The inclusive π^0 on the SPD-ECAL endcaps for online polarimetry

Katherin Shtejer Díaz

SPD Physics & MC Meeting 23.10.2024

□ Vertex assumed at (0, 0, 0): Gaussian smeared: $\sigma_z = 30 \ cm$ and $\sigma_{x,y} = 0.1 \ cm$

Generation

- ☐ SpdRoot version 4.1.6
- $pp @ \sqrt{s} = 27 \text{ GeV}$
- ☐ Particle generator: Pythia 8 (number of events: $1.8 \cdot 10^8$)
- Minimum Bias

Realistic reconstruction

- ☐ Focus on the "ECAL" reconstructed particle
- Identified the cluster to which the particle belongs
- Position and energy taken from cluster^(*)
- Selected clusters that belong to the ECAL endcaps
- (*) Cluster splitting is not available yet.

$$\sqrt{s} = 27 \text{ GeV}$$

$$\mathcal{L} \approx 10^{32} cm^{-2} s^{-1}$$
 $\sigma_{pp} = 40 \text{ mb}$

$$\mathcal{R} = \mathcal{L} \cdot \sigma = 4 \cdot 10^6 s^{-1}$$

$$N_{ev} = 1.8 \cdot 10^8$$

$$t_{mc} = N_{ev} \cdot \frac{1}{\mathcal{R}} = 46.8 \, sec$$

Analysis

- \square Cuts: $E_{\rm V} > 400$ MeV, $p_{\rm T} > 0.5$ GeV/c
- \square Candidates to π^0 selected from $\gamma\gamma$ combinations (invariant mass)
- Photon candidates:
 - ✓ no especial constraint is applied to select photons (i.e. pdg-based filtering)
 - \checkmark candidates to π^0 selected from all possible $\gamma\gamma$ combinations (invariant mass)
- \Box Fitting the invariance mass distribution: gausn + pol2

$$f(x) = [p0] \cdot exp(-0.5 \cdot ((x - [p1])/[p2]) \cdot ((x - [p1])/[p2]))/(sqrt(2\pi) \cdot [p2])$$
$$+ [p3] + [p4] \cdot x + [p5] \cdot pow(x, 2)$$

- ☐ The yield is extracted from the integral of the fit function in certain limits, using the parameters of the Gaussian "signal" peak.
- ☐ The integral errors are calculated using the parameter uncertainties and the covariance matrix obtained from the fit.

$$p^{\uparrow} + p \to \boldsymbol{\pi^0} + X \qquad \phi = 2\pi$$

The cross section of hadron production in polarized $p^{\uparrow}+p$ collisions, is modified in azimuth.

$$\frac{d\sigma}{d\varphi} = \frac{d\sigma}{d\varphi_0} \left[1 + P \cdot A_N \cdot \cos(\varphi + \varphi_0) \right]$$

Azimuthal cosine modulation

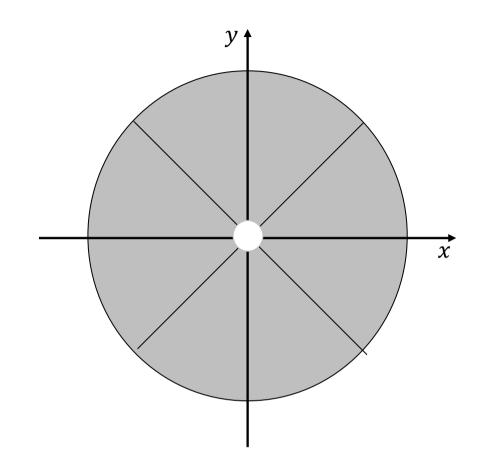
$$N_{\pi^0}(\varphi) = A[1 + P \cdot A_N \cdot \cos(\varphi + \varphi_0)]$$

