Масс-сепаратор НЭОЯСиРХ ЛЯП

для ядерно-спектроскопических исследований и ядерной медицины

Введение

- 1. Историческая справка Методы разделения радиоизотопов
- 2. Электромагнитный масс-сепаратор
- 3. Современное применение масс-сепараторов. ISOL-системы в TRIUMF и CERN
- Масс-сепаратор НЭОЯСи РХ ЛЯП История Современное состояние Физические задачи

Проект «Радиохимия и спектроскопия для астрофизики и ядерной медицины» (03-2-1100-1-2024/2028) темы «Неускорительная нейтринная физика и астрофизика.»

1. Проблема разделения радиоизотопов

Исторически появление электромагнитных масс-сепараторов в арсенале физиков связано с созданием ядерного оружия, а позднее и становлением ядерной энергетики

Программы создания ядерного оружия

```
Германия 1939–1945 (не реализована)
Британия 1940–1952
США 1939(1942 МП) – 1946
СССР 1943–1949
Франция 1954-1958
```

Ядерная энергетика, 1950-е годы

Общая задача: проблема разработки промышленных методик извлечения ²³⁵U из естественной смеси

изотопов ²³⁴U(5,4·10⁻³%), ²³⁵U(7,2·10⁻¹%), ²³⁸U(99,27%)

Промышленный цикл

2. Методы разделения изотопов

- 1) Молекулярно-кинетические:
- газодиффузный, $v_{\rm cp}^{\rm M} = \sqrt{\frac{8RT}{\pi M}};$
- центрифугирование;
- 2) Физико-химические:
- фракционная возгонка;
- изотопный обмен X(^{A1}Y) + ^{A1,A2}Y = X(^{A2}Y) + ^{A1}Y)
- 4) Электромагнитная масс-сепарация (ЭМС), $\rho \sim \sqrt{\frac{M}{a}}$

heavy out (liquid)

3) Лазерная селективная ионизация атомов

- Задачи разделения изотопов на ЭМС:
- 1. Макроколичества от макроколичества вещества
- 2. Микроколичества от микроколичества вещества
- 3. Микроколичества от макроколичества вещества
- 4. «On-line» разделение микроколичеств от макроколичеств р/а вещества

Calutron Университет Калифорнии

3. Электромагнитый масс-сепаратор

Основные элементы установки

- Источник ионов (IS)
 - элементный выход
- Электростатическая система формирования пучка ионов
- Магнитный масс-анализатор (AM)
 - трансмиссия (~80%), дисперсия $D = R \cdot \frac{\Delta M}{M} \sim 10\ 000$
- Система формирования и транспортировки пучка масссепарированных ионов (RIB)

Преимущества ЭМС

- ✓ разделение изотопов элементов от самых лекгих до СТЭ
- ✓ изотопная и химическая (+ радиохимия) чистота разделения
- одновременное масс-сепарирование изотопов данного элемента в единичном акте разделения
- 🗸 режимы работы:
 - автономный: радиохимия + масс-сепаратор
 - «on-line»: ускоритель (реактор) + масс-сепаратор

4. Современное применение масс-сепараторов. ISOL-и *In-Flight* системы

Фундаментальные исследования

- ядерная физика низких энергий
- физика твердого тела \geq

beam

Ядерная медицина

 \geq синтез диагностических и терапевтических радиофармпрепаратов

In-Flight-система

Кинематика столкновения ускоренной частицы с ядрами тонкой мишени ($T_{1/2}$ ~0,1 мкс) (v_p/v_p ~0.9 -1.0). Цель – отделение продуктов реакции от бомбардирующих частиц.

