π^+ multiplicity N_{π^+}	$0.42 \pm 0.008 \pm 0.045$	$1.00 \pm 0.01 \pm 0.07$	$1.14 \pm 0.01 \pm 0.08$	$1.28 \pm 0.01 \pm 0.09$	$1.25 \pm 0.01 \pm 0.08$
Measured K ⁺ multiplicity N _{K+} /10 ⁻²	$1.59 \pm 0.29 \pm 0.65$	$3.90 \pm 0.28 \pm 0.61$	$4.17 \pm 0.21 \pm 0.66$	$5.60 \pm 0.22 \pm 0.75$	$5.10 \pm 0.22 \pm 0.92$
$\begin{array}{l} Full \ \pi^{\scriptscriptstyle +} \ multiplicity \\ N_{\pi^{\scriptscriptstyle +}}^{ tot} \end{array}$	$\begin{array}{c} 1.365 \pm 0.026 \pm \\ 0.146 \pm 0.08 \end{array}$	$3.73 \pm 0.04 \pm$ 0.26 ± 0.13	$5.07 \pm 0.04 \pm 0.36 \pm 0.08$	$6.55 \pm 0.05 \pm 0.46 \pm 0.33$	$7.39 \pm 0.06 \pm 0.47 \pm 0.69$
Full K ⁺ multiplicity $N_{K^+}^{tot}/10^{-2}$	$4.47 \pm 0.81 \pm$ 1.83 ± 1.05	$11.8 \pm 0.9 \pm 1.8 \pm 2.6$	$13.9 \pm 0.7 \pm 2.2 \pm 2.7$	$20.7 \pm 0.8 \pm$ 2.8 ± 3.3	$20.9 \pm 0.9 \pm$ 3.8 ± 2.2
$N_{K^+}/N_{\pi^+}/10^{-2}$ Measured range	$3.79 \pm 0.69 \pm 1.52$	$3.90 \pm 0.28 \pm 0.55$	$3.66 \pm 0.19 \pm 0.53$	$4.39 \pm 0.18 \pm 0.51$	$4.11 \pm 0.18 \pm 0.68$
$N_{\rm K^+}^{\rm tot}\!/N_{\pi^+}^{\rm tot}\!/10^{\text{-2}}$, Full kin. range	$3.27 \pm 0.6 \pm$ 1.38 ± 0.79	$3.16 \pm 0.23 \pm 0.54 \pm 0.71$	$2.75 \pm 0.14 \pm 0.48 \pm 0.54$	$3.16 \pm 0.13 \pm$ 0.48 ± 0.52	$2.83 \pm 0.12 \pm 0.54 \pm 0.39$
K + inverse slope T_0 , MeV measured range	67 ± 12 ± 12	80 ± 7 ± 5	81 ± 5 ± 5	$81 \pm 5 \pm 4$	78 ± 5 ± 4

Comparison of experimental data and MC

Comparison of the experimental distributions (red crosses) and reconstructed Monte Carlo GEANT distributions of events generated with the DCM-SMM model (blue lines): number of tracks reconstructed in the primary vertex (left); number of fired BD channels (right).

Correlation obtained from the DCM-SMM model of the number of tracks in the primary vertex (left) and the number of fired channels in the BD (right) with impact parameter.

 π^+ multiplicity per the mean number of nucleons-participants A_{part} shown as a function of the beam kinetic energy E_{beam} . The BM@N results are compared with the world measurements.

The π^+ and K^+ yields and inverse slopes

Yields of K^+ , π^+ production and effective inverse slopes of invariant m_T spectra measured in interactions of light and medium nucleus. For T_{eff} , the transverse momentum for <u>BM@N</u> in measured range.

Interacting nucleus / Beam kinetic energy / Experiment	π ⁺ , <i>K</i> ⁺ yields	<i>K</i> ⁺ / π ⁺ yield ratio, •10 ⁻²	T_{eff} at $y^* = 0$ (World), $y^* \approx 0.5 (\pi^+, \underline{BM@N}),$ y^* in meas. range (K ⁺ , BM@N)
<i>Ar+KCl</i> , 1.76 AgeV, HADES	3.9±0.1±0.1 (π , A _{part} = 38.5) (2.8±0.2)·10 ⁻² (K^+)		82.4 \pm 0.1 ^{+9.1} -4.6 (π) 89 \pm 1 \pm 2 (K ⁺)
<i>Ni+Ni</i> , 1.93 AGeV, FOPI	$3.6 \cdot 10^{-2} (K^+, A_{part} = 46.5)$ $8.25 \cdot 10^{-2} (K^+, A_{part} = 75)$	$(7.59\pm0.49)\cdot10^{-3}$ $(A_{part} = 46.5)$	110.9 \pm 1.0 (K^+ , $A_{part} = 75$)
Ni+Ni, 1.93 AGeV, KaoS	3·10 ⁻² (<i>K</i> ⁺)		97±7 (K^+ , $A_{part} \sim 5$) 107±10 (K^+ , $A_{part} \sim 100$)
Ar+Cu, 3.2 AGeV, BM@N	5.1±0.4 (π^+ , A _{part} = 33.6) (13.9±2.2)·10 ⁻² (K^+)	(27.5±4.8)·10 ⁻³	90±2 (π ⁺) 81±5 (K ⁺)
<i>Ar+Sn</i> , 3.2 AGeV, BM@N	$6.6 \pm 0.5 (\pi^+, A_{part} = 48.3)$ (20.7±2.8)·10 ⁻² (K ⁺)	(31.6±4.8)·10 ⁻³	92±2 (π ⁺) 81±5 (K ⁺)

Центральная трековая система

BM@N

- ✓ Толщина плоскостей ST 300 мкм
- ✓ Ширина вертикальных стриповз 95 мкм
- ✓ Наклонные стрипы имеют угол наклона 2.5° и ширину 103 мкм
- ✓ Ширина стрипов GEM 800 мкм для вертикальных стрипов и стрипов, наклонённых на 15°
- Толщина плоскости GEM 9 мм. С одним дрейфовым, двумя ускоряющими и одним индукционным промежутком
- ✓ При реконструкции хитов в GEM учитывается лоренцовское смещение

CSC и ТоF-400

Катодно-стриповая камера (CSC)

- ✓ Горизонтальные анодные проволоки диаметром 30 мкм расположены с шагом 2.5 мм
- Две катодные плоскости Х и Х'. Промежуток между анодной и каждой из катодных плоскостей 3.8 мм
- ✓ Ширина стрипов 2.5 мм. Ориентация стрипов 0° и 15° относительно вертикали
- ✓ "Горячая" и "холодная" зоны

Детектор времени пролёта (ToF-400)

- ✓ Многозазорные резистивные плоские камеры (mRPCs) расположены на расстоянии ~4 м от мишени
- ✓ 20 mRPCs
- ✓ Вертикальные стрипы шириной 12.5 мм и длиной 300 мм

Выравнивание CSC

✓ Выравнивание по X и X'

Выравнивание ToF-400

✓ Вращение mRPC1 вокруг Z

Результаты выравнивания

✓ $\sigma_{\rm dz}$ < 1 см, $\sigma_{\rm dx}$ < 2 мм, $\sigma_{\rm dy}$ < 2 мм, $\sigma_{\rm zrot}$ < 10 мрад

