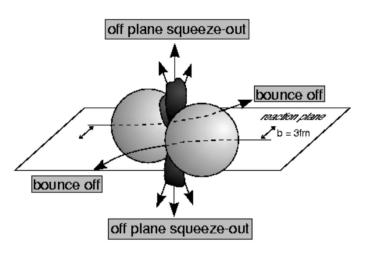
First results and perspectives of the anisotropic flow measurements at the BM@N experiment

Mikhail Mamaev, Arkady Taranenko, Peter Parfenov, Valerii Troshin, Alexandr Demanov, Irina Zhavoronkova JINR, MEPhI

The work has been supported by the Ministry of Science and Higher Education of the Russian Federation, Project "Fundamental and applied research at the NICA megascience experimental complex" № FSWU-2024-0024

Anisotropic flow & spectators



The azimuthal angle distribution is decomposed in a Fourier series relative to reaction plane angle:

$$ho(arphi-\Psi_{RP})=rac{1}{2\pi}(1+2\sum_{n=1}^{\infty}v_{n}\cos n(arphi-\Psi_{RP}))$$

Anisotropic flow:

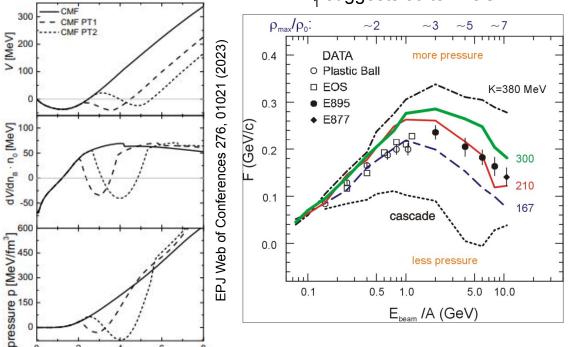
$$v_n = \langle \cos \left[n (arphi - \Psi_{RP})
ight]
angle$$

Anisotropic flow is sensitive to:

- Time of the interaction between overlap region and spectators
- Compressibility of the created matter

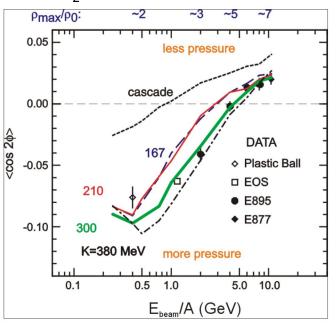
v_n as a function of collision energy

v₁ suggests softer EOS



P. DANIELEWICZ, R. LACEY, W. LYNCH 10.1126/science.1078070

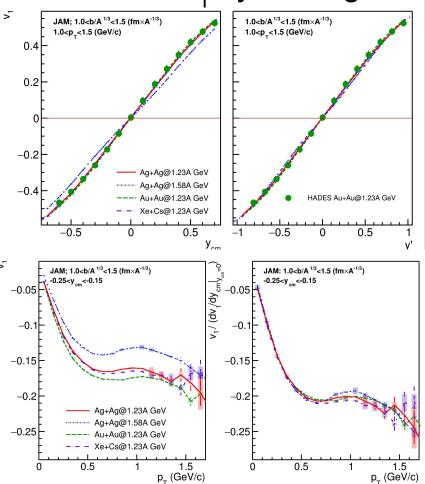
v₂ suggests harder EOS



Describing the high-density matter using the mean field Flow measurements constrain the mean field

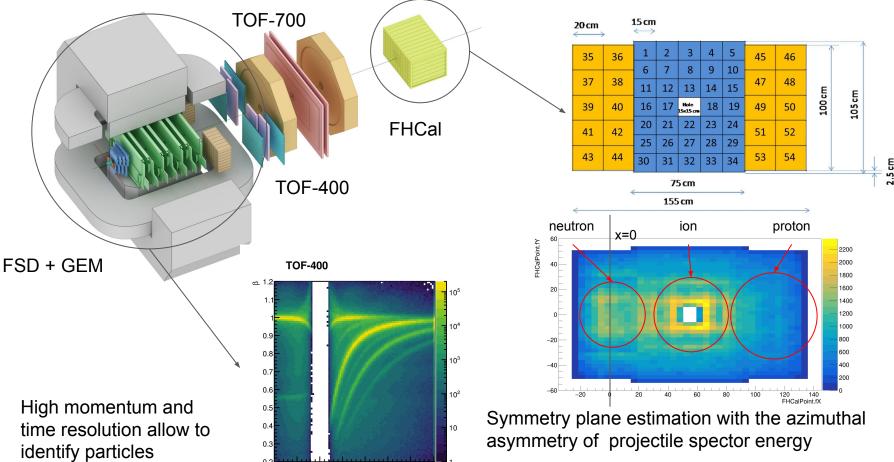
Discrepancy is probably due to non-flow correlations

HADES: dv₁/dy scaling with collision energy and system size



- Scaling with collision energy is observed in model and experimental data
- Scaling with system size is observed in model and experimental data
- We can compare the results with HIC-data from other experiments(e.g. STAR-FXT Au+Au

The BM@N experiment in Xe+CsI at 3.8A GeV run



p/q (GeV/c)

Flow vectors

From momentum of each measured particle define a u_n -vector in transverse plane:

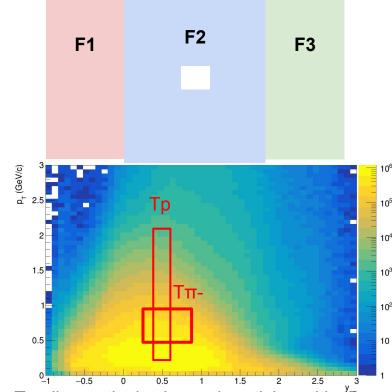
$$u_n=e^{in\phi}$$

where ϕ is the azimuthal angle

Sum over a group of u_n -vectors in one event forms Q_n -vector:

$$Q_n = rac{\sum_{k=1}^N w_n^k u_n^k}{\sum_{k=1}^N w_n^k} = |Q_n| e^{in\Psi_n^{EP}}$$

 Ψ_n^{EP} is the event plane angle



T-: all negatively charged particles with:

- $-1.5 < \eta < 4$
- $p_{T} > 0.2 \text{ GeV/c}$

T+: all positively charged particles with:

- $-2.0 < \eta < 3$
- $-p_{T} > 0.2 \text{ GeV/c}$

Flow methods for v_n calculation

Tested in HADES: M Mamaev et al 2020 PPNuclei 53, 277–281 M Mamaev et al 2020 J. Phys.: Conf. Ser. 1690 012122

Scalar product (SP) method:

$$v_1 = rac{\langle u_1 Q_1^{F1}
angle}{R_1^{F1}} \qquad v_2 = rac{\langle u_2 Q_1^{F1} Q_1^{F3}
angle}{R_1^{F1} R_1^{F3}}$$

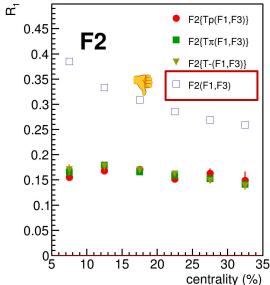
Where R₁ is the resolution correction factor

$$R_1^{F1} = \langle \cos(\Psi_1^{F1} - \Psi_1^{RP})
angle$$

Symbol "F2(F1,F3)" means R₁ calculated via (3S resolution):

$$R_1^{F2(F1,F3)} = rac{\sqrt{\langle Q_1^{F2}Q_1^{F1}
angle \langle Q_1^{F2}Q_1^{F3}
angle}}{\sqrt{\langle Q_1^{F1}Q_1^{F3}
angle}}$$

