Численное исследование переноса плазмы и поляризованных частиц в Источнике поляризованных ионов SPI

<u>А.А. Степаненко</u>, К.А. Ившин, А.Н. Соловьев, В.В. Фимушкин, В.И. Давыденко, Н.В. Ступишин, А.С. Белов, А.Н. Зеленский

Кафедра физики плазмы Национальный исследовательский ядерный университет «МИФИ» Лаборатория физики высоких энергий Объединённый институт ядерных исследований

«Поляризованные источники, поляриметрия, спиновая физика высоких энергий на Ускорительном комплексе ЛФВЭ ОИЯИ» 30-31 октября 2024 года, Дубна Работа выполнена при финансовой поддержке ОИЯИ

## Мотивация I

- Среди вопросов, включенных в программу исследований на действующем и строящемся ускорителях Nuclotron и NICA, – физика взаимодействия поляризованных ядер H/D.
- Для формирования пучков поляризованных ядер на базе
  Лаборатории физики высоких энергий ОИЯИ создан и действует «Источник поляризованных ионов» SPI.
- Установка позволяет получать поток поляризованных ионов в результате конверсии пучка поляризованных нейтралов в потоке плазмы. Характерные значения получаемых токов поляризованных ионов  $H/D \lesssim 10$  мА.
- Эффективность конверсии нейтралов и экстракции поляризованных ионов зависит от многих параметров источника – конфигурации магнитного поля соленоида, режимов работы ионизатора, геометрии накопительной ячейки и др.

## Мотивация II

 Цель работы – изучение механизмов, определяющих перенос плазмы и поляризованных нейтралов в источнике SPI, и определение путей повышения эффективности конверсии нейтральных частиц в ионы с их последующей экстракцией из установки.

## Схема SPI [Fimushkin et al. PoS 2015]



(a)

э

#### Модель переноса плазмы в установке І

- Используемые приближения:
  - Течение плазмы амбиполярно скорости ионов и электронов равны, ток в плазме отсутствует j = 0.
  - Электроны замагничены, ионы не замагничены.
  - Перенос тепла ионами адиабатический, электронами близок к изотермическому.
  - Рециклинг ионов основной плазмы на стенках не учитывается.
  - Магнитное поле стационарно, создаётся системой из 4 катушек, расположенных соосно с вакуумной камерой.
  - Основной канал ионизации поляризованных нейтралов резонансная перезарядка.
  - До ионизации нейтралы движутся свободно, упруго отражаясь только от стенок установки.
  - Ионизация нейтрала рассчитывается с использованием метода Монте-Карло.

### Модель переноса плазмы в установке II



→

6/24

#### Модель переноса плазмы в установке III

• Уравнения движения плазмы

В объёме установки:

$$\begin{aligned} \frac{\partial n}{\partial t} + \nabla \cdot (n\mathsf{V}) &= 0, \\ m_i n \left( \frac{\partial \mathsf{V}}{\partial t} + \mathsf{V} \cdot \nabla \mathsf{V} \right) &= -\nabla [n(T_i + T_e)] - 0.71 n \nabla T_e - m_i n \omega_{ci} \mathsf{V} \times \mathsf{b}, \\ \frac{\partial T_i}{\partial t} + \mathsf{V} \cdot \nabla T_i + (\gamma_i - 1) T_i \nabla \cdot \mathsf{V} = 0, \\ \frac{\partial T_e}{\partial t} + \mathsf{V} \cdot \nabla T_e + (\gamma_e - 1) T_e \nabla \cdot \mathsf{V} = 0. \end{aligned}$$

- ► Граничные условия на стенках:  $V_n = 0$ ,  $\partial_n f = 0$ .
- ▶ Граничные условия в области свободного течения (отверстия и каналы): ∂<sub>n</sub>V<sub>n</sub> = 0, ∂<sub>n</sub>f = 0.
- ► Сопло плазмотрона:  $V_z(r, 0, t) = V_0$ ,  $V_r(r, 0, t) = V_\theta(r, 0, t) = 0$ ,  $n(r, 0, t) = n_0 H(r_{nozzle} - r)$ ,  $T(r, 0, t) = T_0 H(r_{nozzle} - r)$ .
- ▶ Начальные условия: f(r, z, 0) = f<sub>0</sub>(r, z) непринципиальны для расчётов, т.к. рассматривается выход системы на стационар.

