

Workshop on physics performance studies at NICA(NICA 2024)

Experiment result and method of direct virtual photon in Au+Au collision at $\sqrt{s_{NN}}$ = 27 and 54.4 GeV

Xianwen Bao

Shandong University

26/11/2024

Motivation

Why choose direct virtual photon?

- Do not participate in strong interaction
- Probe energy density, effective temperature, and collective motion of QGP

What will affect direct virtual photon yield?

- Evolution time $\rightarrow p_T$ integrated yield
- System size $\rightarrow dN_{ch}/d\eta$
- μ_B , T \rightarrow collision energy

How to extract direct photon?

External method Phys. Rev. C 91, 064904 (2015)

- Nearly background-free sample of photons down to p_T below 1 GeV/c
- > BKG is dominated by η and π^0 two body decay
- Need good ability of photon identification

Internal method Phys. Rev. Lett. 104, 132301 (2010)

- Virtual photon internally convert into e+e- pairs
- Used for low-momentum direct photon
- > BKG is dominated by η dalitz decay
- > Limitation: measurement to $p_T > 1 \text{GeV/c}$

2024/11/26

Prompt photon

Phys.Rev.C 87 (2013) 054907

 $\gamma_{2->2}$ from compton and annihilation processes:

- Test pQCD and as a baseline in direct photon to extract thermal photon
- Tag the initial energy of the parton, $p_T^{\gamma} \approx p_T^{parton}$

Current measurement

> No obvious variation of T_{eff} with $dN_{ch}/d\eta|_{\eta=0}$ Xianwen Bao@ NICA-2024

Experiment vs. theoretical model

- Consider blue shift effect, theoretical model is consistent with STAR result better than PHENIX
- > Acquire T_0 with simple hydro theoretical model

Direct photon puzzle

- Direct photon v_2 in high p_T region is consistent with 0
- The expectation of direct thermal photon v₂ should be close to 0
- Theoretical model:
- Hybrid model can describe all stages of relativistic heavy-ion collisions
- Effect of pre-equilibrium phase on both photonic and hadronic observables highlighted

2024/11/26

Analysis procedure

Both in STAR Acceptance

Experiment setup and eID

> Au+Au collision at $\sqrt{s_{NN}} = 27$ and 54.4 GeV

ి15 లో

10

-10

 \succ Used events:

EID cuts:

 $p_T > 0.2 \text{ GeV}/c$ $n\sigma_e < 2$ $n\sigma_e$ lower boundary for 54.4 GeV:

 $n\sigma_e > 3.0p - 3.6$ for p < 0.8 GeV/c $n\sigma_e > -1.2$ for p >= 0.8 GeV/c

 $n\sigma_e$ lower boundary for 27 GeV: $n\sigma_e > 1.6p - 2.6$ for p < 1 GeV/c

 $n\sigma_e > -1.0$ for p >= 1 GeV/c

 $|1. - 1/\beta| < 0.03$

- 27 GeV: ~250M minimum bias events
- 54.4 GeV: ~430M minimum bias events

- > Large acceptance:
- $p_T^e > 0.2 \text{ GeV/c}, |\eta| < 1,$
- $-\pi < \phi < \pi$
- > TPC:
 - Momentum

Energy loss

> TOF+VPD: Velocity ٠

Xianwen Bao@ NICA-2024

p (GeV/C)

- 5

Au+Au@54.4 GeV(MiniBias)

|1-1/β|<0.03

 -15^{-10}_{0} 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Raw signal

Efficiency correction

TPC Efficicency:

- Apply track cut and embedding to get the efficiency
- Use $3D(p_T, \eta, \phi)$ TPC tracking efficiency for efficiency correction

$n\sigma_e$ Cut Efficiency:

> For 27GeV $n\sigma_e$ Cut Eff: > For 54.4GeV $n\sigma_e$ Cut Eff:

- p<1.0, 1.6*p-2.6< $n\sigma_{e}$ <2 p<0.8, 3.6*p-3< $n\sigma_{e}$ <2
- p>1.0, -1.0< $n\sigma_e$ <2 p>0.8, -1.2< $n\sigma_e$ <2
- Select pure electron sample: Select pure electron sample:
- M_{ee}<0.015 (GeV/c²)
 M_{ee}<0.015 (GeV/c²)
- Loose $n\sigma_e$ cut: $|n\sigma_e| < 2$ Loose $n\sigma_e$ cut: $|n\sigma_e| < 2$

