

национальный исследовательский центр «КУРЧАТОВСКИЙ ИНСТИТУТ»

Петербургский институт ядерной физики 🥟 им. Б. П. Константинова 🗸

Моделирование системы транспортировки и фокусировки сильноточных ионных пучков установки SPI

Антон Рождественский ПИЯФ, ОФВЭ, ЛКСТ

- Разработка принципиальной схемы работы системы транспортировки ионного пучка. Моделирование устройств, входящих в состав системы диагностики, транспортировки и фокусировки ионного пучка (электростатические одиночные линзы, линзы Эйнзеля, соленоид)
- Поделирование устройств, входящих в состав системы транспортировки и фокусировки ионного пучка (сферическое зеркало, поворотный магнит). Отладка модели системы транспортировки и фокусировки ионного пучка.
- □Сопряжение смоделированных устройств и создание общей модели системы. Поиск оптимальных параметров и режимов работы модели. Анализ полученных результатов.
- Проектирование системы транспортировки и фокусировки ионного пучка на основании результатов моделирования.

необходимых для доворота спина и уменьшения разлета пучка

 После прохождения спин-прецессора пучок попадает в линзу Эйнзеля для последующей фокусировки во входные линзы ускорителя

Принципиальная схема

💮 Одиночная электростатическая линза

Начальный генератор частиц задавался следующим образом:

- профиль пучка представляет собой круг радиусом 12 мм
- угол разлета частиц задается конусом с углом 5 градусов
- энергия пучка равна 25 кэВ и разыгрывается по гауссу (стандартное отклонение = 2.5 кэВ)
- моделирование проводилось для протонов, N частиц = 1000

💮 Одиночная линза с потенциалом

+20 κB

-5 кВ

Рождественский А. Ю.

	0 кВ	5 кВ	10 кВ	20 кВ	-5 кВ	-10 кВ	-20 кВ
X, MM	28.25	27.68	25.93	18.95	27.96	28.12	27.23
у, мм	28.080	27.69	26.16	18.41	28.51	28.13	27.27
є _х , π мм * мрад	315.291	316.953	311.379	596.380	314.023	322.655	328.581
е _у , π мм * мрад	360.544	354.832	351.386	586.931	366.210	362.940	377.114

Начальный генератор частиц задавался следующим образом:

- профиль пучка представляет собой трехмерное распределение Гаусса со стандартными отклонениями по осям: x = 7.6 мм, y = 8.8 мм, z = 0 мм
- угол разлета частиц задается конусом с углом 5 градусов
- энергия пучка равна 25 кэВ и разыгрывается по гауссу (стандартное отклонение = 2.5 кэВ)
- моделирование проводилось для протонов и дейтронов, N частиц = 1000
- запись параметров пучка производилась на расстоянии 137,6 мм после прохождения линзы

Начальные параметры пучка

Протоны

Дейтроны

Элинза Эйнзеля с напряжением +16 кВ (р)

Значения профиля пучка протонов

	Начальное значение	0 кВ	10 кВ	16 кВ	20 кВ
X, MM	8.060	17.570	14.180	<mark>9.210</mark>	16.330
y, mm	5.110	17.890	14.470	<mark>7.970</mark>	13.240

Элинза Эйнзеля с напряжением +16.5 кВ (d)

Значения профиля пучка дейтронов

	Начальное значение	0 кВ	10 кВ	16.5 кВ	20 кВ
X, MM	8.12	17.570	14.120	<mark>9.53</mark>	16.61
y, mm	5.080	17.850	14.480	<mark>7.77</mark>	12.84

Спин-прецессор (соленоид)

Параметры соленоида:

- максимально возможное магнитное поле 1000 Гс
- длина соленоида 257 мм
- внутренний диаметр 60 мм
- профиль пучка на расстоянии 142 мм до входа в соленоид, соответствует экспериментальным данным
- нормализованный эмиттанс составляет примерно 1 π
- запись параметров пучка производилась на расстоянии 976 мм после прохождения соленоида для значений магнитного поля 0, 100, 200, 400, 600, 800, 1000 Гс

Спин-прецессор (соленоид)

Начальный генератор частиц задавался следующим образом:

- профиль пучка на расстоянии 142 мм до входа в соленоид, выбирался в соответствии с экспериментальными данными, а нормализованный эмиттанс составляет примерно 1 π добавлен один кольцевой электрод с потенциалом -5 кВ, для имитации прохождения пучком сферического зеркала
- начальный профиль пучка до электрода представляет собой трехмерное распределение Гаусса со стандартными отклонениями по осям: x = 7 мм, y = 4 мм, z = 0 мм
- угол разлета частиц задается распределением гаусса по азимутальному и зенитному углу со средним значением 0 градусов (параллельно оси пучка) и стандартными отклонениями 1.25 и 2 градуса соответственно
- энергия пучка равна 25 кэВ и разыгрывается по гауссу (стандартное отклонение = 2.5 кэВ);
- моделирование проводилось для протонов, N частиц = 10000

О Спин-прецессор (соленоид)

Расчет эмиттанса производился путем наложения эллипса методом максимального правдоподобия и получения параметров эллипса:

$$\epsilon_x = r_x r_{x'} \qquad \epsilon_y = r_y r_{y'},$$

где r_x и r_x, – соответствующие полуоси эллипса.

