

Workshop on physics performance studies at NICA (NICA-2024)

Forward Upgrade at STAR

Ting Lin (林挺) Shandong University (山东大学)

Outline:

- STAR Forward Upgrades
 - Forward Silicon Tracker
 - Forward sTGC Tracker
 - Forward Calorimeter System
- Physics Program
 - Cold QCD/Spin Physics
 - Heavy Ion Physics

• Summary

- The STAR Detector TPC provides tracking for $|\eta| < 1.5$; Particle identification with dE/dx combined with Time-of-Flight;
 - Surrounded by electromagnetic calorimetry covering $-1 < \eta < 4$;
 - Complemented by many ancillary subsystems.

The STAR Forward Upgrade:

- Covering 2.5 < η < 4, where STAR only had Pbglass electromagnetic calorimetry before:
 - Si disks + small-strip Thin Gap Chamber (sTGC) for tracking;
 - Electromagnetic and hadronic calorimetry with SiPM readout and new ADC+trigger electronics

Detector	p+p and p+A	A+A
ECal	~10%/ \sqrt{E}	~20%/√ <i>E</i>
HCal	\sim 50%/ \sqrt{E} + 10%	
Tracking	Charge separation Photon suppression	0.2< p_T < 2 GeV/c, with 20-30% 1/ p_T

Forward Silicon Tracker (FST)

- 3 disks, each with 12 modules, fine granularity in ϕ and coarse in R
 - Each module includes 3 single-sided double-metal mini-strip sensors;
 - Material budget ~1.5% X₀ per disk;
 - Si from Hamamatsu;
- Technology is similar to STAR Intermediate Silicon Tracker (IST)
 - Same APV25-S1 front-end chip;
 - Reuses the IST data acquisition and cooling systems.

Forward Silicon Tracker (FST)

- Two regions, inner: 5 < R < 16.5 cm; outer: 16.5 < R < 28 cm;
 - Kapton flexible hybrid
 - Si sensors: 128×4 ($\phi \times R$) strips
 - APV chips;
- Mechanical Structure
 - PEEK (main structure + tube holder)
 - Stainless steel (cooling tubes)
 - Aluminum (heat sinks)
- Module Assembly
 - Gluing inner/outer hybrids and mechanical structures together
 - Mount/wire-bond APVs and Silicon sensors on hybrids

Forward sTGC Tracker (FTT)

- 4 planes, each consisting of 4 pentagonal modules
 - Double-sided sTGC with diagonal strips give x, y, u in each layer
 - Position resolution < 200 μm
 - Material budget ~0.5% X₀ per layer
- Readout based on VMM chips
- Similar to the LHC-ATLAS sTGC system

FTT Gas System

- sTGCs use 45% n-pentane + 55% CO_2 , extreme care needed for the highly flammable gas;
 - Flash point 14 °C; explosive limits 1.5 7.8%;
 - Boiling point of 36 °C further complicates things;
- Has operated extremely well through major power failures and big storms.

Forward Tracking Performance

Forward Calorimeter System (FCS)

- Ecal, reuse PHENIX Pb-Scintillator calorimeter
 - 1496 channels: 5.52 x 5.52 x 33 cm3
 - 66 sampling cells with 1.5 mm Pb / 4 mm Sc
 - 36 wavelength-shifting fibers per cell
 - 18 X_0 ; 0.85 nuclear interaction lengths
 - Replaced PMTs with SiPM readout
- Hcal, developed in collaboration with EIC R&D
 - Fe/Sc (20 mm/3 mm) sandwich
 - 520 channels: 10 x 10 x 84 cm3
 - Approximately 4.5 nuclear interaction lengths
 - Uses same SiPM readout as ECal
- Pre-shower:
 - Split signals off from STAR EPD for triggering

Forward Calorimeter System (FCS)

November, 2024

Forward Calorimeter System Performance

- Calibration based on MIP and π^0 reconstruction;
- Find nice correlations between reconstructed tracks and FCS hits;
- Working toward HCal MIP and J/ ψ reconstruction.