$$A_N = \frac{Amp}{P}$$

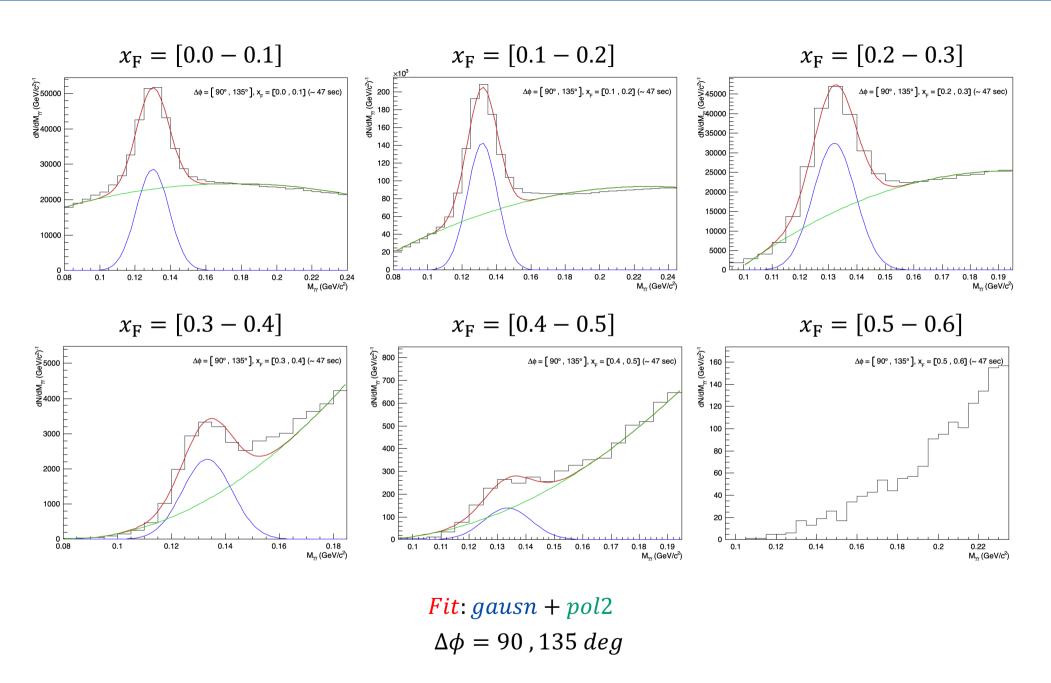
 $N_{\pi^0}(\varphi)$: Yield of π^0

P: Beam polarization

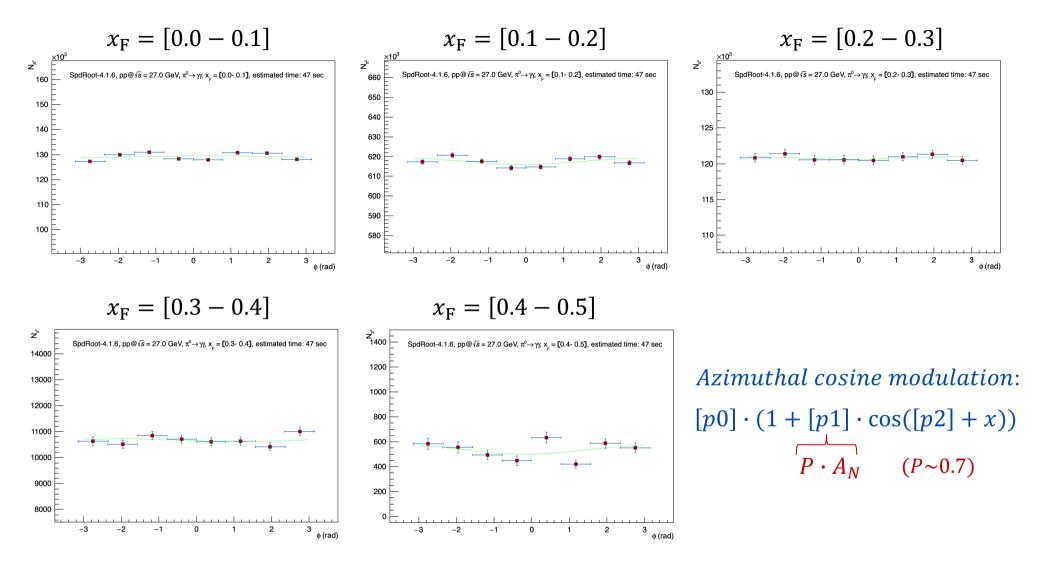
P = 0.7 was assumed



The spin dependent π^0 yields for each bin are extracted from the invariant mass spectra in different $x_{\rm F}$ sub-ranges for each φ bin.