BTOFMatch + β Cut Efficiency:

Pure electron select:
Pure electron select:

- p<1.0, 1.6*p-2.6< $n\sigma_e$ <2 p<0.8, 3.6*p-3< $n\sigma_e$ <2
- p>1.0, $-1.0 < n\sigma_e < 2$ · P>0.8, $-1.2 < n\sigma_e < 2$
- PairMass<0.015

- |TOFLocalY|<1.8

- PairMass<0.015
- $\beta > 0$ $\beta > 0$ TOFMatchFlag>0 TOFMatchFlag>0
 - |TOFLocalY|<1.8

2024/11/26 Beta Cut: $|1/_{\beta} - 1| < 0.03$ Xianwen Bao@ NICA-2024

ϕ_V Cut Efficiency:

$$\phi_{v} = A * e^{B * M_{ee}} + C * M_{ee} + D_{From Jie Zhao Thsis}$$

Par A B C D
Value 0.84326 -49.4819 -0.996609 0.19801

Cocktail component

 interested signal: QGP radiation In-medium ρ decays Direct photon 	uninterested signal(cocktail): $Drell - Yan, c\overline{c}$ $\pi^0, \eta, \eta', \omega, \varphi, j/psi$
 Direct photon 	

Decay Process:	two-body decay	$\omega o e^+e^-$, $igoplus o e^+e^-$, $J/\psi o e^+e^-$, $\psi' o e^+e^-$
	dalitz decay	$\pi^{0} \rightarrow \gamma e^{+}e^{-}, \eta \rightarrow \gamma e^{+}e^{-}, \eta' \rightarrow \gamma e^{+}e^{-}, \omega \rightarrow \pi^{0}e^{+}e^{-}, \phi \rightarrow \eta e^{+}e^{-}$
	heavy-flavor decay	$c\bar{c} \rightarrow e^+e^-$
	Drell-Yan process	$DY \rightarrow e^+e^-$

Simulation method (for each mother particle):

- > Particle properties input(p_T , mass, rapidity, ϕ)
- Particle decay
- \succ p_T smearing
- Acquire electron information and reconstruct dielectron pair

p_T input for cocktail

Data from 54.4 $\pi/k/p$ preliminary result

Centrality	т	q	β	χ^2/ndf
0-20%	0.0965+-0.0006	1.0442+-0.0012	0.4348+-0.0036	364.5/121
20-40%	0.0979+-0.0007	1.0580+-0.0014	0.3726+-0.0059	207.54/121
40-60%	0.0984+-0.0007	1.0745+-0.0014	0.2554+-0.0110	290.97/121
60-80%	0.0981+-0.0006	1.0860+-0.0006	0.0001+-0.6398	413.06/121

54.4GeV dn/dy through extrapolate:

Centrality	0-20%	20-40%	40-60%	60-80%
pi0 dndy	170.76	78.82	32.22	10.38
High	+7.73	+4.43	+1.79	+0.38
Low	-9.38	-5.18	-2.08	-0.63

2024/11/26

Xianwen Bao@ NICA-2024

Background—η contribution

 $\Box \text{ Fit method:}$ $f_{worldwide}: R^{\eta/\pi_0}(p_T) = A \frac{\left(e^{-a * p_T - b p_T^2} + \left(\frac{R^{\infty}}{A}\right)^{-\frac{1}{n}} \frac{p_T}{p_0}\right)^{-n}}{\left(e^{-a * p_T - b p_T^2} + \frac{p_T}{p_0}\right)^{-n}}$

Fit method form(Phys.Rev.C 104 (2021) 5, 054902)

- η/π⁰ ratio no significant dependence with energy, collision system and centrality at high p_T
- Cocktail simulation: using Monte Carlo simulation to acquire background (within STAR acceptance) and apply it to signal
 - Fix η yield with $\eta/\pi^0 = 0.4704$ at $p_T = 5 \text{GeV/c}$