Нормализованный эмиттанс (в отличие от геометрического эмиттанса, основанного на доли фазовой площади или объема) равен:

$$\epsilon_{n_x} = \beta \gamma \epsilon_x,$$

где *β* и *γ* — релятивистские параметры.

600 Гаусс

800 Гаусс

Спин-прецессор (результаты)

	Нач. параметры	0 Гс	100 Гс	200 Гс	400 Гc	600 Гс	800 Гc	1 к Гс
X, MM	7.53	33.52	33.14	32	30.030	28.020	25.59	23.64
у, мм	6.070	52.67	53.8	54.83	54.640	53.480	51.24	48
є _х , π мм * мрад	153.608	152.782	153.576	154.933	156.345	159.67	166.516	182.750
є _у , π мм * мрад	138.982	140.304	143.635	141.965	145.571	161.712	179.236	213.207
е _{n_x, π мм * мрад}	1.119	1.113	1.119	1.128	1.139	1.163	1.214	1.332
е _{ny} , π мм * мрад	1.012	1.022	1.046	1.034	1.061	1.178	1.306	1.554

- ✓ Разработка принципиальной схемы работы системы транспортировки ионного пучка. Моделирование устройств, входящих в состав системы диагностики, транспортировки и фокусировки ионного пучка (электростатические одиночные линзы, линзы Эйнзеля, соленоид)
- Поделирование устройств, входящих в состав системы транспортировки и фокусировки ионного пучка (сферическое зеркало, поворотный магнит). Отладка модели системы транспортировки и фокусировки ионного пучка.
- Сопряжение смоделированных устройств и создание общей модели системы. Поиск оптимальных параметров и режимов работы модели. Анализ полученных результатов.
- Проектирование системы транспортировки и фокусировки ионного пучка на основании результатов моделирования.

Электростатическое зеркало

Рождественский А. Ю.

Электростатическое зеркало 5 кВ

Электростатическое зеркало 5 кВ

Начальные параметры

Протоны

Дейтроны

Гаусс (р)

Рождественский А. Ю.

Поворотный магнит (результаты для р)

	Нач. параметры	250 Гс	275 Гс	300 Гс	325 Гс	350 Гс
X, MM	2.51	10.83	10.46	10.55	10.28	11.18
у, мм	2.86	6.76	6.45	6.51	6.58	6.00
є _х , π мм * мрад	54.562	310.293	297.712	299.177	286.094	297.150
є_у, π мм * мрад	62.849	44.635	44.238	44.355	45.815	46.339
є_{п_х,} π мм * мрад	0.398	2.258	0.321	2.179	2.085	2.161
є_{ny}, π мм * мрад	0.458	0.325	1.046	0.323	0.344	0.337
Δу, мм	-	38.446	18.857	<mark>2.335</mark>	13.776	29.685

Fayce (d)

Рождественский А. Ю.

Поворотный магнит (результаты для d)

	Нач. параметры	250 Гс	275 Гс	300 Гс	325 Гс	350 Гс
X, MM	2.37	10.510	10.01	10.470	10.28	11.22
у, мм	3.140	6.740	6.76	6.510	6.58	6.15
є _х , π мм * мрад	52.245	294.993	294.49	302.210	286.094	303.163
є_у, π мм * мрад	69.388	48.399	46.726	46.432	45.815	46.944
є_{n_x,} π мм * мрад	0.38	2.145	2.139	2.201	2.085	2.203
є_{ny}, π мм * мрад	0.505	0.352	0.339	0.338	0.334	0.341
Δ у, мм	-	38.34	19.332	<mark>2.218</mark>	14.845	29.947

- ✓ Разработка принципиальной схемы работы системы транспортировки ионного пучка. Моделирование устройств, входящих в состав системы диагностики, транспортировки и фокусировки ионного пучка (электростатические одиночные линзы, линзы Эйнзеля, соленоид)
- Моделирование устройств, входящих в состав системы транспортировки и фокусировки ионного пучка (сферическое зеркало, поворотный магнит). Отладка модели системы транспортировки и фокусировки ионного пучка.
- Сопряжение смоделированных устройств и создание общей модели системы. Поиск оптимальных параметров и режимов работы модели. Анализ полученных результатов.
- Проектирование системы транспортировки и фокусировки ионного пучка на основании результатов моделирования.

Модель системы COMSOL

- Сопряжение смоделированных устройств и создание общей модели системы.
- Поиск оптимальных параметров и режимов работы модели.
- □Учет влияния объемного заряда.
- □Анализ полученных результатов.
- Проектирование системы транспортировки и фокусировки ионного пучка на
 - основании результатов моделирования.

национальный исследовательский центр «КУРЧАТОВСКИЙ ИНСТИТУТ»

Петербургский институт ядерной физики 🥟 им. Б. П. Константинова 🗸

Спасибо за внимание!