Method helps to eliminate non-flow Using 2-subevents doesn't

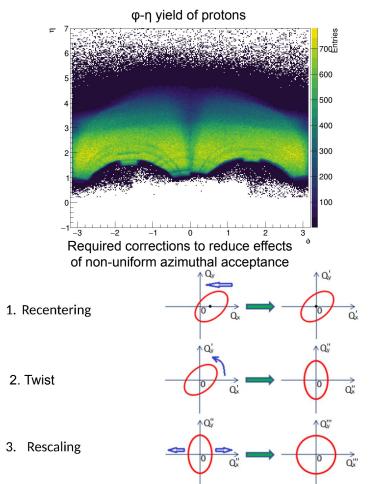


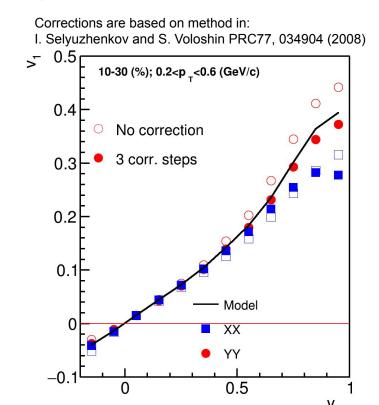
Symbol "F2{Tp}(F1,F3)" means R₁ calculated via (4S resolution):

$$R_1^{F2\{Tp\}(F1,F3)} = \langle Q_1^{F2}Q_1^{Tp}
angle rac{\sqrt{\langle Q_1^{F1}Q_1^{F3}
angle}}{\sqrt{\langle Q_1^{Tp}Q_1^{F1}
angle \langle Q_1^{Fp}Q_1^{F3}
angle}}$$

Performance Analysis

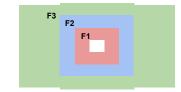
Azimuthal asymmetry of the BM@N acceptance

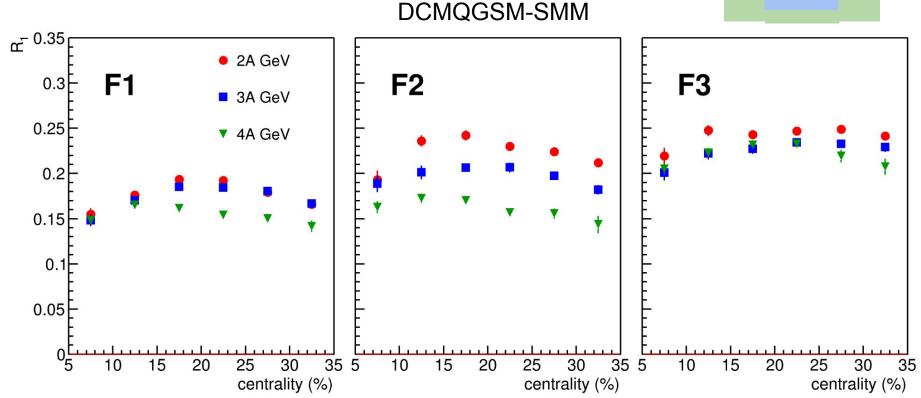




- Better agreement after rescaling for YY
- XX component has too large bias (due to magnetic field)

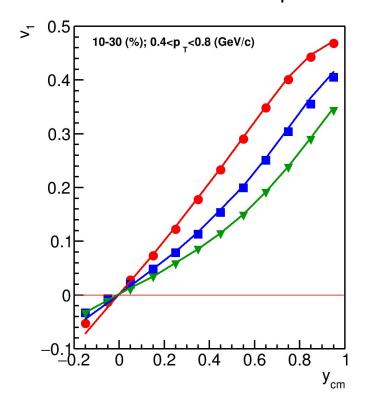
Performance study: R1

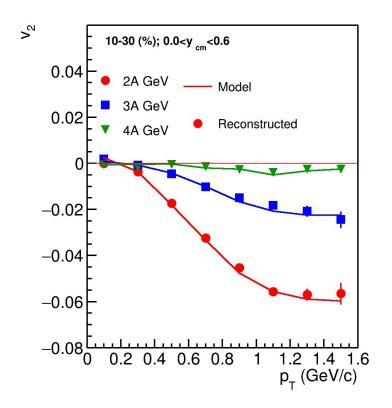




Resolution is lower for higher energies due to lower v₁

Performance study: v_1 and v_2 in Xe+Cs (JAM)

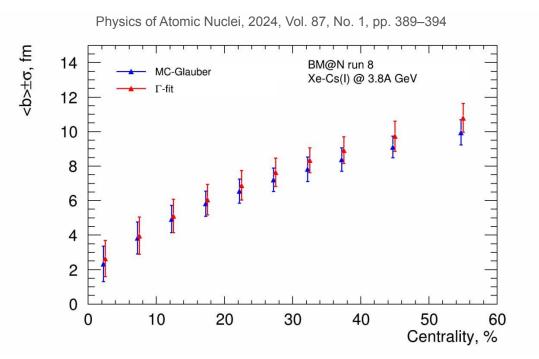




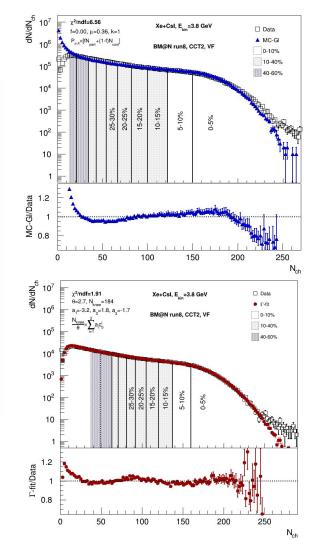
 Good agreement between reconstructed and pure model data for all three energies

Data Analysis

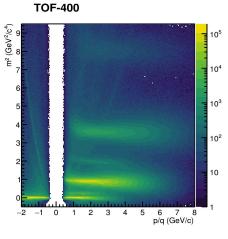
Centrality determination methods

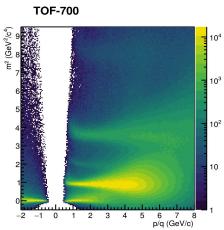


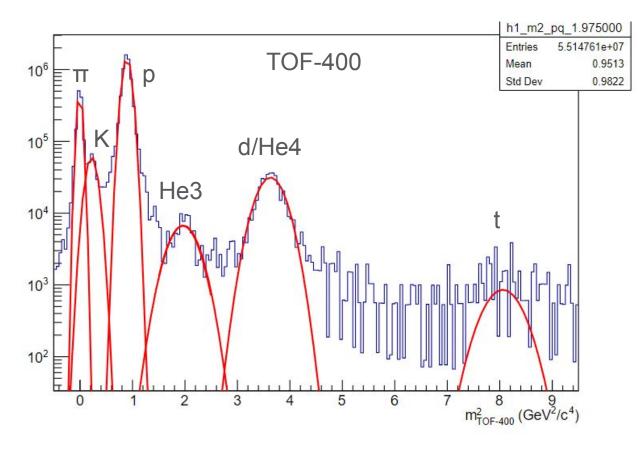
Two methods for centrality determination: MC-Glauber and Γ-fit method are in a good agreement



