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Abstract

With the help of the Landau-Khalatnikov-Fradkin (LKF) trans-

formation, we derive a non-perturbative identity between massless
propagators in two different gauges.
From this identity, we find that the corresponding perturbative se-
ries can be exactly expressed in terms of a hatted transcendental
basis that eliminates all even (-values. Our construction further
allows us to derive an exact formula relating hatted and standard
(-values to all orders of perturbation theory.

From consideration of 4-loop master integrals, we find the per-
turbative series of a hatted transcendental basis based on more
complicated Euler-Zagier (nested) (-values, up to the transcenden-
tality weight 14.



0 Hatted (-values

A seemingly unrelated topic is focused on the multi-loop structure
of propagator-type functions (p-functions).

Following (Baikov, Chetyrkin: 2018) by p-functions we understand
(MS-renormalized) Euclidean 2-point functions (that can also be
obtained from 3-point functions by setting one external momen-
tum to zero with the help of infra-red rearrangement) expressible
in terms of massless propagator-type Feynman integrals also known

as p-integrals.

About three decades ago, it was noticed that all contributions
proportional to (4 = 7T4/9O mysteriously cancel out in the Adler
function at three-loops (Gorishnii, Kataev, Larin: 1990).



Two decades later, it was shown that the four-loop contribution
is also 7-free and that a similar fact holds for the coefficient func-
tion of the Bjorken sum rule (Baikov, Chetyrkin, Kiihn: 2010).

There is by now mounting evidence, see, e.qg.,
(Baikov, Chetyrkin, Kithn: 2017), (Chetyrkin, Falcioni, Herzog,
Vermaseren: 2017), (Herzog, Ruijl, Ueda, Vermaseren, Vogt: 2017,
2018), (Davies, Vogt: 2018), (Moch, Ruijl, Ueda, Vermaseren,
Vogt: 2018), (Vogt, Herzog, Moch, Ruijl, Ueda, Vermaseren: 2018),
that various massless Euclidean physical quantities demonstrate
striking regularities in terms proportional to even (-function val-

2n

ues, (op, €.9., to =" with n being a positive integer.



Such puzzling facts have recently given rise to the “no-m theo-
rem . The latter is based on the observation

(Broadhurst: 1999), (Baikov, Chetyrkin: 2010, 2018)

that the e-dependent transformation of the (-values:

@_@+%@-§@,& G+l Gr=0r,

eliminates even zetas from the expansion of four-loop p-integrals.
A generalization to 5- , 6- and 7-loops is available in

(Georgoudis, Goncalves, Panzer, Pereira: 2018), (Baikov, Chetyrkin:
2018, 2019), respectively.

Definition:
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Here we shall use the LKF transformation in order to study gen-
eral properties of the coefficients of the propagator. We will show
how the transformation naturally reveals the existence of the hat-
ted transcendental basis. Moreover, it will allow us to extend the

above results to any order in €.



The appearance of the hatted transcendental basis from the LKF
transformation can be naturally understood in the following way.
The LKF transformation produces all-loop results for very restricted
objects: the difference of fermion propagators in two gauges. So, at
every order of the s-expansion these all-loop results should contain
(at least, a part of ) the basic properties of the corresponding master
integrals, 7.e., the all-loop results should be expressed in the form
of (at least, a part of) the corresponding hatted (-values.

In a sense, it is not the full set of the hatted (-values but only the
one-fold ones. This comes from the fact that the results produced
by the LKF transformation contain only products of I'-functions
and, thus, their expansions contain only the simple one-fold (-

values.



1. LKF transformation

In the following, we shall consider QED in an Euclidean space
of dimension d (d = 4 — 2¢). The general form of the fermion

propagator Sg(p, ) in some gauge & reads:

Sr(p, &) = ;P(pﬁ),

where the factor p containing Dirac y-matrices, has been extracted.
It is also convenient to introduce the z-space representation Sg(x, §)

of the fermion propagator as:

SF(:E7€> :@X(f,f)



The two representations, Sg(x,&) and Sp(p,§), are related by

the Fourier transform which is defined as:

ddlli' DT
K -
Sp(z,6) = [ —— e T Sp(p, €).

