Изучение столкновений тяжелых ионов на NICA

Аркадий Тараненко

Осенняя школа по физике кварк-глюонной материи 2024, УНЦ ОИЯИ

Ускорительный комплекс NICA (ЛФВЭ, ОИЯИ, Дубна)

Мегапроект NICA (Nuclotron based Ion Collider fAcility) - сверхпроводящий коллайдер протонов и тяжёлых ионов, строящийся на базе Лаборатории физики высоких энергий (ЛФВЭ, ОИЯИ), окончание строительства: 2025

- ▶ BM@N ("Барионная материя на Нуклотроне ") Nuclotron, с 2018 года
- ➢MPD ("Многоцелевой Детектор") коллайдер NICA, 2025-2026 год
- >SPD ("Детектор Спиновой Физики") коллайдер NICA, 2028-2030 год?

NICA: BM@N and MPD Collaborations

The BM@N spectrometer at the NICA accelerator complex Nucl.Instrum.Meth.A 1965 (2024) 169352 Status and initial physics performance studies of the MPD experiment at NICA , Eur.Phys.J.A 58 (2022) 7, 140

MPD collaboration (NICA)

The 2nd China–Russia Joint Workshop on NICA Facility Qingdao, China 2024.9.9–9.12

> 2nd China-Russia Joint Workshop on NICA Facility indico.jinr.ru/event/4642

International Workshop on physics performance studies at NICA-2024 (November 25-27,2024)

https://indico.jinr.ru/event/4973/overview

NICA Experiments: BM@N and MPD

Эксперименты BM@N ($\sqrt{s_{NN}}$ = 2.3–3.3 ГэВ) и MPD ($\sqrt{s_{NN}}$ = 4–11 ГэВ) будут изучать свойства сильно взаимодействующей материи в области максимальной барионной плотности: столкновения релятивистских ядер.

Доступные источники: С (A=12), N (A=14), Ar (A=40), Fe (A=56), Kr (A=78-86), Xe (A=124-134), Bi (A=209).

Phase transition in Lattice QCD

Steep rise in thermodynamic quantities due to change in number of degrees of freedom → phase transition from hadronic to partonic degrees of freedom.

Smooth *crossover* for a system with net-baryon content equal 0. For a *first order phase transition*, the behavior would be not continuous.

HADRON				QGP
Bevalac –	→ AGS —	→ SPS —	RHIC -	LHC
~1 GeV	~5 GeV	~20 GeV	~100 GeV	~5000 GeV

Increasing the beam energy over the last decades...

...from early fixed target experiments at GSI/Bevalac/JINR and SPS to collider experiments at RHIC and LHC.

SIS, GSI Darmstadt,√s_{NN}~2.4 GeV

SPS, CERN, $\sqrt{s_{NN}}$ ~6-20 GeV

Brookhaven \rightarrow RHIC $\sqrt{s_{NN}}$ ~3-200 GeV (BES) CERN \rightarrow LHC $\sqrt{s_{NN}}$ = 5.02 TeV

2005: Quark-Gluon Plasma is a "perfect liquid" Relativistic Heavy-Ion Collider (BNL), Upton, NY (USA)

The good QCD matter probes should be:

The sQGP Discovered at RHIC: 2005

EVIDENCE FOR A DENSE LIQUID

Two phenomena in particular point to the quark-gluon medium being a dense liquid state of matter: jet quenching and elliptic flow. Jet quenching implies the quarks and gluons are closely packed, and elliptic flow would not occur if the medium were a gas.

10 M. Roirdan and W. Zajc, Scientific American, May 2006

Relativistic Heavy-Ion Experiments

Low energy frontier: RHIC (BES), SPS → future facilities: FAIR (GSI), NICA

→ By now all major LHC experiments have a heavy-ion program: LHCb took Pb-Pb data for the first time in November 2015.