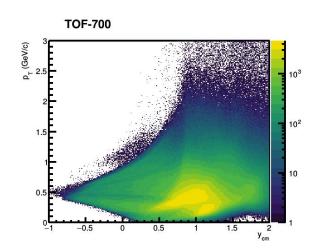
Particle identification



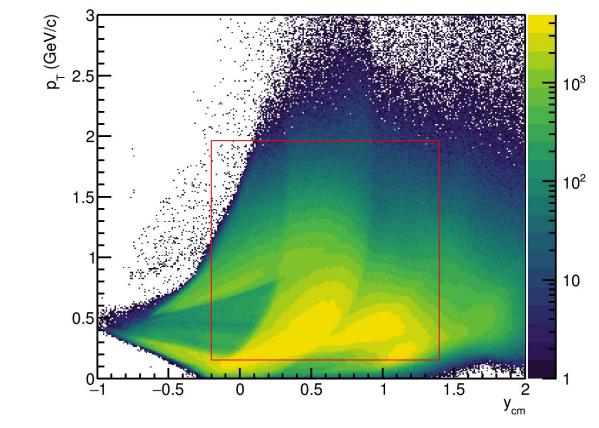




TOF-400 (a) 3 10³ 10³ 10³ 10² 10

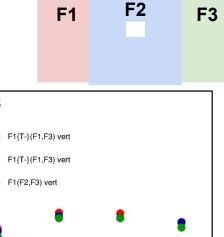


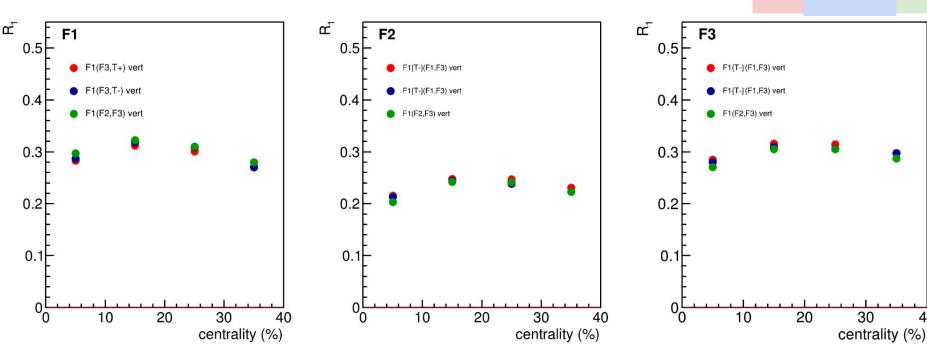
Combined Proton p_T-y acceptance



Data is corrected for $p_{\scriptscriptstyle T}$ -y acceptance

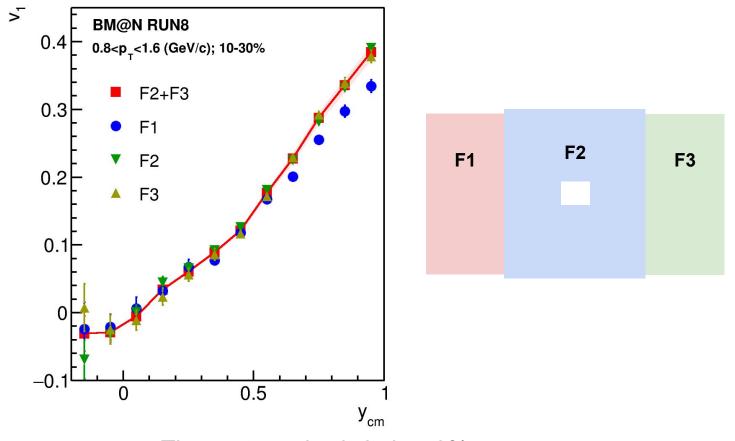
DATA: R₁ in Xe+Cs(I) collisions





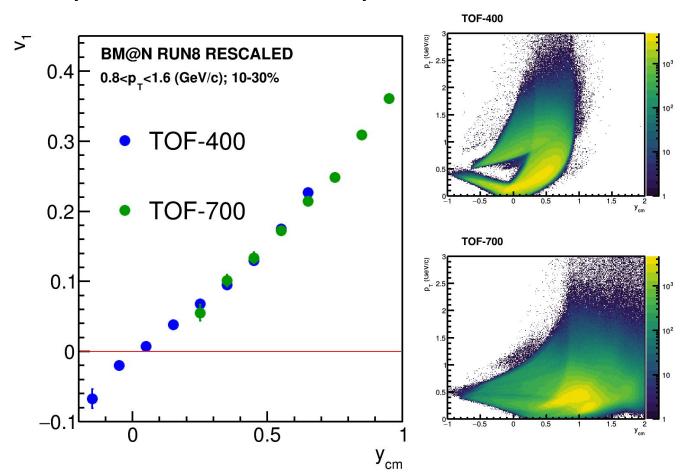
All the estimations for symmetry plane resolutions are in a good agreement

Systematics due to symmetry plane estimation (non-flow)



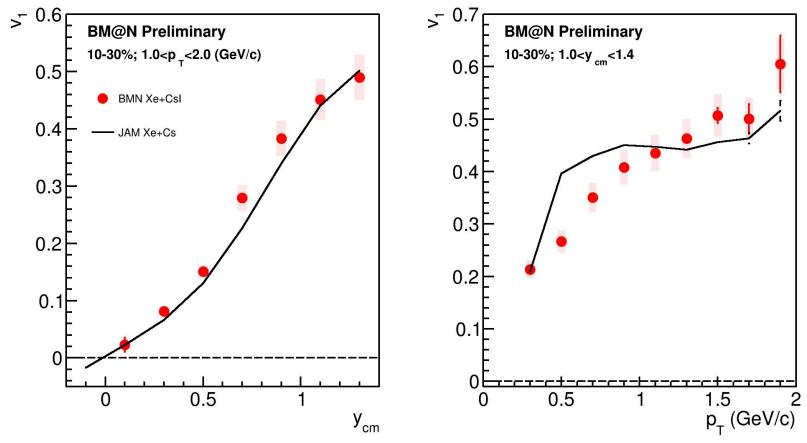
The systematics is below 3%

Comparison of the TOF performances



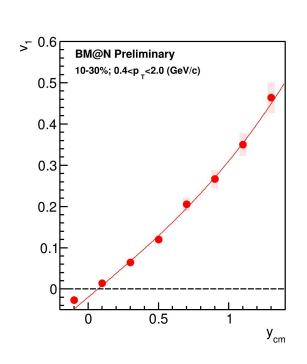
The results from TOF-400 and TOF-700 are in a good agreement