Dielectron vs. Cocktail

Centrality:0-20

Centrality:20-40

Centrality:40-60

Centrality:60-80

2

1.5

2.5

3

Mee[GeV/c²]

0.2

0.15

0.1

0.5

2024/11/26

Both in STAR Acceptance with efficiency correction

Dielectron signal can be consistent with cocktail at π⁰ mass region
 Observe significant excess yield contributed by direct virtual photon, in-medium rho at LMR and thermal dielectron at IMR

15

Direct virtual photon analysis——Internal conversion

Internal conversion method: two-component fit

Both in STAR Acceptance

0.6

Systematic Uncertainty

Systematic	Default		
Re-Normalization	0-0.05	0-0.03	
Fit Range	0.08-0.28	0.10-0.28	
	0.125-0.36		
	0.08-0.36		
η/π ⁰	Fix: 0.4706+3σ @5GeV/c	Fix : 0.4706 @5GeV/	
	Fix: 0.4706-3σ @5GeV/c		
c-cbar	Random phi input	Back to back	
Dielectron Spec Sys-Uncertainty	arXiv:2402.01998	/	

Direct virtual photon p_T spectrum

Need theoretical calculations for these results !

First measurement of direct virtual photons in Au+Au collisions at $\sqrt{s_{NN}}$ = 27 and 54.4 GeV in different centrality regions

2024/11/26

Xianwen Bao@ NICA-2024

$dN/dy vs. dN_{ch}/d\eta$

Previous results of dN/dy vs. $dN_{ch}/d\eta$

STAR Collabration, *Phys.Lett.B* 770 (2017) 451-45 PHENIX Collaboration, *Phys.Rev.Lett.* 123 (2019) 022301 ALICE Collaboration, *arXiv:* 2308.16704

$dN/dy vs. dN_{ch}/d\eta$

New measurements of dN_{γdir}/dy at STAR
 Strong dN_{ch}/dη dependence

STAR Collabration, *Phys.Lett.B* 770 (2017) 451-45 PHENIX Collaboration, *Phys.Rev.Lett.* 123 (2019) 022301 ALICE Collaboration, *arXiv:* 2308.16704

dN/dy vs. $dN_{ch}/d\eta$

New measurements of dN_{γdir}/dy at STAR
 Strong dN_{ch}/dη dependence
 The yields at √s_{NN} = 27, 54.4 and 200 GeV measured by STAR follow a common scaling, with

 $\alpha = 1.46 \pm 0.07$

The scaling trend is consistent with

ALICE measurements

STAR Collabration, *Phys.Lett.B* 770 (2017) 451-45 PHENIX Collaboration, *Phys.Rev.Lett.* 123 (2019) 022301 ALICE Collaboration, *arXiv:* 2308.16704 Jerome Jung, *Talk* 24/09 12:10 at HP2024

Summary

- > New measurements of direct virtual photon production in Au+Au collision at $\sqrt{s_{NN}}$ = 27 and 54.4 GeV, firstly extended to BES-II region
- > The yields at $\sqrt{s_{NN}}$ = 27, 54.4 and 200 GeV measured by STAR follow a common scaling
 - Strong $dN_{ch}/d\eta$ dependence
 - $\alpha = 1.46 \pm 0.07$

Outlook

Extend the study to the interesting energy region near possible CEP
 Measure direct virtual photons at lower energies

Xianwen Bao@ NICA-2024

Summary

Thanks for attention!

> New measurements of direct virtual photon production in Au+Au collision at $\sqrt{s_{NN}}$ = 27 and 54.4 GeV, firstly extended to BES-II region

- > The yields at $\sqrt{s_{\text{NN}}}$ = 27, 54.4 and 200 GeV measured by STAR follow a common scaling
 - Strong $dN_{ch}/d\eta$ dependence
 - $\alpha = 1.46 \pm 0.07$

Outlook

Extend the study to the interesting energy region near possible CEP
 Measure direct virtual photons at lower energies

Xianwen Bao@ NICA-2024

Backup

STAR 200 GeV result vs. Theory

Phys.Lett.B 770 (2017) 451-458

- > High p_T : prompt photon be consistent with p+p results after T_{AA} scaling
- > Low p_T : Significant thermal photon enhancement
- Theory calculation can be consistent with direct photon p_T spectrum and its yield