ISOL-система (Isotope mass Separator On-Line facility)

Продукты реакции (Z, A) остаются в мишени до извлечения в ионный источник

CERN - ISOLDE-CERN $E_p=1,4$ ГэB/2 мкА TRIUMF, ISAC-I/II, E_D=0,5 ГэВ/0,1 мА INFN – SPES, Italy, $E_p=40 \text{ M} \Rightarrow B/0,2 \text{ mA}$ GANIL - SPIRAL2, LinAc, E_D=40 МэВ/5 мА IBS - RISP, Korean, E_n=70 МэВ/0,5 мА LinAc 660 MeV, 0.6 MA

ISOLDE-CERN (Isotope Separator On Line DEvice)

LE RIB (Lowe Energy Radioactive Ion Beams), E_{RIB}=60 кэВ; HIE-ISOLDE (High Intensity and Energy), SC-LinAc, E_{RIB} до 10 МэВ/нуклон

TRIUMF-ISAC- I/II (Isotope Separator and Accelerator)

ISAC I, *E_i* от 2 кэВ/н до 150 кэВ/н ISAC II (SC-LinAc), *E_i* от 150 кэВ/н до 16,5 МэВ/н

ISAC-I/II - 11 экспериментальных установок

- ✓ Ядерная спектроскопия 8π -спектрометр TIGRESS, DSL
- Ядерные реакции: нуклеосинтез и мультифрагментации ядер (астрофизика) – DRAGON, HERACLES, TUDA, TACTIC
- Лазерная спектроскопия короткоживущих изотопов
- Масс-спектрометрия короткоживущих изотопов *TITAN, EMMA*
- ✓ Проект ARIEL фотоядерные реакции, *e*-LinAc E_e=30 МэВ

[https://www.triumf.ca/research-program/research-facilities/isac-facilities]

5. Масс-сепаратор комплекса НЭОЯСиРХ ЛЯП

Ядерная спектроскопия на базе (СЦа) фазотрона ЛЯП ОИЯИ, E_p=660 МэВ/З мкА, 2 мкА

1970 по 1979 гг. *Масс-сепарация* радионуклидов *off-line* 1989 по ~ 2000-х гг. *ISOL-комплекс ЯСНАПП-2 on-line*

- ЭЛГА ПП и СЦ детекторы, α-, β-, γ-,Х-излучения, ЭВК и ү-ү-совпадений
- MЛС спектрометр *e*-γ-совпадений на базе магнитного β-спектрометра
- МУК спектрометр пространственных и временных корреляций у-излучения
- ✓ МАТЧ магнитный анализатор тяжелых частиц
- ✓ УМСС измерение времен жизни ядерных состояний

В начале 2000-х гг. программа ЯСНАПП-2 завершена

С 2000-х гг масс-сепаратор функционировал в off-line режиме

- > Имплантированные р/а источники для ядерной-спектроскопии
- ▶ Радиохимические исследования

Низкоэненргетическая ядерная электронная спектроскопия на ESA-50

Спектроскопия конверсионных электронов ядерных переходов и оже-электронов

Remote(0-5 V

Влияние физико-химического состояния радиоактивных атомов на спектры низкоэнергетических электронов

¹⁴⁹Sm Implantation L₁-22.5 Ei=30 keV s 02 × 120 s 2000 3.9(2) eV ¹⁴⁹Eu(EC)¹⁴⁹Sm 2000 0 60 M1+E2 22.5 keV s 120 s 4.2(2) eV Gd₂O₃ × 1500 \$ _⊆ 1000 1000 Counts EuF Counts S Counts in 42 x 60 s 0001 0001 N_{6.7}+P Al₂O₃ 4000 500 120 s × 2000 Eu₂O 500 2000 s 120 s 120 s 1000 22440 22460 22480 22500 22520 22540 22360 22380 22400 22420 Energy, eV 14730 14740 14750 14760 14770 14780 14790 14800 Energy, eV Au-30 pure radiochemistry & ion implantation vacuum evaporation Pt-30 #2 83Rb 83mKr Pt or Au C foil impurities foil or residual gas HOPG

Проект КАТRIN ($m_{\nu(e)}$ с²~0,2 эВ 90% CL): энергетический репер с ΔE_{e} +/-60 мэВ

[https://www.katrin.kit.edu/]