Evolution of the system created in RHIC

Fireball is ~10⁻¹⁵ meters across and lives for 5*10⁻²³ seconds

~400 nucleons in 10^{-22} seconds = 1000-30000 hadrons

Characterising a heavy-ion collision

We can control a posteriori the geometry of the collision by selecting in centrality. **Centrality** = fraction of the total hadronic cross section of a nucleus-nucleus collision, typically expressed in percentile, and related to **the impact parameter (b)**

Definition of kinematical variables

Momentum , azimuthal angle φ and pseudo-rapidity (η) of the emitted particles

$$\eta = \frac{1}{2} \log \left(\frac{|\vec{p}| + p_z}{|\vec{p}| - p_z} \right) = -\log \left[\tan \left(\frac{\theta}{2} \right) \right] \qquad p_T = \sqrt{p_x^2 + p_y^2}$$

 p_T is generated in the collision (while p_z is already present "before the collision")

MPD experiment at NICA

Main subsystems at Stage-I:

TPC ($|\eta| \le 1.6$): charged particle tracking + momentum reconstruction + dE/dx identification

TOF ($|\eta| \le 1.4$): charged particle identification

ECal (2.9 < $|\eta|$ < 1.4): energy and PID for γ/e^{\pm}

FHCal (2 < $|\eta|$ < 5) and $\,$ FFD (2.9 < $|\eta|$ <

3.3): event triggering + event geometry

PID via Topology and Invariant Mass

$$egin{aligned} M^2 &= (E_1+E_2)^2 - \left\| \mathbf{p}_1 + \mathbf{p}_2
ight\|^2 \ &= m_1^2 + m_2^2 + 2 \left(E_1 E_2 - \mathbf{p}_1 \cdot \mathbf{p}_2
ight). \end{aligned}$$

medium is opaque Jet quenching

RHIC Experiment: "Jet quenching"

The nuclear modification factor: R_{AA}

If $R_{AA} < 1$ at high p_T \rightarrow the medium is opaque to the passage of partons

→ parton-medium final state interactions, energy loss, modification of fragmentation in the medium

 $R_{AA} = 1$ at high p_T \rightarrow the medium is transparent to the passage of partons

$$R_{AA} = \frac{\mathrm{d}N_{AA}/\mathrm{d}p_{\mathrm{T}}}{N_{coll}\cdot\mathrm{d}N_{pp}/\mathrm{d}p_{\mathrm{T}}}$$

The **meson yield** in central Au-Au is 5 times lower than expected from pp collisions the **direct photons** are not affected by the dense medium

Hundreds of thousands of times hotter than the Sun !

Image credit : NASA

Thermal photons in A+A collisions

- Measure the spectrum of thermal photons (noninteracting) emitted from the source.
- The spectrum will display the average temperature over the full lifetime of the partonic source.
- Determining the initial temperature requires modeling.

²¹ PHENIX: T = 221±19±19 MeV

p_T slope \Rightarrow Temperature

Critical condition for QGP satisfied.

Pack the entire Earth inside a stadium !

Energy Density

$$\varepsilon_0 = \frac{dE_T}{dy} \frac{1}{\tau_0 \pi R^2}$$

$$\tau_0 \sim 1 \text{ fm/}c, R \approx 1.2 A^{1/3} \text{ fm}$$

$$\varepsilon_0 = 4.9 \pm 0.3 \text{ GeV/fm}^3$$

Critical condition for QGP satisfied.

Particle yields freeze

Particle ratios described very well by statistical model assuming thermal and chemical equilibrium

Chemical freeze-out temperature - LHC

Nature volume 561, pages 321-330 (2018)

Production of (most) light-flavour hadrons (and anti-nuclei) is described ($\chi^2/ndf \sim 2$) by thermal models with a **single chemical freeze-out temperature**, $T_{ch} \approx 156$ MeV \rightarrow Approaches the critical temperature roof from lattice QCD: limiting temperature for hadrons!

 \rightarrow the success of the model in fitting yields over 10 orders of magnitude supports the picture of a system **in local thermodynamical equilibrium**

It's perfect liquid

Lowest viscosity possible !

0

Image credit : SmileTemplates

Azimuthal distributions at RHIC

Elliptic Flow: ultra-cold Fermi-Gas

- Li-atoms released from an optical (laser) trap exhibit elliptic flow analogous to what is observed in ultra-relativistic heavy-ion collisions
- Interaction strength among the atoms can be tuned with an exteranl magnetic field (Feshbach res)
- Elliptic flow is a general feature of strongly interacting systems?

Perfect Liquid at RHIC

Shear Viscosity – resistance to deformation, flow

Data approaching Hydro for central collisions viscosity extracted close to the lowest value set by quantum limit.