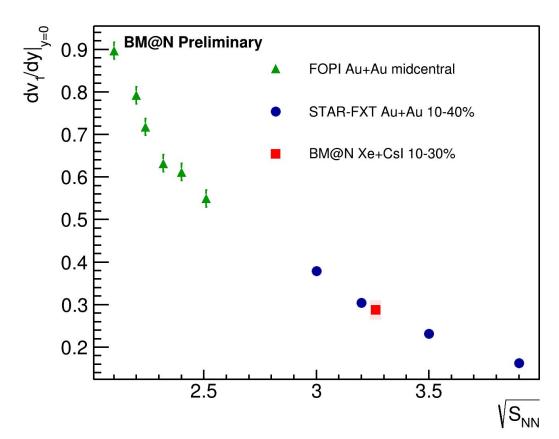
v₁ as a function of pT and y



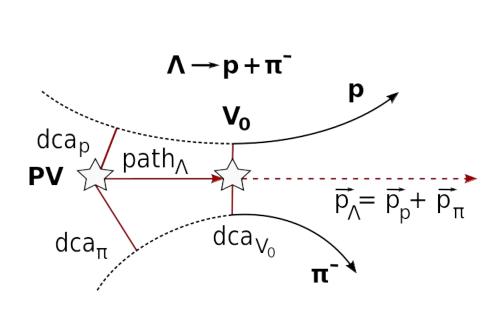
JAM model describes v₁(y) well

$dv_1/dy|_{y=0}$ vs collision energy

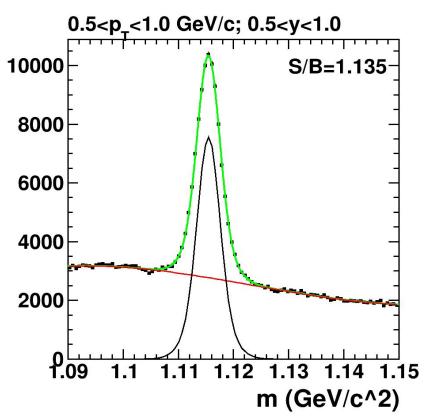




dv₁/dy is in a good agreement with the world data



Λ-hyperon reconstruction is carried out using the KFParticle package tested in STAR, ALICE, NA61/SHINE and CBM



v₁ of Λ-hyperons with invariant mass fit method



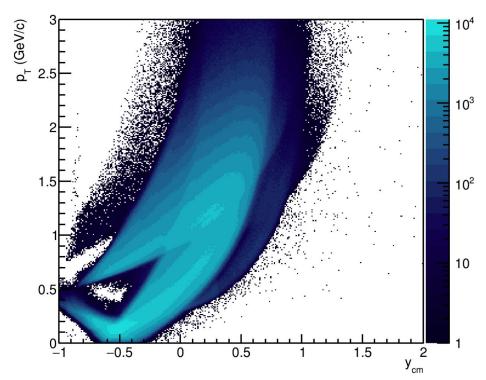
Directed flow for Λ -candidates is measured as a function of m_{inv} . Then $v_1(m_{inv})$ is fitted with a function:

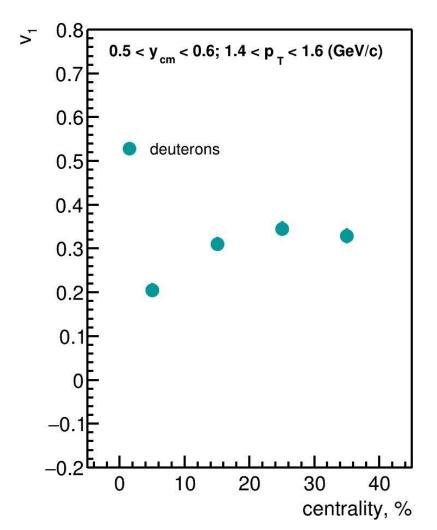
$$v_1^{S+B} = v_1^S \frac{N^S}{N^S + N^B} + v_1^B \frac{N^B}{N^S + N^B}$$

Directed flow of deuterons

Work by I. Zhavoronkova

Combined



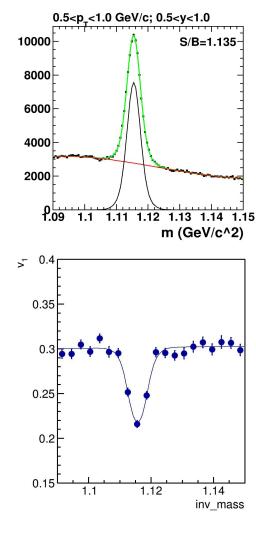


Summary

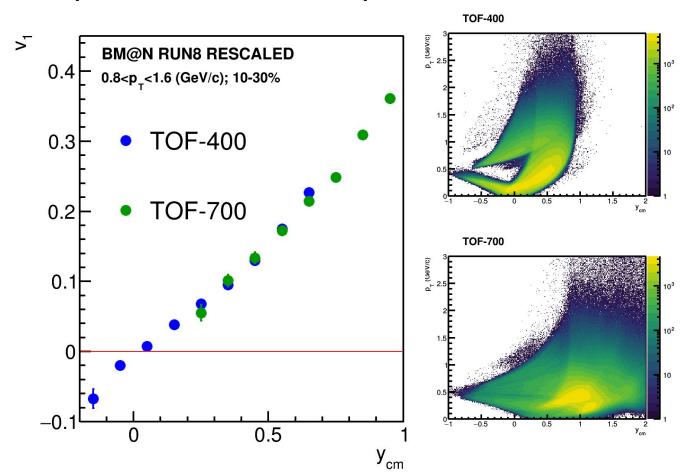
- Directed flow of protons is measured multidifferentially as a function of p_T, y and centrality
- The JAM model describes the v₁(y) reasonably well in high transverse momentum region
- The directed flow slope at midrapidity dv₁/dy|_{v=0} was extracted
- The results for directed flow slope dv₁/dy of protons are in a good agreement with the world data

Outlook

- 2025-2026 we expect the Beam-Energy scan program (2A, 3A, 4A GeV)
- The results for higher-harmonics flow is in the process of analysis
- The analysis for Λ v₁ is undergoing
- Started the analysis for d flow

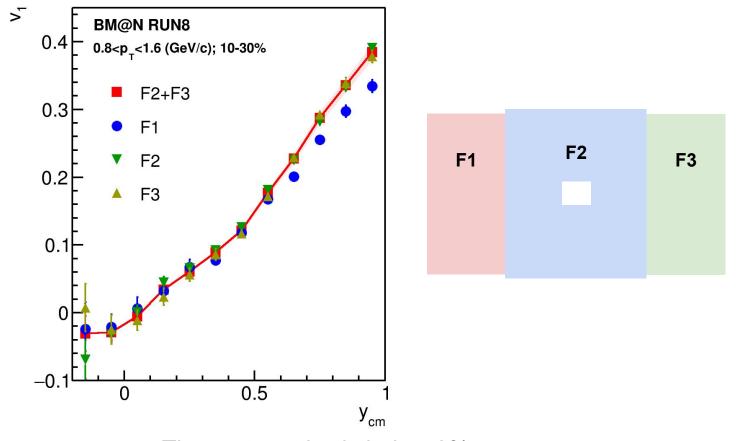


Comparison of the TOF performances



The results from TOF-400 and TOF-700 are in a good agreement

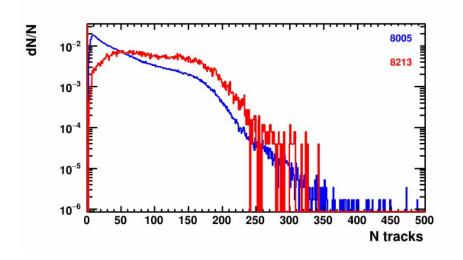
Systematics due to symmetry plane estimation (non-flow)