Твердотельный радиоактивный источник с долговременной стабильностью ф/х свойств

⁸³Rb(EC)^{83m,83}Rb E_e(K)=17824.3±0.5 эΒ Γ(K)=2,7 эΒ

	Drift (day	ys 0 – 26)	Drift (days 0 – 46)		
Source	Abs.,	Rel.,	Abs.,	Rel.,	
	meV/month	ppm/month	meV/month	ppm/month	
Pt-30	-5(6)	-0.27(32)	-17(3)	-0.96(17)	
Pt-30-2	11(3)	0.63(18)	18(3)	1.02(16)	
Pt_15	4(2)	0.23(14)	3(3)	0.19(14)	
Au-30	43(3)	2.39(19)	47(3)	2.64(16)	

6. Модернизация инфраструктуры масс-сепаратора

В 2021 г. принято решение о поэтапном обновлении устаревшего оборудования масс-сепаратора

2021 – 2022 гг. обновлено оборудование систем охлаждения и вакуума.

2022 г.: начаты работы по модернизации системы питания ИОС и расширению парка ионных источников

Питание ИОС - блоки с программным управлением

Планируется глубокая модернизация схемы электропитания ИОС в целом

Ионные источники (ИИ)

ИИ ISOL-систем. Ионизация атома продукта реакции в газовой фазе

- ИПИ ионизация атома на разогретой (~2500° С) поверхности
- ▶ Плазменный ИИ

▶ Лазерный ИИ

ИПИ конструкции ЛЯП

В ЦЭОП ЛЯП завершено изготовление и испытание узлов ИИ.

В перспективе планируется расширить парк ИИ плазменным источником

Новый ИПИ конструкции ISOLDE. ПИЯФ НИЦ «Курчатовский институт» (г. Гатчина)

КО ЛЯП: модифицированы отдельные узлы и изготовлены рабочие чертежи

7. Программа исследований на будущее

Основными требованиями, предъявляемыми к исследовательским и медицинским радиопрепаратам являются изотопическая чистота и высокая удельная активность

В ряде случаев, применение масс-сепаратора является обязательным условием для достижения поставленных целей

Радиофармпрепараты (РФП) для диагностики и терапии раковых заболеваний ! Максимальный терапевтический эффект, минимизация поражения здоровых тканей

Мишенная терапия - избирательная биологическая доставка ИИИ к проблемной клетке с помощью радиофармпрепаратов

Радиофармпрепарат – сложная молекула

- Молекула направленного действия (вектор)
- Радиоактивный атом (излучатель α-, β^{-,}
 ⁺, γ-частиц и оже-электронов)
- Хелатор (часть молекулы связывающая радиоактивный атом)
- Линкер (часть молекулы прикрепляющая хелатор к вектору)

Альф-излучатель ²²⁵Ac ²³²Th(p,x)²²⁵Ac

Е_α(²²⁵Ac)=5,9 МэВ, Т_{1/2}=10 дн

Генератор ²¹³Ві E_{α} (²¹³Ві)=6,0 МэВ, $T_{1/2}$ =46 мин.

Основные методы производства 225Ас

Features	Thorium-229 radionuclide generator	Thorium-232 proton irradiation	Radium-226 gamma irradiation	Radium-226 proton irradiation
Quality	✓	Ac-227 contamination	√	✓
Quantity	Limited	Limited facilities	✓	V
Scalability	Limited	Limited scalability	√	✓
Reliability	✓	Long downtimes	~	✓
Sustainability	✓	Long downtimes	To be evaluated	✓
Timing	Limited quantities available	Limited quantities available	In development	Available in 2024

https://www.actineer.com/actinium-225/production-routes

Запасы ²²⁹Th : 12,8 ГБк (1623 мг)

ORNL (США), JRC (ЕК, Германия), ФЭИ (РФ, Обнинск)

[Pharmaceuticals 16(2023)1679]

Мировое производство ²²⁵Ас ~68 ГБк/год

[Curr. Radiopharm. 2018, 11, 200-208]