Elliptic Flow at RHIC/SPS

Anisotropic Flow at RHIC-LHC

Initial eccentricity (and its attendant fluctuations) ε_n drive momentum anisotropy v_n with specific viscous modulation

Gale, Jeon, et al., Phys. Rev. Lett. 110, 012302

It's partons unchained?

Partonic degree of freedom at work ?

Anisotropic Flow at RHIC – partonic?

It's swirling fast

Most vortical fluid !

Image credit : BNL

QGP Under Rotation

A Global Polarization

RHIC : $\omega \sim 10^{22} \text{ s}^{-1}$ Most vortical fluid !

State-of-the-art modeling of HI collisions

 Data-model comparison via Bayesian inference to optimize constraining power.

Detailed temperature dependence of viscosity!

Jetscape PRL.126.242301 Trjactum PRL.126.202301

Major uncertainty: initial condition and pre-hydro phase

System size scan at top RHIC energy ($\sqrt{s_{NN}}$ = 200 GeV)

Net-p in 200 GeV p+p and Au+Au Collisions

- In 200GeV p+p collisions, high order cumulants ratios of net-protons are found to be positive for: C₄/C₂, C₅/C₂ and C₆/C₂;
- 2) For QGP matter, LGT predicted negative net-baryon C_5/C_2 and C_6/C_2 ;
- 3) Direct evidence for the QGP formation in 200GeV Au+Au central collisions!

HotQCD Collaboration, PRD101, 074502 (2020)

LQCD \leftrightarrow Experiment Google Translate Detect language English German Spanish LQCD EXPERIMENT Spanish Translation G $\chi_2^B = \frac{\kappa_2(\Delta N_B)}{VT^3} \implies \frac{\kappa_4(\Delta N_B)}{\kappa_2(\Delta N_B)} =$ $\frac{\partial^{(k+l+m+n)} [P(\hat{\mu}_B, \hat{\mu}_Q, \hat{\mu}_S, \hat{\mu}_C)/T^4]}{\partial \hat{\mu}_B^k \partial \hat{\mu}_O^l \hat{\mu}_S^m \partial \hat{\mu}_C^n}$ $\frac{\chi_4^B}{\chi_2^B}$ BQSC χ_{klmn} $\kappa_n \rightarrow \text{cumulants of } \Delta N_B = N_B - N_{\bar{B}}$ Baryon number (B), Strangeness (S), Electric charge (Q), Cham (C) Ļ 0 / 5.000 Bridge experimental data to LQCD calculations Theory Experiment _attice QCD@BNI ALICE eve Isplay ALIC Static Dynamic Coordinate space Momentum space Net-baryon Net-proton Fixed V Fluctuating V

- Experimental challenges: Particle identification, efficiency correction, effect of event pileup, volume fluctuations ...
- Theoretical/phenomenological challenges: Effect of resonances, charge conservation, effect of magnetic field, cluster formation, baryon annihilation, excluded volume ...

Relativistic Heavy-Ion Collisions and QCD Phase Diagram

QGP may be produced at low energies; QGP is produced in high energy collisions

Location of the QCD Critical Point : Theoretical Estimation/Prediction

$$(\mu_{c}, T_{c}) = (495 - 654, 100 - 119) \text{ MeV}$$

STAR BES-I and BES-II Data Sets

Au+Au Collisions at RHIC											
Collider Runs				Fixed-Target Runs							
	√ <mark>S_{NN}</mark> (GeV)	#Events	μ_B	Ybeam	run		√ S_{NN} (GeV)	#Events	μ_B	Ybeam	run
1	200	380 M	25 MeV	5.3	Run-10, 19	1	13.7 (100)	50 M	280 MeV	-2.69	Run-21
2	62.4	46 M	75 MeV		Run-10	2	11.5 (70)	50 M	320 MeV	-2.51	Run-21
3	54.4	1200 M	85 MeV		Run-17	3	9.2 (44.5)	50 M	370 MeV	-2.28	Run-21
4	39	86 M	112 MeV		Run-10	4	7.7 (31.2)	260 M	420 MeV	-2.1	Run-18, 19, 20
5	27	585 M	156 MeV	3.36	Run-11, 18	5	7.2 (26.5)	470 M	440 MeV	-2.02	Run-18, 20
6	19.6	595 M	206 MeV	3.1	Run-11, 19	6	6.2 (19.5)	120 M	490 MeV	1.87	Run-20
7	17.3	256 M	230 MeV		Run-21	7	5.2 (13.5)	100 M	540 MeV	-1.68	Run-20
8	14.6	340 M	262 MeV		Run-14, 19	8	4.5 (9.8)	110 M	590 MeV	-1.52	Run-20
9	11.5	157 M	316 MeV		Run-10, 20	9	3.9 (7.3)	120 M	633 MeV	-1.37	Run-20
10	9.2	160 M	372 MeV		Run-10, 20	10	3.5 (5.75)	120 M	670 MeV	-1.2	Run-20
11	7.7	104 M	420 MeV		Run-21	П	3.2 (4.59)	200 M	699 MeV	-1.13	Run-19
						12	3.0 (3.85)	2000 M	750 MeV	-1.05	Run-18, 21