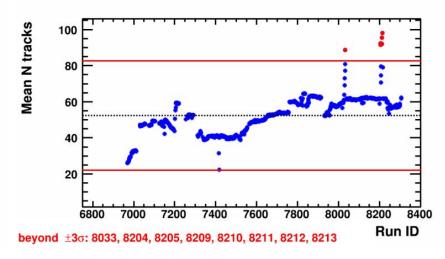


The systematics is below 3%

Backup

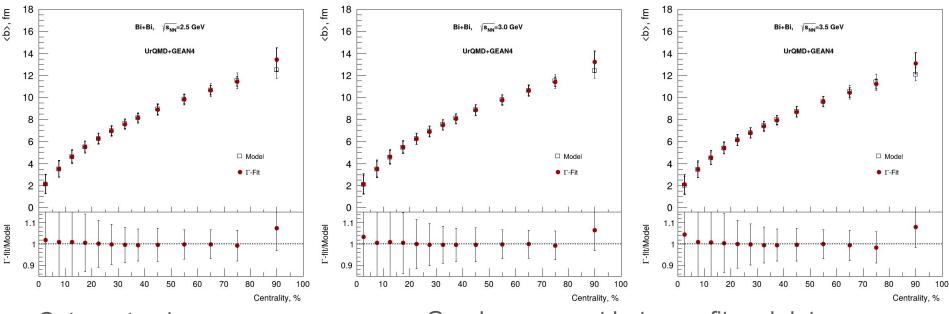
Quality assurance for the recent data





The preliminary list of bad runs based on QA study [18M events] RunId: 6968, 6970, 6972, 6973, 6975, 6976, 6977, 6978, 6979, 6980, 6981, 6982, 6983, 6984, 7313, 7326, 7415, 7417, 7435, 7517, 7520, 7537, 7538, 7542, 7543, 7545, 7546, 7547, 7573, 7575, 7657, 7659, 7679, 7681, 7843, 7847, 7848, 7850, 7851, 7852, 7853, 7855, 7856, 7857, 7858, 7859, 7865, 7868, 7869, 7907, 7932, 7933, 7935, 7937, 7954, 7955, 8018, 8031, 8032, 8033, 8115, 8121, 8167, 8201, 8204, 8205, 8208, 8209, 8210, 8211, 8212, 8213, 8215, 8289.

Centrality determination: vs Centrality



Cuts on tracks:

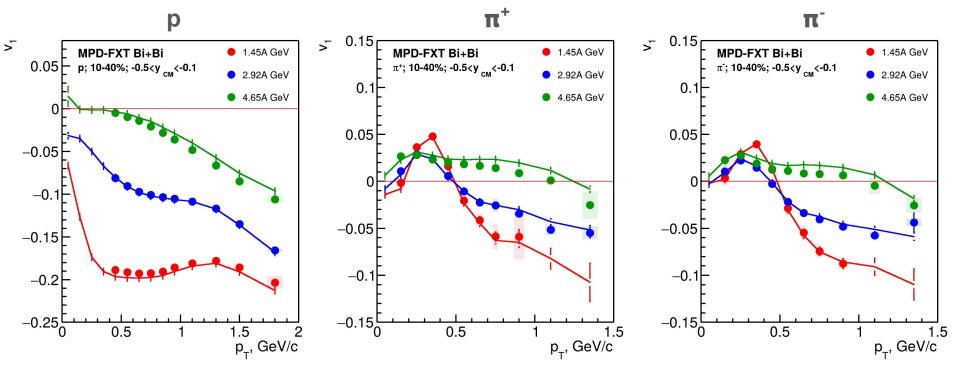
- Nhits>16
- $0 < \eta < 2$

Good agreement between fit and data

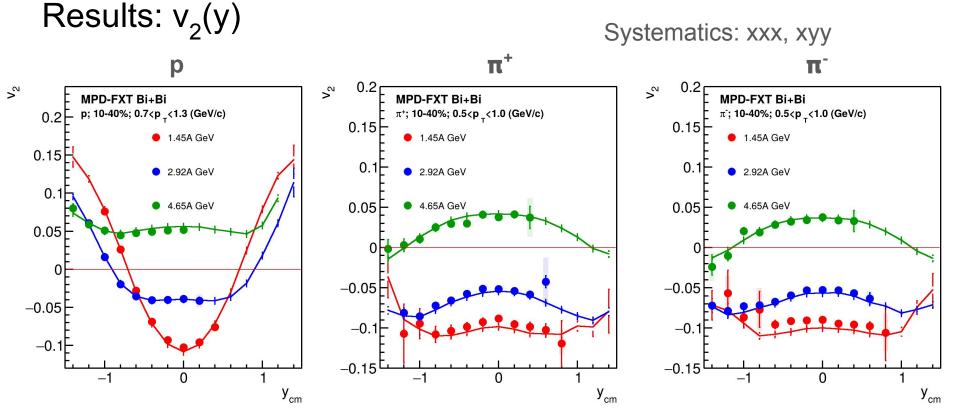
Multiplicity-based centrality determination using inverse Bayes was used

Results: $v_1(p_T)$

Systematics: xx, yy, F1, F2, F3



Good agreement with MC data



Good agreement with MC data

The Bayesian inversion method (Γ-fit)

Relation between multiplicity N_{ch} and impact parameter b is defined by

the fluctuation kernel:

$$P(N_{ch}|c_b) = \frac{1}{\Gamma(k(c_b))\theta^k} N_{ch}^{k(c_b)-1} e^{-n/\theta} \qquad \frac{\sigma^2}{\langle N_{ch} \rangle} = \theta \approx const, \ k = \frac{\langle N_{ch} \rangle}{\theta}$$

$$c_b = \int_0^b P(b')db' - \text{centrality based on impact parameter}$$

Mean multiplicity as a function of c_h can be defined as follows:

$$\left\langle N_{ch} \right\rangle = N_{knee} \exp \left(\sum_{j=1}^{3} a_{j} c_{b}^{j} \right) \quad N_{knee}, \, \theta, \, a_{j} \,$$
 - 5 parameters

Fit function for N_{ch} distribution: b-distribution for a given N_{ch} range:

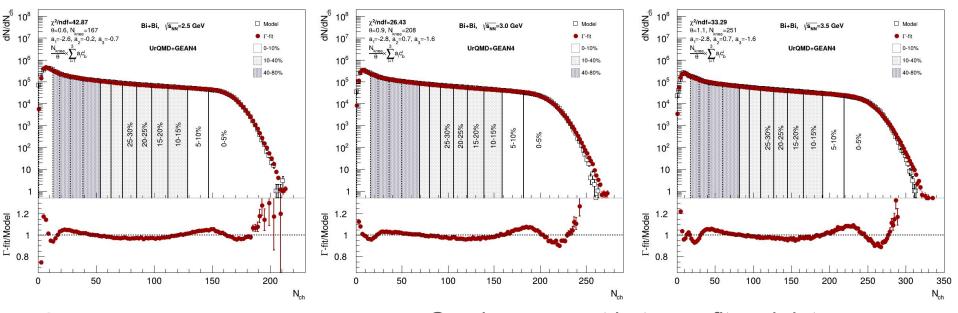
$$P(N_{ch}) = \int_0^1 P(N_{ch}|c_b)dc_b \quad P(b|n_1 < N_{ch} < n_2) = P(b) \frac{\int_{n_1}^{n_2} P(N_{ch}|b)dN_{ch}}{\int_{n_1}^{n_2} P(N_{ch})dN_{ch}}$$