### Модель переноса плазмы в установке IV

- Уравнения динамики поляризованных частиц:
  - Уравнение движение частицы:

$$m_{\rho}\frac{d\mathsf{V}_{\rho}}{dt}=Z_{\rho}e\left(\mathsf{E}+\frac{1}{c}\mathsf{V}_{\rho}\times\mathsf{B}\right)-\mathrm{sgn}(Z_{\rho})\mu_{i\rho}\nu_{i\rho}(\mathsf{V}_{\rho}-\mathsf{V}),$$

 Напряженность электрического поля – в амбиполярном приближении на основе решения для основной плазмы:

$$\mathsf{E} = -\frac{\nabla p_e}{en} - 0.71 \frac{\nabla T_e}{e}$$

Вероятность ионизации нейтрала:

$$P_{CX}(t) = 1 - \exp\left(-\frac{t}{\tau_{CX}}\right), \qquad \frac{1}{\tau_{CX}} = nV\sigma_{CX}(V),$$
$$\sigma_{CX} = \frac{A_1 \ln(A_2/E + A_3)}{1 + A_4E + A_5E^{3.5} + A_6E^{5.4}}.$$

### Параметры расчётов І

- Расчёты выполнены в программе, написанной с использованием библиотеки BOUT++ [Dudson et al. CPC 2009].
- Длина и радиус соленоида: L = 47.5 см, R = 3.6 см.
- Длина и радиус накопительной ячейки:  $L_c = L/2 = 23.75$  см,  $R_{c} = 9$  мм.
- Диаметр входного отверстия в накопительной ячейке:  $r_c = 5$  мм.
- Параметры ионзатора:
  - Радиус анодного отверстия:  $r_{nozzle} = 2.25$  мм.
  - Длительность импульса плазмы: t<sub>p</sub> = 200 мкс.
  - Скорость истечения плазмы через анодное отверстие:  $V_0 = 60 \text{ км/c}.$
  - Температуры ионов и электронов в сопле:  $T_0 = 5$  эВ.
  - Концентрация плазмы на входе в соленоид:  $n_0 = 5 \times 10^{20}$  част./м<sup>3</sup>.

## Параметры расчётов ІІ

- Радиус и толщина магнитных катушек: R<sub>coil</sub> = 8.85 см, H<sub>coil</sub> = 6,9 см.
- Число витков и сила тока в катушках:

 $N_1 = 48, I_1 = -80 \text{ A.}$  $N_2 = 88, I_2 = 350 \text{ A.}$  $N_3 = 88, I_3 = 350 \text{ A.} \\ N_4 = 96, I_4 = -88 \text{ A.}$ 

- Температура и давление остаточного газа:  $T_g = 300$  K,  $p_g = 2 \times 10^{-6}$  мбар.
- Скорость инжектируемых нейтралов:  $V_n = 2 \text{ км/с.}$
- Разрешение расчётной сетки:  $N_r imes N_z = 100 imes 100$ .