Azimuthal cosine modulation of π^0 yields in x_F intervals



The modulation size is expected to be zero in unpolarized Monte Carlo simulations.

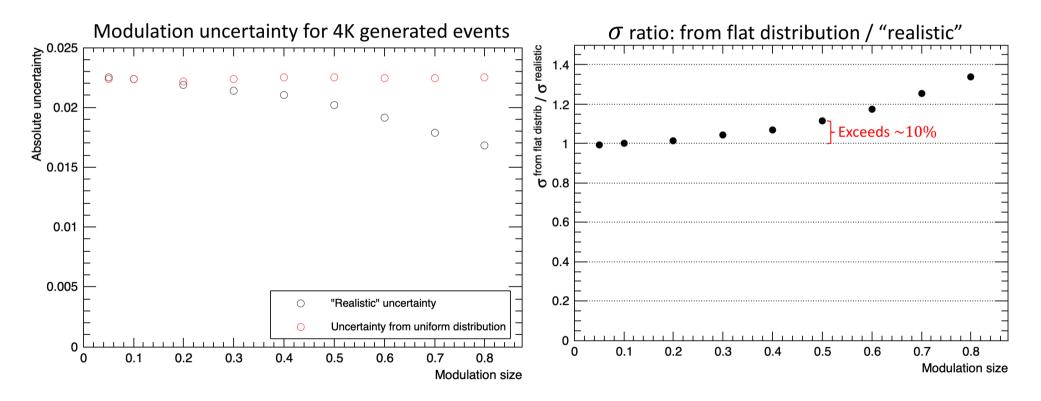
How reliable is to extract the statistical uncertainty of the amplitude modulation of a flat distribution?

Statistical uncertainty of uniformly distributed A_N ?

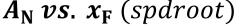
Contribution from Igor Denisenko!

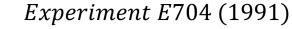
The reliability of extracting the statistical uncertainty of $A_{\rm N}$ from the fit $c \cdot (1 + A_{\rm N} \cdot \cos(\phi + b))$ of a flat distribution is evaluated using a toy modelling.

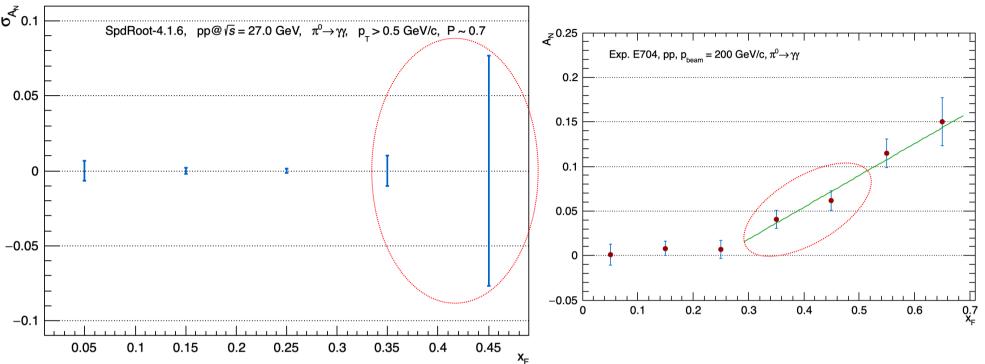
- Two distributions are generated $\begin{cases} f = 1 + [0] \cdot \cos(x) \cdot [-\pi, \pi] \\ f_0 = 1 \ [-\pi, \pi] \end{cases}$
- Both are fitted with a cosine modulation function
- lacktriangle The $\sigma_{A_{\mathbf{N}}}$ is extracted in both cases

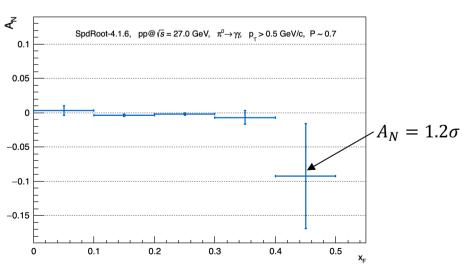


The statistical uncertainty of the amplitude modulation can be reasonably estimated for $A_N \approx 0$