Forward Upgrade Timeline

- Summer, 2019: final funding was secured
- Fall, 2020: FCS and associated electronics installed
- Spring, 2021: FCS commissioned with beam
- August, 2021: FST installed
- October, 2021: sTGC installed
- November, 2021: FST and sTGC commissioned with cosmic rays
- November 29, 2021: cool down began for the 2022 RHIC run with 508 GeV pp collisions
- December 21, 2021: commissioning with beam completed, physics data taking began
- The STAR Forward Upgrade was completed on time and on budget. It has operated very smoothly and taken excellent data throughout the 2022-2024 RHIC runs.

hadrons, γ -Jets, di-jets.

\sqrt{s} (GeV)	Species	Events	Year	
508	$_{\mathrm{p}\uparrow+\mathrm{p}\uparrow}$	400 pb ⁻¹	2022	
200	Au +Au	1.5 Billion	2023	
	$_{p\uparrow +p\uparrow }$	235 pb ⁻¹	2024	
	Au +Au	6.5 Billion	2024	
		9 Billion	2025	
	$p^{\uparrow}+Au$	0.22 pb ⁻¹		

Processes.

Ting Lin

TMD Parton Distribution Functions

TMD Handbook, arXiv:2304.03302 [hep-ph]

- Image the transverse and longitudinal (2+1d) structure of the nucleon and nuclei;
 - Tomography of the nucleon;
- Access to transverse momenta at non-perturbative scales;
 - Probe at the confinement scale;
- Exhibit correlations arising from spin-orbit effects.

November, 2024

Transverse Single-Spin Asymmetry

 $p^{\uparrow} + p \to \pi^0 + X$

- Large transverse single-spin asymmetry (A_N) has been observed in transversely polarized pp collisions;
- Possible contributions: twist-3 correlators associated with the Sivers functions, Collins FF, diffractive Processes.

Initial and Final State Effect

Sivers Effect

Collins Effect

- Correlations of initial-state parton transverse momentum with proton's spin and momentum: $\sim \vec{S}_{proton} \cdot (\vec{P}_{proton} \times \vec{k}_T)$
- Non-universality exhibits the process dependence.

- Correlation between the polarization of a scattered quark and the momentum of hadron fragment transverse to the scattered quark direction: $\sim \vec{S}_q \cdot (\hat{p}_q \times \vec{J}_T);$
- Chiral-odd, should couple with another chiral-odd distributions.

• The published STAR forward inclusive EM-jet result shows small TSSA;

- The EM-jet A_N decreases with increasing photon multiplicity for $x_F > 0$; A_N is larger for the EM-jets consisting of 1 or 2 photons;
- These results provide substantial constraints on the Sivers effect at high x.

November, 2024

Ting Lin

 A_N for Forward Jet

- Enhancement of the u/d quarks for positively/negatively charged leading hadrons at forward rapidity;
- FST+FTT provide very good charge identification capability, precise measurement can be made with the Forward Upgrades;
- Projected statistical uncertainties drawn on twist 3 predictions from Gamberg et. al.

November, 2024

Transverse Single-Spin Asymmetries for Dijet

- First observation of non-zero Sivers asymmetries in dijet production in polarized p+p collisions;
- $\langle k_T^u \rangle = 19.3 \pm 7.6 \pm 2.6 \text{ MeV/c}, \langle k_T^d \rangle = -40.2 \pm 23.0 \pm 9.3 \text{ MeV/c}, \langle k_T^{g+sea} \rangle = 5.2 \pm 9.3 \pm 3.8 \text{ MeV/c};$
- With Forward Upgrades, measurement can be extended to larger pseudo-rapidity (for η^{total} from 1.5 ~ 7). November, 2024 Ting Lin

Collins Asymmetry at Forward Rapidity

- STAR has performed detailed measurements of the Collins asymmetry at mid rapidity in both 200 and 510 GeV pp collisions;
- The Forward Upgrade will extend the x range to above 0.5, while filling in the Q^2 region between SIDIS and mid rapidity STAR;
- Essential input for future universality studies at the EIC.