# Результаты расчётов динамики плазмы в действующей схеме SPI I



# Результаты расчётов динамики поляризованных нейтралов I



Степаненко (ОИЯИ, НИЯУ МИФИ) Динамика плазмы и нейтралов в SPI 30.10.24 12/24

(a)

Результаты расчётов плотности тока ионов основной плазмы в экстракторе I



Результаты расчётов плотности тока ионов основной плазмы в экстракторе II



## Результаты расчётов динамики плазмы в схеме ИЯФ СО РАН I

- Схема Института ядерной физики СО РАН.
- Магнитное поле прямолинейно, меняется по закону  $B_z(z) = 6.0 - 2.35[1 + \cos(\pi(z-5)/5)]$  кГс ( $z \le 5$  см),  $B_z(z) = 1.3$  кГс (z > 5 см).
- длина и радиус области движения плазмы L = 0.5 м, R = 2 см;
- радиус анодного отверстия r = 1 мм;
- плотность, температура и скорость истечения плазмы из анодного отверстия  $n = 2 \times 10^{19}$  част./м<sup>3</sup>,  $T_e = T_i = 5$  эВ,  $V_z = 38$  км/с;
- плотность тока на выходе из плазмотрона  $j = 12 \text{ A/cm}^2$ .

# Результаты расчётов динамики плазмы в схеме ИЯФ СО РАН II



Результаты расчётов динамики плазмы в схеме ИЯФ СО РАН III



< ∃⇒

Расчёты профилей параметров потока плазмы І



### Расчёты профилей параметров потока плазмы II



< (T) >

< ∃⇒

э

Расчёты профилей параметров потока плазмы III



## Заключение І

- Построена модель переноса плазмы и поляризованных нейтралов внутри соленоида источника поляризованных нейтралов SPI.
- Подготовлены расчётные коды для моделирования динамики плазмы и нейтралов внутри установки.
- Выполнено моделирование транспорта плазменной струи внутри соленоида SPI с установленной накопительной ячейкой.
- Показано, что наличие области нарастающего магнитного поля приводит к формированию магнитной пробки и сжатию потока плазмы к оси системы.
- Важная особенность прохождения потока плазмы через магнитную пробку – образование конвективной ячейки на входе в магнитное горлышко, связанной с конечной проводимостью данной области установки.

## Заключение II

- Наличие физических стенок позволяет дробить конвективные ячейки, уменьшая область перемешивания плазмы. В результате взаимодействия плазменного потока и стенок могут возникнуть условия для установления течения вещества в направлении против потока.
- Вихри негативно влияют на вынос поляризованных частиц из установки, захватывая их внутрь себя.
- Наличие областей установки, заполненных редкой плазмой, нежелательны для организации разряда, поскольку величина объёмного источника поляризованных ионов уменьшается.
- Характер течения плазмы через магнитную пробку внутри накопительной ячейки (образование вихря, формирование области противотечения плазмы за магнитным горлышком) – предполагают, что более эффективной может быть конструкция с прямолинейным магнитным полем либо с накопительной ячейки в форме песочных часов.

## Благодарю за внимание!

(a)

æ

#### Магнитное поле катушки

$$\begin{split} \hat{B}_{r} = & M_{r}^{(0)} x \left[ \frac{1}{(x^{2} + \alpha + \beta(y - y_{2}))^{3/2}} - \frac{1}{(x^{2} + \alpha + \beta(y - y_{1}))^{3/2}} \right] + \\ & M_{r}^{(1)} x^{3} \left[ \frac{1}{(x^{2} + \alpha + \beta(y - y_{2}))^{7/2}} - \frac{1}{(x^{2} + \alpha + \beta(y - y_{1}))^{7/2}} \right], \\ \hat{B}_{z} = & M_{z}^{(0)} \left[ \frac{y_{2} - y}{(x^{2} + \alpha + \beta(y - y_{2})^{2})^{1/2}} + \frac{y - y_{1}}{(x^{2} + \alpha + \beta(y - y_{1})^{2})^{1/2}} \right] + \\ & M_{z}^{(1)} x^{2} \left[ \frac{y_{2} - y}{(x^{2} + \alpha + \beta(y - y_{2})^{2})^{3/2}} + \frac{y - y_{1}}{(x^{2} + \alpha + \beta(y - y_{1})^{2})^{3/2}} \right], \end{split}$$

Степаненко (ОИЯИ, НИЯУ МИФИ) Динамика плазмы и нейтралов в SPI

æ

(a)

24 / 24