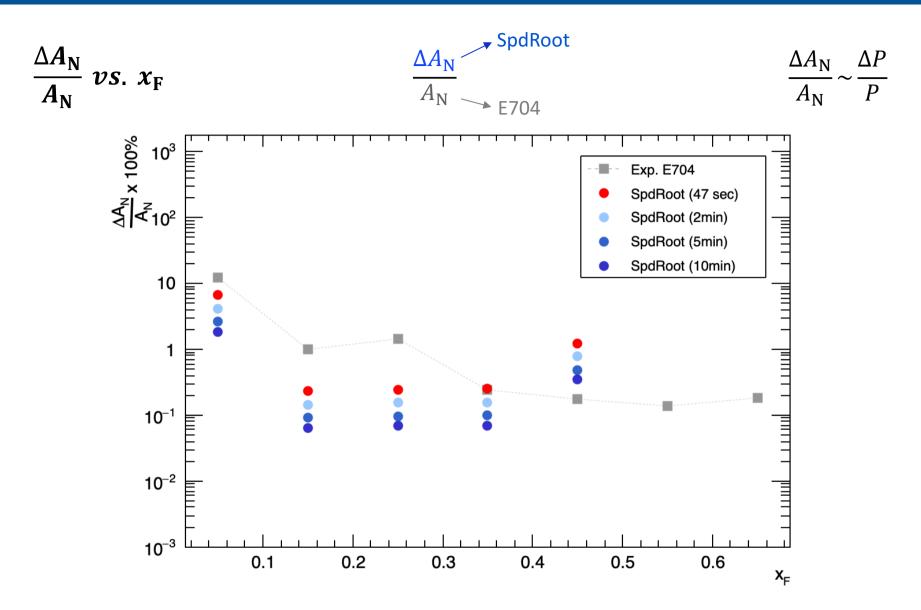








$$\frac{\Delta A_{\rm N}}{A_{N}} \sim \frac{\Delta P}{P}$$

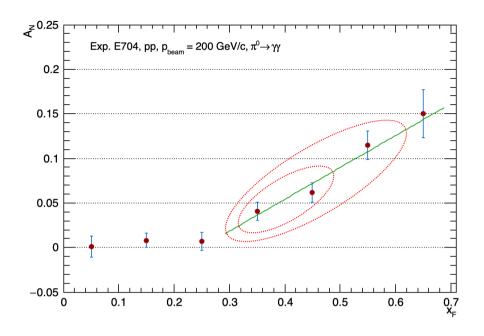


Better precision of the polarization measurement expected at: $0.1 < x_F < 0.2 \ (\sqrt{s} = 27 \text{ GeV})$

Estimated relative error of the polarization

$$\frac{\Delta A_{\rm N}}{A_N} \sim \frac{\Delta P}{P}$$

$$\frac{\Delta P}{P} = \frac{1}{\sqrt{\sum_{i} \left(\frac{A_{N_i}}{\Delta A_{N_i}}\right)^2}}$$



Taking **3** experimental points (0.3 $\leq x_F <$ 0.6):

$$\frac{\Delta P}{P} = 0.0998 \rightarrow 9.9 \% \text{ (Experiment E704)}$$

Taking **2** experimental points (0.3 $\leq x_F <$ 0.5):

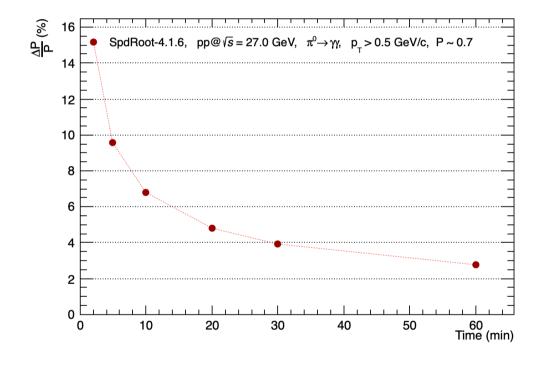
$$\frac{\Delta P}{P} = 0.1434 \rightarrow 14.3 \% \text{ (Experiment E704)}$$

The error of the beam polarization in the experiment **E704** is estimated in **10%** (FERMILAB-Pub-91/15-E[E581,E704])

Estimated relative error of the polarization

Estimation of the statistical accuracy of the beam polarization measurement, with $pp \to \pi^0 X$ at $\sqrt{s}=27$ GeV, in SPD ECAL endcaps.

