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Yang-Mills diagrammatic technique

a, µ

= igγµT a

a, µ

b, ν c, ρ

k
p

q
= gf abc [gµν(k − p)ρ + gνρ(p − q)µ + gρµ(q − k)ν ]
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Chern-Simons diagrammatic technique

In Chern-Simons 3D topological theory observables are the Wilson loops:

⟨WR(K )⟩ = ⟨trRP exp
(∮

K
A

)
⟩

Perturbative expansion of Wilson loop vacuum expectation value yields:

⟨WR(K )⟩ =
∑
m

hm
∮

dx1 . . . dxm⟨Aa1(x1) . . . Aam(xm)⟩trR (T a1 . . . T am)

←→ trR(T aT bT aT b)
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STU, AS and IHX relations

a a ab b b
= −

f ab
cT c T a T b T b T a

⇔ f ab
cT c = [T a, T b] = T aT b − T bT a

= −

⇕

f ad
ef bc

d + f bd
ef ca

d + f cd
ef ab

d = 0

= −

⇕

f ab
c = −f ba

c
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Vogel universality

Vogel universality is an idea that some Lie algebra properties can be
expressed in a uniform way as a function of the so-called Vogel parameters.
Currently there are several features that are known to admit Vogel
universalization:

Decompositions of adjoint representation powers [Vogel, 1999; Isaev,
Krivonos, 2024 & others]
Higher Casimir eigenvalues [Mkrtchyan, Sergeev, Veselov, 2012]
Quantum dimension [Mkrtchyan, Veselov, 2012]
Quantum knot invariants [Mironov, Mkrtchyan, Morozov, 2016]
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Λ algebra

Definition
Λ is an algebra over Q generated by 3-legged diagrams modulo AS and
IHX relations antisymmetric with respect to permutations of legs.
Multiplication in Λ is given by insertion of one diagram into any vertex of
the other diagram.

v̂ = v̂
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Characters on Λ

Trivalent diagrams correspond to contractions of structure constants. In
case of Λ algebra three free indices remain, therefore the result is
proportional to the structure constant.

t̂ = 7→ f aik f bji f ckj = χL(t̂)f abc

The coefficient of proportionality is called a character of this element of Λ.
Each Lie algebra induces its own character on Λ. One can say that Lie
algebras can by parameterized by these characters.
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Structure of Λ
In Λ there exist the following diagrams that happen to be multiplicative
generators of the studied sector of Λ:

1̂ = t̂ = x̂n =
···

However, there are many relations between the xn diagrams, that allow to
rewrite them in terms of polynomials in three parameters t, σ and ω of the
form Q[t]⊕ ωQ[t, σ, ω]

The most interesting part about the Λ algebra is an existence of zero
divisors. They effectively restrict possible values of the Vogel parameters
to those that satisfy:

tω(2tσ − ω − 2t3)(27ω − 45tσ + 40t3)×
×(27ω2 − 72tσω + 40t3ω + 4σ3 + 29t2σ2 − 24t4σ) = 0
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Adjoint square decomposition

On the tensor square of adjoint representation there exists an operator Ψ,

also known as the split Casimir operator:

It was shown by Vogel that this diagram satisfies a cubic relation on the
symmetric square, factorised by a one-dimensional reprsentation:

Ψ3 − tΨ2 + (σ − 2t2)Ψ− (ω − tσ)̂I = 0

This implies the following decomposition:

S2adj = Ω⊕ Yα ⊕ Yβ ⊕ Yγ

Where α, β and γ are the eigenvalues of Ψ. They are related to other
Vogel parameters as follows:

α + β + γ = t, αβ + βγ + αγ = σ − 2t2, αβγ = ω − tσ .
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Universal dimension

It Vogel’s paper there is following diagrammatic equation:

σ( −t( − )) = ( −ω( − ))0

Taking trace over it yields:

2tσdim− tσ(dim− 1) = −ω(dim− 1)

Hence, the dimension of Lie algebra can be expressed as:

dim = ω − 3tσ

ω − tσ
= (α− 2t)(β − 2t)(γ − 2t)

αβγ
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Universal Casimir eigenvalues
Consider the following Casimir operators:

Cp = Trad(Xµ1Xµ2 · · ·Xµp )Xµ1Xµ2 · · ·Xµp

The correspond to diagrams of the following form:

ûp =
·· ·

= x̂p−1 = x̂p−1· = 2tx̂p−1·

Cp = (−1)pup = (−1)p · 2txp−1. xn is related to α, β and γ as follows
[Kneissler, 2001]:

xn = − αβγ(2t)n

(2t − α)(2t − β)(2t − γ) + tn

2 + cααn + cββn + cγγn

Same result has been achieved by Mkrtchyan, Sergeev and Veselov for
classical Lie algebras, later generalized by Isaev and Provorov for Lie
superalgebras.
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Universal quantum dimension

The formula for the quantum dimension [Mkrtchyan, Veselov, 2012]:

r +
∑
µ∈R

ex(µ,ρ) = sinh((α− 2t)x/4) sinh((β − 2t)x/4) sinh((γ − 2t)x/4)
sinh(αx/4) sinh(βx/4) sinh(γx/4)

This formula corresponds to the following diagram expansion, known as
the Kontsevich integral of unknot:

qdim = I(⃝) = exp (
∑∞

n=1 b2nw2n), where b2n = (−1)n+1ζ(2n)
2n(2π)2n and

· · ·
w2n =
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Universal symmetrized Casimir eigenvalues

C symm
n = tradj (T i1T i2T i3 . . . T in) 1

n!
∑

σ∈Sn

Tiσ(1)Tiσ(2)Tiσ(3) . . . Tiσ(n)

Action of these operators corresponds to the following diagram:

symm

It is unknown how to express this diagram through regular Vogel
parameters, but in can be done at low orders:

C symm
4 = 20

3 t4 − 3tω C symm
6 = 28

3 t6 − 42
5 t3ω + 15

8 tσω
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