2 main steps of the method:

Fit experimental (model) distribution with P(N)

Construct P(b|E) using Bayes' theorem: P(b|N) = P(b)P(N|b)/P(N)

Centrality determination: multiplicity fit



Cuts on tracks:

- Nhits>16
- $0 < \eta < 2$

Good agreement between fit and data

Multiplicity-based centrality determination (Γ-fit) was used

PID procedure

1400

1200 1000

800

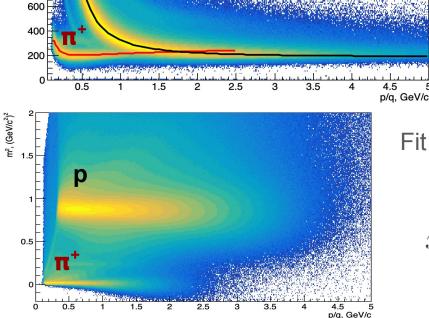
W. Blum, W. Riegler, L. Rolandi, Particle Detection with Drift Chambers (2nd ed.), Springer, Verlag (2008)

Fit dE/dx distributions with Bethe-Bloch parametrization:

$$f(\beta\gamma) = \frac{p_1}{\beta^{p_4}} \left(p_2 - \beta^{p_4} - \ln\left(p_3 + \frac{1}{(\beta\gamma)^{p_5}}\right) \right)$$

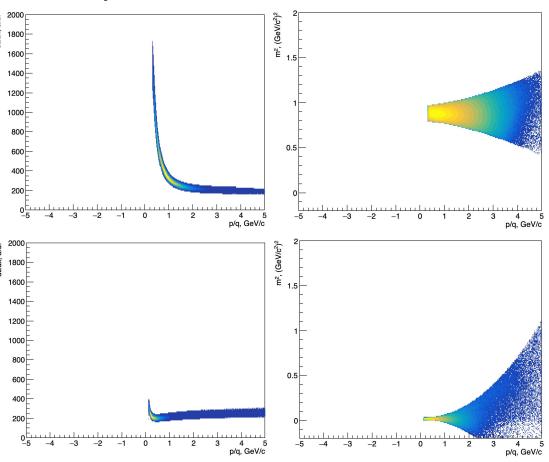
$$\beta^2 = \frac{p^2}{m^2 + p^2}, \beta\gamma = \frac{p}{m} \quad \textbf{\textit{p}}_{\textit{i}} \text{ - fit parameters}$$

Fit $(dE/dx - f(\beta y))/f(\beta y)$ with gaus in the slices of p/q and get $\sigma_{n}(dE/dx)$



Fit m² with gaus in the slices of p/q and get
$$\sigma_p(m^2)$$
 (dE/dx,m) \rightarrow (x,y) coordinates for PID:
$$x_p = \frac{(dE/dx)^{meas} - (dE/dx)^{fit}_p}{(dE/dx)^{fit}_p \sigma_p^{dE/dx}}, \ y_p = \frac{m^2 - m_p^2}{\sigma_p^{m^2}}$$

PID procedure: Results



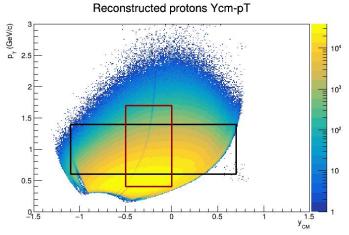
$$x_p = \frac{(dE/dx)^{meas} - (dE/dx)_p^{fit}}{(dE/dx)_p^{fit} \sigma_p^{dE/dx}}$$
$$y_p = \frac{m^2 - m_p^2}{\sigma_p^{m^2}}$$

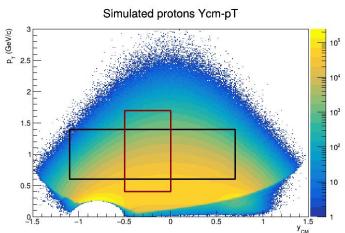
Protons:
$$\sqrt{x_p^2 + y_p^2} < 2, \sqrt{x_\pi^2 + y_\pi^2} > 3$$

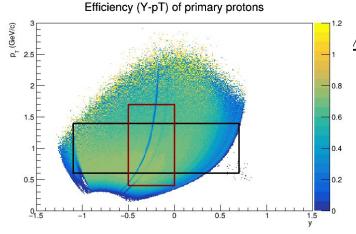
Pions (
$$\pi^+$$
):
$$\sqrt{x_\pi^2 + y_\pi^2} < 2, \sqrt{x_p^2 + y_p^2} > 3$$

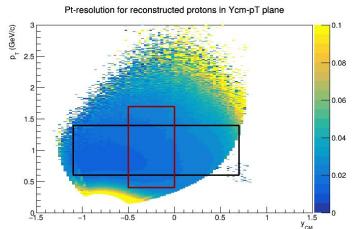
Pions (π^{-}) : charge<0

(y-pt) distribution, efficiency and δ pt (protons)









$$eff = \frac{\frac{dN}{dydp_T}(reco)}{\frac{dN}{dydp_T}(sim)}$$

$$\Delta p_T = \frac{|p_T^{\text{reco}} - p_T^{\text{mc}}|}{p_T^{\text{mc}}}$$

Bi+Bi √s_{NN}=2.5 GeV

Cuts for reco tracks:

- Nhits>27
- DCA< 1 cm
- PID (TPC+TOF)
- Primary (DCA<1 cm)

Cuts for sim particles:

- PID (pdg code)
- Primary (motherId)

Black box: acceptance window for $v_n(y)$

Red box: acceptance

window for $v_n(p_T)$

37

Flow vectors

From momentum of each measured particle define a u_n -vector in transverse plane:

$$u_n=e^{in\phi}$$

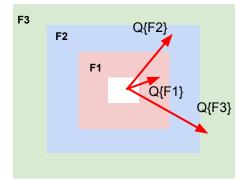
where ϕ is the azimuthal angle

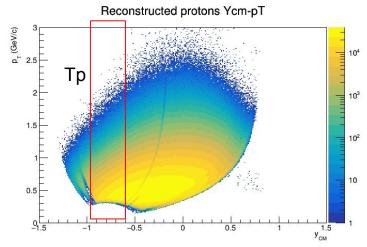
Sum over a group of u_n -vectors in one event forms Q_n -vector:

$$Q_n = rac{\sum_{k=1}^N w_n^k u_n^k}{\sum_{k=1}^N w_n^k} = |Q_n| e^{in\Psi_n^{EP}}$$