Estimated time	$\frac{\Delta P}{P}$
2 min	15.1 %
5 min	9.6 %
10 min	6.8 %
20 min	4.8 %
30 min	3.9 %
1 h	2.8 %



Summary of the first part

- ✓ The energy and position of π^0 decayed photons in the endcaps of the SPD ECAL are quantities which are accessible online, with no necessity of particle identification or vertex reconstruction.
- ✓ The accuracy of the beam polarization has been estimated for pp collisions at $\sqrt{s} = 27$ GeV by Monte Carlo simulations based on SpdRoot-4.1.6
- ✓ Based on the azimuthal asymmetry of π^0 detected in the ECAL-endcaps, the accuracy of the beam polarization has been estimated at **9.6% for 5 min.** of data taking, assuming an **average polarization of 0.7**.

Another approach: projected statistical uncertainty of A_N

Raw asymmetry:

$$A_{N}(\phi) = \frac{1}{P\langle|\cos(\phi)|\rangle} \frac{N^{\uparrow}(\phi) - \mathcal{R} \cdot N^{\downarrow}(\phi)}{N^{\uparrow}(\phi) + \mathcal{R} \cdot N^{\downarrow}(\phi)}$$

 $N(\phi)$: counts in ϕ bins

P: beam polarization

 $\frac{1}{\langle |cos(\phi)| \rangle}$: azimuthal acceptance correction factor

 $\langle |cos(\phi)| \rangle = \frac{\int_{\phi_1}^{\phi_2} \cos(\phi) d\phi}{\phi_2 - \phi_1}$: average of the cosine of azimuth in the ϕ bin

 $\mathcal{R} = \mathcal{L}^{\uparrow}/\mathcal{L}^{\downarrow}$: relative luminosity

$$\sigma_{A_{N}}(\phi) = \frac{1}{P\langle|\cos(\phi)|\rangle} \frac{1}{\sqrt{2N}}$$

$$\mathcal{R} = \mathcal{L}^{\uparrow}/\mathcal{L}^{\downarrow} \text{: relative luminosity}$$

$$\mathbf{Statistical \ uncertainty \ of \ } A_{\mathbf{N}} \text{:} \boxed{ \begin{aligned} \sigma_{A_{\mathbf{N}}}(\phi) &= \frac{1}{P\langle|\cos(\phi)|\rangle} \frac{1}{\sqrt{2N}} \end{aligned}} \quad \begin{cases} \mathcal{R} \sim 1 \\ N^{\uparrow} \sim N^{\downarrow} &= N \\ \sigma_{N} &= \sqrt{N} \text{ : Poisson distribution of } N \end{aligned}}$$

0°3 counts/(0.001 GeV/c²) 00 01 05 05

0⁻³ counts/(0.01 GeV/c²

 $_{100}$ (b) $\eta \rightarrow \gamma \gamma$

0.2 0.3 0.4 0.5 0.6

M_{ss} [GeV/c²]

 M_{yy} [GeV/c²]