Precision data to map the QCD phase diagram $3 < \sqrt{s_{NN}} < 200 \text{ GeV}; 750 < \mu_B < 25 \text{ MeV}$

Beam Energy Dependence of Elliptic Flow (v_2)

• Strong energy dependence of v_2 at $\sqrt{s_{NN}} = 3-11$ GeV

▶ $v_2 \approx 0$ at $\sqrt{s_{NN}} = 3.3$ GeV and negative below

Beam Energy Dependence of Elliptic Flow (v_2)

Passage time: $2R/(\beta_{cm}\gamma_{cm})$ Expansion time: $R/c_s = c\sqrt{dp/d\epsilon}$ - speed of sound

 $v_{1,2}(y)$ in Au+Au $\sqrt{s_{NN}}$ =3 GeV: models vs. STAR data

A. Sorensen et. al., Prog.Part.Nucl.Phys. 134 (2024) 104080

Model description of v_n :

- Good overall agreement for v_n of protons
- v_n of light nuclei is not described
- ν_n of Λ is not well described
 - nucleon-hyperon and hyperon-hyperon interactions
- Light mesons (π, κ) are not described
 - No mean-field for mesons

Models have a huge room for improvement in terms of describing v_n

EOS for high baryon density matter

New data is needed to further constrain transport models with hadronic d.o.f.

Sensitivity of the collective flow to the EOS

Mean field usually can be defined using Skyrme potential with:

$$U(n_B) = A\left(\frac{n_B}{n_0}\right) + B\left(\frac{n_B}{n_0}\right)^2$$

Discrepancy in the interpretation:

- v₁ suggests soft EoS
- v₂ suggests hard EoS

New measurements using new data and modern analysis techniques will address this discrepancy

More detailed model study should be done to address n_B -dependence of incompressibility K_0

Additional measurements are essential to clarify the previous measurements

NICA $dv_1/dy|_{y=0}$ for protons vs. collision energy

Slope of v_1 is in good agreement with the world data See Mikhail Mamaev talk at AYSS2024

MPD physics program

G. Feofilov, P. Parfenov	V. Kolesnikov, Xianglei Zhu		K. Mikhailov, A. Taranenko		
 Global observables Total event multiplicity Total event energy Centrality determination Total cross-section measurement Event plane measurement at all rapidities Spectator measurement 	 Spectra of light hyper Light flavor spectra of light flavor spectra of the second second	ght flavor and nuclei bectra hypernuclei yields and yield d chemical the event Phase Diag.	 Correlations and Fluctuations Collective flow for hadrons Vorticity, Λ polarization E-by-E fluctuation of multiplicity, momentum and conserved quantities Femtoscopy Forward-Backward corr. Jet-like correlations 		
D. Peresunko, Chi Yang		Wangmei Zha, A. Zinchenko			
 Electromagnetic pr Electromagnetic calorimeter Photons in ECAL and central Low mass dilepton spectra ir modification of resonances a intermediate mass region 	r obes meas. barrel n-medium ind	 Heavy flavor Study of open charm production Charmonium with ECAL and central barrel Charmed meson through secondary vertices in ITS and HF electrons Explore production at charm threshold 			

NICA High-energy heavy-ion reaction data

- ✤ Galactic Cosmic Rays composed of nuclei (protons, ... up to Fe) and E/A up to 50 GeV
- * These high-energy particles create cascades of hundreds of secondary, etc. particles