November, 2024

Ting Lin

- Single diffractive process: Unpolarized proton intact, with the rapidity gap on the east side ($-5 < \eta < -2.1$);
- The EM-jet A_N for $x_F > 0$ is observed for the case of all photon multiplicity and 1 or 2 photon multiplicity with > 2σ significance of non-zero;
- With Forward Upgrades, full jets will be reconstructed (with rapidity gap) to study this process.

Three-Dimensional Imaging of The Proton

2023 NSAC Long Range Plan, arXiv 2303.02579

- Generalized Parton Distribution functions (GPDs) reveal the correlation of the partons' transverse spatial distribution and longitudinal momentum density;
- Transverse-Momentum-Dependent parton distribution functions (TMDs) encode information on how the momentum of quarks and gluons are correlated with the parent hadron properties;
- GPDs and TMDs are intimately connected to each other and are unified under the concept of Wigner distributions.

 November, 2024
 Ting Lin

Generalized Parton Distribution Function

- Exclusive J/ ψ TSSA measurement in Ultra Peripheral Collision (UPC);
- Access GPD E_g for gluons, sensitive to spin-orbit correlation;
- iTPC and forward detectors will enable high-impact measurements
 - A factor of 9-10 more data combined with iTPC and forward upgrades, expected statistical error 0.02 for $\langle W_{\gamma p} \rangle$ = 14 GeV.

November, 2024

Gluon Saturation

Non-linear QCD with the Forward Upgrade

- STAR Forward Upgrades enable characterization of non-linear gluon effects through charged di-hadrons, γ -jet, di-jets;
- Charged di-hadrons can extend measurements to both lower and higher (x, Q^2) to map out the Q_s^2 boundary;
- γ -jet and di-jets are important complements: sample different mixes of WW and dipole gluon distributions. November, 2024 Ting Lin

Nuclear Parton Distribution Functions

- The Forward Upgrade will enable measurements of R_{pAu} for direct photon and Drell-Yan production at $\sqrt{s_{NN}}$ = 200 GeV
 - Direct photons will constrain the nuclear gluon distribution over 0.0025 < x < 0.025;
 - Drell-Yan di-electrons will constrain the nuclear sea quark distribution over 0.001 < x < 0.01.

Flow Measurements to constrain η/s

- η/s is expected to be smallest in the RHIC energy regime;
- Flow measurements at forward rapidity are sensitive to the temperature dependence of η/s ;
- STAR Forward Upgrade measurements will be far more precise than previous PHOBOS measurements.

Constrain Longitudinal Structure of Initial State

$$r_n(\eta_a, \eta_b) = V_{n\Delta}(-\eta_a, \eta_b) / V_{n\Delta}(\eta_a, \eta_b)$$

 $V_{n\Delta}(\eta_a, \eta_b)$ is the Fourier coefficient calculated with pairs of particles in different η regions;

- $r_n(\eta_a, \eta_b)$ sensitive to different initial state inputs:
 - 3D-Glasma model: weaker decorrelation, describes CMS r_2 but not r_3
 - Wounded nucleon model: stronger decorrelation than data
- Precise measurement of r_n over a wide rapidity window will provide a stringent constraint.

Global Vorticity Transfer

- How exactly is the global vorticity dynamically transferred to the fluid?
- How does the local thermal vorticity of the fluid transferred to the spin angular momentum?
- Rapidity dependence of A global polarization will probe the nature of the global vorticity transfer
 - Initial geometry and local thermal vorticity + hydro predict opposite trends.

Collectivity in Photo-Nuclear Processes

- The double ratio of antiprotons to protons in γ +Au-rich events compared to peripheral Au+Au indicating significant enhancement of protons at low p_T at mid-rapidity;
- This will be extend with high statistics γ+Au-rich event samples; the combination of the iTPC, EPD, FTS and ZDC can be used to isolate γ+Au events from peripheral Au+Au events (symmetric in η with no gaps).

Summary

- The Forward Upgrades has been running very successfully since 2022;
- The STAR Forward Upgrade enables a wide range of high impact measurements in polarized pp, p+Au and Au+Au collisions;
- Essential to fully realize the scientific promise of Electron Ion Collider;
 - Overlap kinematic coverage with EIC;
 - Establish the validity and limits of factorization and universality;
- Stay tuned!