 $\Psi_{n}^{\ EP}$ is the event plane angle

Modules of FHCal divided into 3 groups

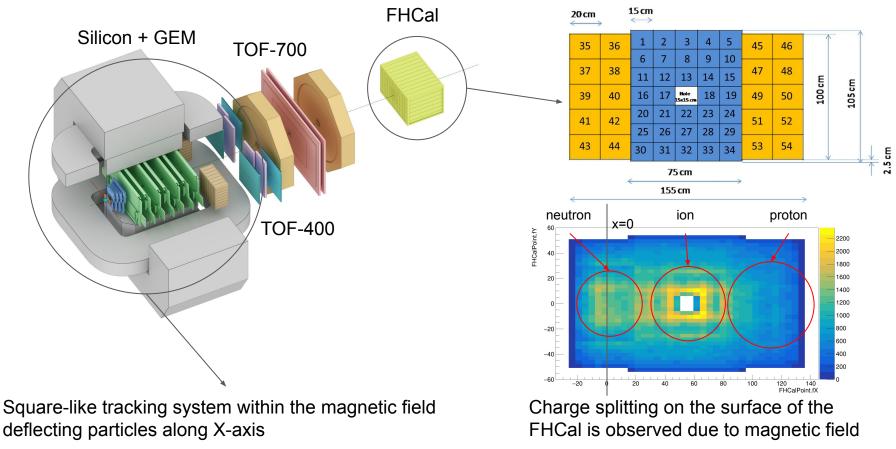




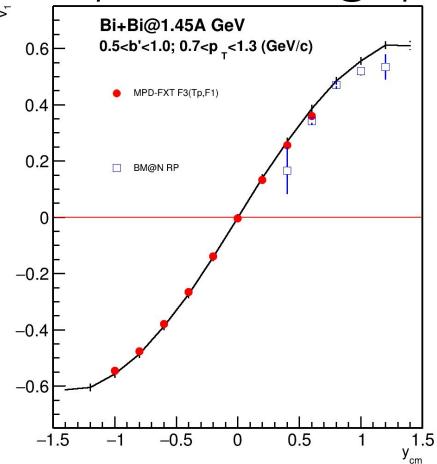
Additional subevents from tracks not pointing at FHCal:

Tp: p; -1.0<y<-0.6;

The BM@N experiment (GEANT4 simulation for RUN8)



Comparison with BM@N performance



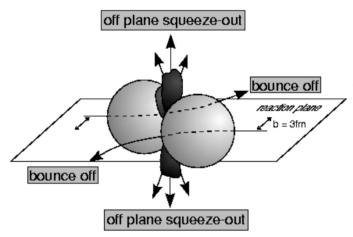
BM@N TOF system (TOF-400 and TOF-700) has poor midrapidity coverage at $\sqrt{s_{NN}}$ = 2.5 GeV

- One needs to check higher energies ($\sqrt{s_{NN}} = 3$, 3.5 GeV)
- More statistics are required due to the effects of magnetic field in BM@N:
 - Only "yy" component of <uQ> and <QQ> correlation can be used

Despite the challenges, both MPD-FXT and BM@N can be used in v_n measurements:

- To widen rapidity coverage
- To perform a cross-check in the future

Anisotropic flow & spectators



The azimuthal angle distribution is decomposed in a Fourier series relative to reaction plane angle:

$$ho(arphi-\Psi_{RP})=rac{1}{2\pi}(1+2\sum_{n=1}^{\infty}v_n\cos n(arphi-\Psi_{RP}))$$

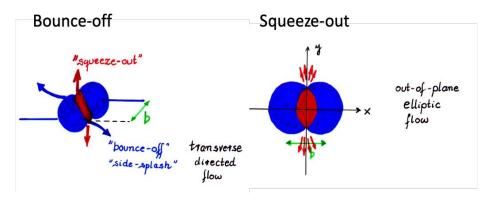
Anisotropic flow:

$$v_n = \langle \cos \left[n (arphi - \Psi_{RP})
ight]
angle$$

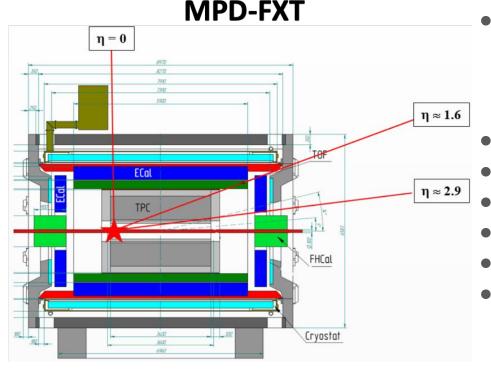
 v_1 - directed flow, v_2 - elliptic flow

Anisotropic flow is sensitive to:

- ➤ Compressibility of the created matter $\left(t_{exp} = R/c_s, \ c_s = c\sqrt{dp/d\varepsilon}\right)$ ➤ Time of the interaction between overlap
- Time of the interaction between overlap region and spectators $(t_{pass} = 2R/\gamma_{CM}\beta_{CM})$



MPD in Fixed-Target Mode (FXT)



- Model used: UrQMD mean-field
 - Bi+Bi, E_{kin} =1.45 AGeV ($\sqrt{s_{NN}}$ =2.5 GeV)
 - Bi+Bi, E_{kin} =2.92 AGeV ($\sqrt{s_{NN}}$ =3.0 GeV)
 - o Bi+Bi, E_{kin} =4.65 AGeV ($\sqrt{s_{NN}}$ =3.5 GeV)
- Point-like target at z = -115 cm
- GEANT4 transport
- Multiplicity-based centrality determination
- PID using information from TPC and TOF
- Primary track selection: DCA<1 cm
- Track selection:
 - o N_{hits}>27 (protons), N_{hits}>22 (pions)

Flow vectors

From momentum of each measured particle define a u_n -vector in transverse plane:

$$u_n=e^{in\phi}$$

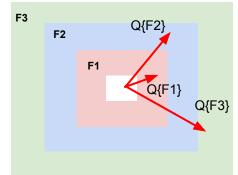
where ϕ is the azimuthal angle

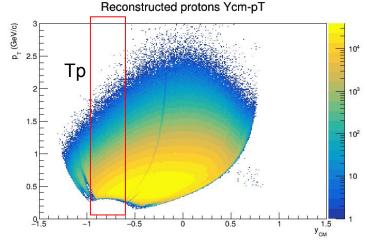
Sum over a group of u_n -vectors in one event forms Q_n -vector:

$$Q_n = rac{\sum_{k=1}^N w_n^k u_n^k}{\sum_{k=1}^N w_n^k} = |Q_n| e^{in\Psi_n^{EP}}$$