η/π^0 at high p_T region

Eta/pi0 at different centrality in AuAu collision have a large error and no data at low pT

m_T scaling for η yield estimation

- PHENIX $\mathbf{\eta}$ spectrum: m_T scaling
- STAR η spectrum : TBW fit

- STAR eta/pi0 shape have strong centrality dependence
- PHENIX don't observe this dependence because flow effect will be ignored in m_T scaling

2024/11/26

Xianwen Bao@ NICA-2024

Production mechanism

1.Initial hard scattering

- Test Ncoll scaling
- Constrain nuclear PDFs
- Candle for energy loss(γ-tagged jets)

2.Pre-equilibrium phase

- Mechanism of equilibration
- 3.Thermal radiation
 - Effective QGP temperature
 - Constrain space-time evolution

4.Chiral symmetry restoration with dileptons

- ρ boarding
- ρ - α_1 mixing

TPC Efficiency

- Apply track cut and embedding to get the efficiency
- Use $3D(p_T, \eta, \phi)$ TPC tracking efficiency for efficiency correction

NSigmaE Cut Efficiency

For 27GeV NSigmaE Cut Eff:

- p<1.0, 1.6*p-2.6< *n*σ_e <2
- p>1.0, -1.0< $n\sigma_e$ <2 Select pure electron sample:
- M_{ee}<0.015 (GeV/c²)
- Loose $n\sigma_e$ cut: $|n\sigma_e| < 2$

> For 54.4GeV NSigmaE Cut Eff:

- p<0.8, 3.6*p-3< nσ_e <2
- p>0.8, -1.2< *n*σ_e <2

Select pure electron sample:

- M_{ee}<0.015 (GeV/c²)
- Loose $n\sigma_e$ cut: $|n\sigma_e| < 2$

2024/11/26

BTOFMatch Efficiency

Use same pion cut for two dataset > Pure pion select:

- $m^2 = 0.019 \pm 0.003 (GeV/c^2)$
- $|n\sigma_{\pi}| < 4$
- $\beta > 0$
- TOFMatchFlag>0
- |TOFLocalY|<1.8
- Pure electron select:
- p>1.0, $-1.0 < n\sigma_e < 2$ · P>0.8, $-1.2 < n\sigma_e < 2$ •
- PairMass<0.015
- $\beta > 0$
- TOFMatchFlag>0
- |TOFLocalY|<1.8

- Pure electron select:
- p<1.0, 1.6*p-2.6< $n\sigma_e$ <2 p<0.8, 3.6*p-3< $n\sigma_e$ <2
 - PairMass<0.015
 - ٠ $\beta > 0$
 - TOFMatchFlag>0
 - |TOFLocalY|<1.8 ٠
- Use e+/pi+ e-/pi- for efficiency correction at 54.4GeV
- Use e/pi for efficiency correction at 27.7GeV due to limitation of data statistic

2024/11/26

Xianwen Bao@ NICA-2024

Beta Cut Efficiency

- Two methods: Gaus fit $1/\beta$ distribution and counting each momentum bin
- The difference between two method is taken into account for systematic uncertainty Default: Bin Counting Systematic Uncertainty: Gaus Fitting

1.6

1.8

1.8

p(GeV/c)

33

p(GeV/c)

2024/11/26

CKT p_T Spectrum estimation

1.6

¥р

1.8 p_(GeV/c)

54.4GeV dn/dy through extrapolate:

	Centrality	0-20%	20-40%	40-60%	60-80%
a	pi0 dndy	170.76	78.82	32.22	10.38
ρ Ωπ • π⁺	High	+7.73	+4.43	+1.79	+0.38
κ κ	Low	-9.38	-5.18	-2.08	-0.63

27GeV dn/dy from *Phys.Rev.C* 96 (2017) 4, 044904

Dielectron signal not consistent with CKT at Centrality 60-80% may caused by pi0 dn/dy. Maybe we should pi0 dn/dy at rapidity -1 - 1instead of rapidity -0.1-0.1