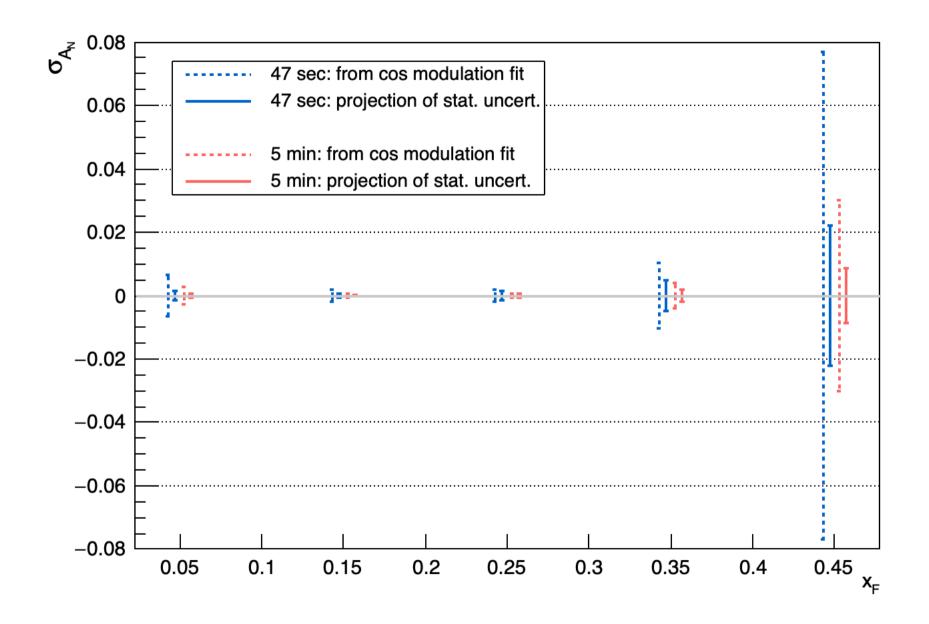
PHENIX

0.25

The statistical uncertainties estimated independently for each ϕ bin, $\sigma_{A_N}(\phi)$, can be averaged as:

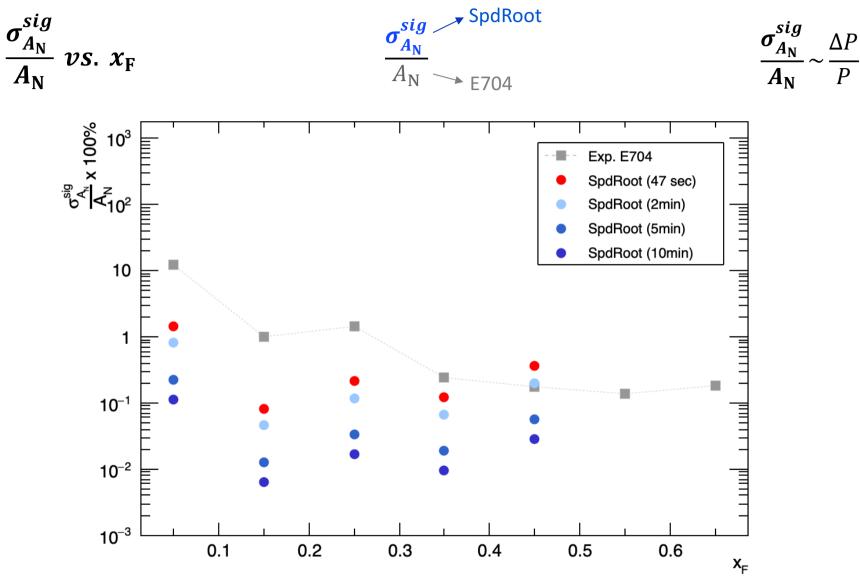
$$\sigma_{A_N^{sig}}(x_F) = \frac{1}{\sqrt{\sum_{i=1}^8 \frac{1}{\sigma_{A_N^{sig}}^2(\phi_i)}}}$$

Amaresh's Analysis Note "Prospects of Open-Charm Asymmetry Measurements at the SPD" (indico.jinr.ru/event/4594/attachments/18860/32246/D Meson Report.pdf)



Another approach: projected statistical uncertainty of A_N

Relative error for A_N , $pp @ \sqrt{s} = 27 \text{ GeV}$



Better precision of the polarization measurement expected at: $0.1 < x_F < 0.2 \ \ (\sqrt{s} = 27 \ {\rm GeV})$

Method: Calculation of the projected statistical uncertainty of $A_{\rm N}$.

Estimated time	$\frac{\Delta P}{P}$
2 min	6.4 %
5 min	1.8 %
10 min	0.9 %
20 min	0.5 %
30 min	0.3 %
1 h	0.2 %

Correction for the background is needed!

Method:

Extracting the $A_{\rm N}$ from the modulation amplitude of the cosine function.

Estimated time	$\frac{\Delta P}{P}$
2 min	15.1 %
5 min	9.6 %
10 min	6.8 %
20 min	4.8 %
30 min	3.9 %
1 h	2.8 %