4 до 50 МБк/доза, 1500 – 17000 пациентов/год

Расщепление ²³²Th в реакции ²³²Th(p,x)²²⁵Ac

m(²³²Th)=5 г/см⁻², E_p=0,6–2 ГэВ

А(²²⁵Ас) 40 до 80 ГБк/10 дней, t_{рц}=8 мес

[Radiochemistry, 53(2011)73] [Appl. Radiat. Isotop 70(2012)2602]

Производство:

Tri-Lab: BNL (200 МэВ, 165 мкА), LANL (100 МэВ, 275 мкА), ORNL **TRIUMF** (500 МэВ, 165 мкА) **ИЯИ** (160 МэВ, 120 мкА)

Недостаток: наработка ²²⁷Ac (T_{1/2} = 21,8 года) 0,1% -0,2%

Подходящий способ разделения смеси ^{225, 227}Ac - ЭМ масс-сепарация

TRIUF и CERN-MEDICIS

Использование масс-сепаратора в качестве второй ступени очистки радиоизотопов к методу

Сцилларда-Чалмерса (основан на отделении целевого радиоизотопа от вещества мишени за счет энергии отдачи).

Мишенная оже-терапия находится на стадии доклинических исследований

Проблема: оценка внутриклеточной интегральной

(оже- + вторичные электроны) поглощенной дозы D (Гр)

Резолюция совещания МАГАТЭ по среднесрочным потребностям в ядерных данных для медицинских применений: «Необходимо также разработать комплексный расчетный маршрут для определения энергий и вероятностей эмиссии низкоэнергетических рентгеновских лучей и оже-электронов с более высокой степенью детализации и последовательности, чем доступно в настоящее время» [Summary Report INDC(NDS)-0596, 2011]

MIRD (Medical Internal Radiation Dose) - программы расчетов поглощенной дозы при единичном акте радиоактивного распада в клетке, S-значения (Гр/Бк) [Phys. Med. Biol., 62(2017)2239]

Оценочные ядерные данные NNDC BNL, NDS IAEA

MIRD-RADTABS таблицы S-значений Оценочные атомные данные ASDB NIST

S-значений - точное знание принятого спектра ионизирующего излучения

Расчетные выходы оже-электронов на акт распада ^{99m}Tc

		^{99m} Tc	K total	L total	MXY	CK LLX	CK MMX	CK LLM	SupCK NNN	CK NNX
	Energy, keV		15 - 20,3	1,7 -2	0,18	0,144	0,104	0,054	0,014	0,012
* отличаются деталями протокола расчетов	ые расчеты*	RADAR	2,07E-02	1,02E-01						
		DDEP	2,15E-02	1,09E-01						
		Eckerman	2,04E-02	1,04E-01	1,08E+00		7,09E-01			2,47E+00
	еннг	Howell	1,73E-02	1,21E-01	1,10E+00	1,93E-02	7,47E-01			1,98E+00
	Числе	Pomplun	1,92E-02	1,08E-01	1,12E+00	1,13E-02	3,49E-01			8,72E-01
		Lee	2,08E-02	1,24E-01	1,10E+00	9,48E-03	7,10E-01	9,30E-03	5,36E-01	8,45E-01

C15

Применимость расчетов можно установить путем сравнения их с экспериментальными спектрами

Инструментально-методическая база НЭОЯСиРХ

- ✓ Радиохимическая лаборатория
- ✓ Масс-сепаратор
- ✓ Спектрометр ESA-50, E_e от 0 до 50 кэВ, ΔE_{inst} = 3 эВ
- 🗸 Вычислительные ресурсы

Предварительные эксперименты в сотрудничестве с DNPh ANU (Австралия)

Спасибо за внимание!

Линейная передача энергии (ЛПЭ, кэВ/ед. длины) - интенсивность передачи энергии вдоль трека частицы в веществе. Пробег частицы λ в веществе биологической ткани.

Неоспоримое преимущество оже-электронов – минимизация риска поражения соседних здоровых клеток

даже ДНК