 $\Psi_{n}^{\ EP}$ is the event plane angle

Modules of FHCal divided into 3 groups

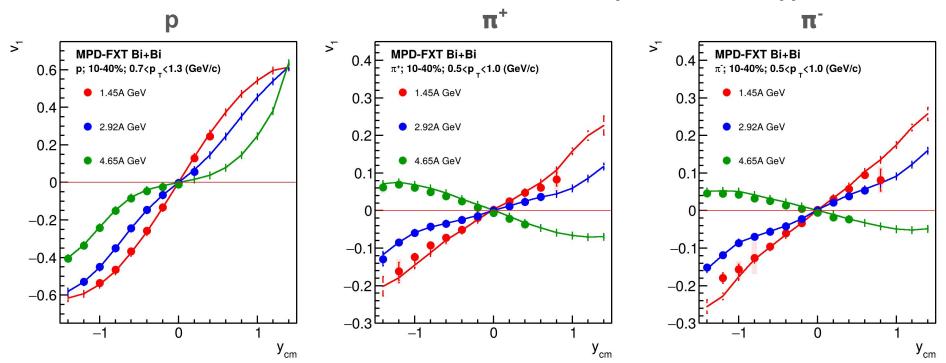




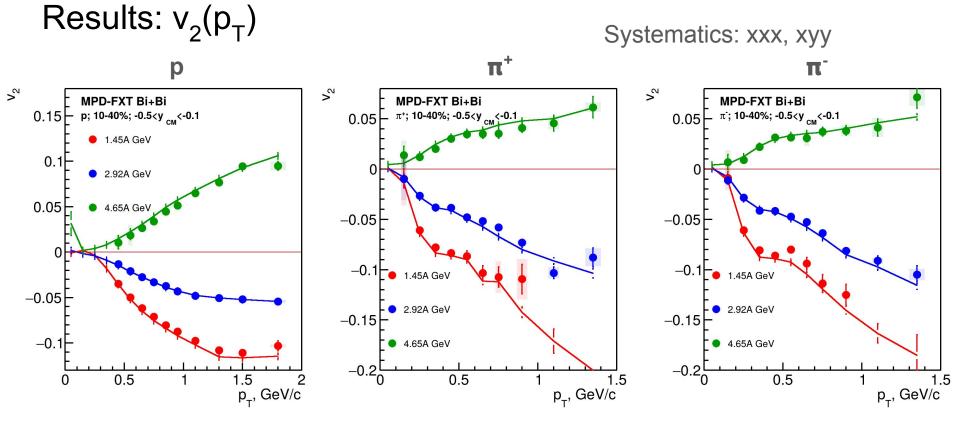
Additional subevents from tracks not pointing at FHCal:

Tp: p; -1.0<y<-0.6;

Results: v₁(y) Systematics: xx, yy, F1, F2, F3

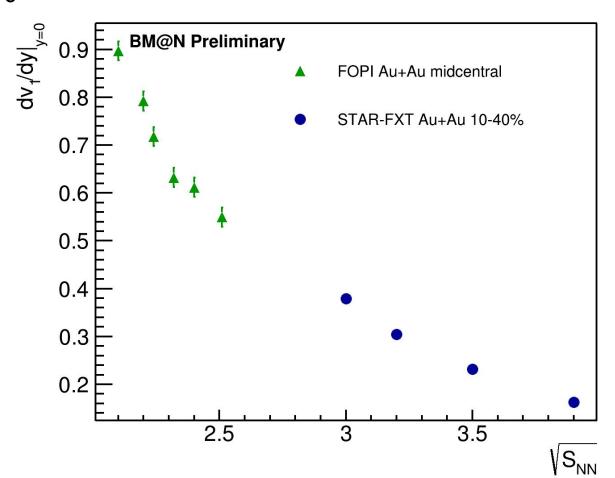


Good agreement with MC data

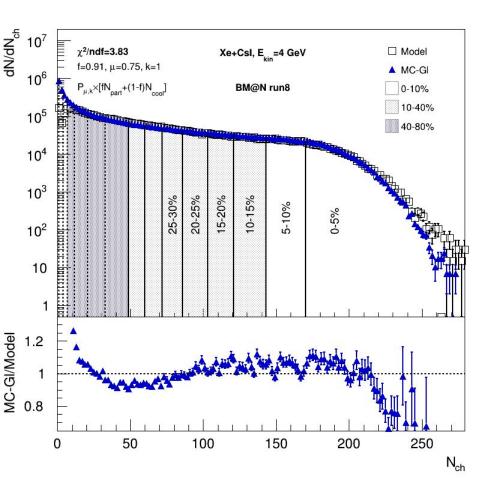


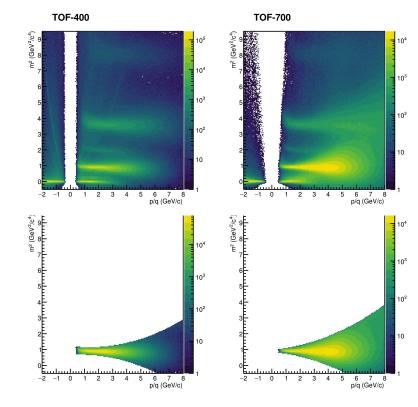
Good agreement with MC data

$dv_1/dy|_{y=0}$ vs collision energy



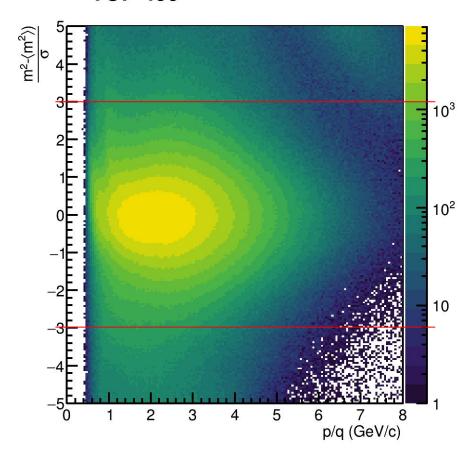
Centrality and particle selection



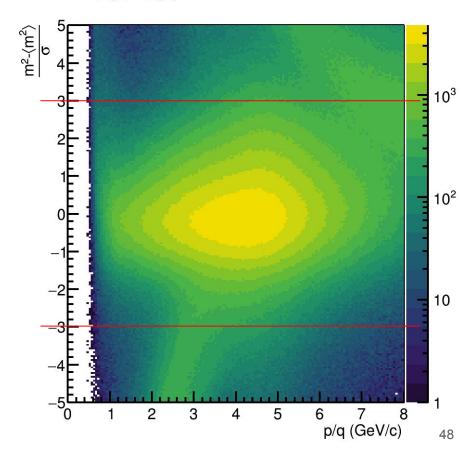


- Half of the recent VF production was analysed
- Event selection criteria (~100M events selected)
 - o CCT2 trigger
 - Pile-up cut
 - Number tracks for vertex > 1
- Track selection criteria : χ^2 < 5; M_p^2 3σ < m^2 < M_p^2 + 3σ ; Nhits > 57

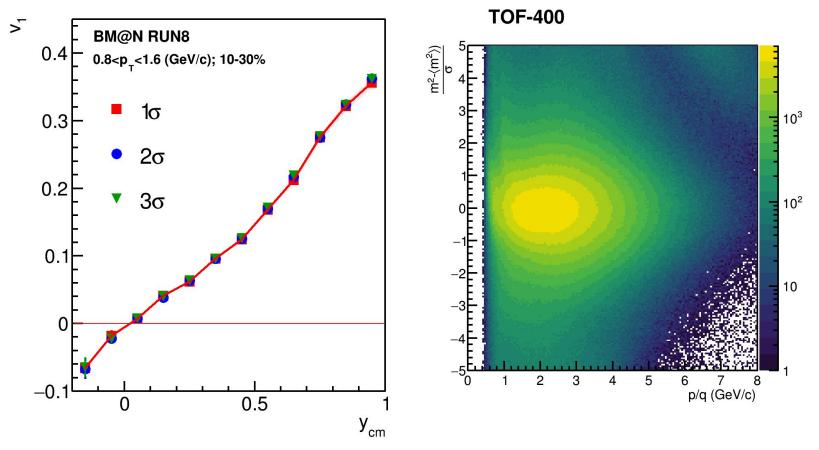
Proton N-sigma distributions TOF-400



TOF-700



Systematics due to identification and tracking



The systematics is below 2%