- Cosmic rays are a serious concern to astronauts, electronics, and spacecraft.
- * The damage is proportional to Z^2 , therefore the component due to ions is important
- ✤ Damage from secondary production of p, d, t, ³He, and ⁴He is also significant
- Need input information for transport codes for shielding applications (Geant-4, Fluka, PHITS, etc.):
 - \checkmark total, elastic/reaction cross section
 - ✓ particle multiplicities and coellecense parameters
 - ✓ outgoing particle distributions: $d^2N/dEd\Omega$

NICA High energy heavy ion reaction data

- ✤ NICA can deliver different ion beam species and energies:
 - ✓ Targets of interest (C = astronaut, Si = electronics, Al = spacecraft) + He, C, O, Si, Fe, etc.
- No data exist for projectile energies > 3 GeV/n

MPD has excellent light fragment identification capabilities in a wide rapidity range → <u>unique capability of</u> <u>the MPD</u> in the NICA energy range

Summary

- NICA open unique opportunities for the exploration of the properties of dense nuclear matter. Complementary energy range, large discovery potential.
- Preparation of the MPD detector and experimental program is ongoing, all activities are continued
- ✤ All components of the MPD 1-st stage detector are in advanced state of production
- Commissioning of the MPD Stage-I detector is expected in 2025-2026
- ✤ BM@N first physics run with Xe+CsI finished good data
- ✤ Further program will be driven by the physics demands and NICA capabilities

Optimal collision energy for realizing high baryon-density matter

Dense region disappears more quickly for larger $\sqrt{s_{NN}}$

 $\int_{V_{NN}}^{\infty} \frac{\max[V_3] - \tau - - \rho_{th}/\rho_0 = 3, 4, 5, 6}{5 10 20}$ $\int_{V_{NN}}^{\infty} \frac{\log V}{\log V}$ $\int_{V_{NN}}^{V_{NN}} \frac{\log V}{\log V}$ (solid) and the lifetime τ (dashed)

H. Taya, A. Jinno, M. Kitazawa, Y. Nara https://arxiv.org/abs/2409.07685

The optimal energy is around $\sqrt{s_{NN}}$ =3–5 GeV, where a baryon density ρ/ρ_0 = 3 nuclear density is realized with a substantially large space-time volume. Higher and lower energies are disfavored due to short lifetime and low density

Multi-Purpose Detector (MPD) Collaboration

MPD International Collaboration was established in **2018** to construct, commission and operate the detector

10 Countries, >450 participants, 31 Institutes and JINR

Organization

Acting Spokesperson: Deputy Spokesperson: Institutional Board Chair: Project Manager: Victor Riabov Zebo Tang Alejandro Ayala Slava Golovatyuk

Joint Institute for Nuclear Research; AANL, Yerevan, Armenia; University of Ploydiv. Bulgaria: Tsinghua University, Beijing, China; USTC, Hefei, China; Huzhou University, Huizhou, China; Institute of Nuclear and Applied Physics, CAS, Shanghai, China; Central China Normal University, China; Shandong University, Shandong, China; IHEP, Beijing, China; University of South China, China; Three Gorges University, China; Institute of Modern Physics of CAS, Lanzhou, China; Tbilisi State University, Tbilisi, Georgia; FCFM-BUAP (Heber Zepeda) Puebla, Mexico; FC-UCOL (Maria Elena Tejeda), Colima, Mexico; FCFM-UAS (Isabel Dominguez), Culiacán, Mexico; ICN-UNAM (Alejandro Ayala), Mexico City, Mexico; Institute of Applied Physics, Chisinev, Moldova; Institute of Physics and Technology. Mongolia:

Belgorod National Research University, **Russia**; INR RAS, Moscow, **Russia**; MEPhI, Moscow, **Russia**; Moscow Institute of Science and Technology, **Russia**; North Osetian State University, **Russia**; NRC Kurchatov Institute, ITEP, **Russia**; Kurchatov Institute, Moscow, **Russia**; St. Petersburg State University, **Russia**; SINP, Moscow, **Russia**; PNPI, Gatchina, **Russia**; Vinča Institute of Nuclear Sciences, **Serbia**; Pavol Jozef Šafárik University, Košice, **Slovakia**