(27)d/2 ‘



The famous LKF transformation connects in a very simple way
the fermion propagator in two different gauges, e.g., £ and 7. In

dimensional regularization, it reads:

Sp(z,&) = Sp(x,n) e (PE)=PO)

i d | ddp e~ 1T

D(z) = —iAe?
(.flf) 1 € :u (27T>d p4 y

A=¢—n.



Note that, in dimensional regularization, the term D(0) is pro-
portional to the massless tadpole 75, the massive counterpart of
which is defined as:
ddp e~ 1T
(2m)4 (p? +m2)>’

The tadpole T,,(m?) ~ 6(cv —d/2) in the massless limit and, thus,

D(0) = 0 in the framework of dimensional regularization. So, the

Toz(m2) =/

LKF transformation can be simplified as follows:

Sp(x,€) = Sp(a,n) P



We may now proceed in calculating D(x) using the Fourier trans-

forms
ipr  92a-d/2 T'(a d
jady S = ZT )y =L 5t
T4 pe () 2
[y 6_212“3 _ 226‘7Td2/2a(a) |
D T
This yields:
a2 2 20-d/21(d/2 = 2)
D(a) = —i A€ (a2 Y

or, equivalently, with the parameter € made explicit:
2

i A A 2 2 Oéem €
D — F 1 — € A — — .
We see that D(z) contributes with a common factor AA accom-

panied by the singularity e 1.



2. LKF transformation in momentum space

Let's assume that, for some gauge fixing parameter 7, the fermion

propagator S (p,n) with external momentum p has the form

. ~2\me
! _ m | H-
SF(p7 f) o ﬁp(pa f)) P(p7 77) ma() am(n)A pQ

The ay,(n) are coefficients of the loop expansion of the propagator

and /i is the renormalization scale:
~ 2 2
po = dmps,

which lies somehow between the MS-scale 1 and the MS-scale 1.



Then, using Fourier transforms , we obtain that:
2d—1 A

_ m 2_2\me
Splen) = (o aap () A™ (e
['(d/2 — me)
b = .
With the help of an expansion of the LKF exponent, we have
pd—14 me
_ D _ 2.2
Sp(x,€) = Sp(z,m)eP") = a2 ¥ bn(n) A™ (%2
o0 AmAlFl(l—E) 2 Nle
Xzzo(_ : ) TR
Factorizing all z-dependence yields:
Qd_l L m(_ 2 2\PE
p bm(”) ( A)pm —
b = —— [P~"(1 —e).
(&) mZ:O (p—m)!'\ € (1-e)



Hence, taking the correspondence between the results for propa-
gators P(p,n) and Sp(x,n) , respectively, together with the result
for Sp(x, &), we have for P(p, &):

me

, (1)

i

p2

P(p,&) = S am(€) A™

m=0

where
am(§) = bm(§) rlgcg}2+—mwii)

m a(n) F(d/2—le>F(1+m€>( A)m_l [l —e¢).

€

T 120 (m — D) T(1 + 16)0(d/2 — me)

In this way, we have derived the expression of a,,(£) using a simple
expansion of the LKF exponent in z-space. From this representa-

tion of the LKF transformation, we see that the magnitude am(f)

is determined by a;(n) with 0 <[ < m.



The corresponding result for the p- and A-dependencies of a,, (&, p)
can be obtained by interchanging the order in the sums in the re-
sults for P(p,&). So, we have

_9\ME

P(p,§) = m%io am(&, p) A ’ZQ

)

where

aml&.p) = amli) Xy B (a2 = ( + m)e)
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2.1 Scale fixing

In our present study, we consider only the case of the so-called
MS-like schemes. In such schemes, we need to fix specific terms
coming from the application of dimensional regularization. Such a
procedure will be called scale fizing and will play a crucial role in
our analysis.

Let’s first recall that the MS-scale 1z is related to the previously
defined scale /i with the help of:

1° = i° e 7(simplest possibility),
1% = @ D(14¢), 12 = g?°T(1 + le), (other possibilities),

where v is the Euler constant. An advantage of the MS-scale is

that it subtracts the Euler constant v from the s-expansion.



Moreover, it is well known that, in calculations of two-point mass-
less diagrams, the final results do not display any (5. So it is conve-
nient to choose some scale which also subtracts (5 in intermediate
steps of the calculation. For this purpose, we shall consider two

different scales.



The first one is the popular G-scale (Chetyrkin, Kataev, Tkachov:
1980),
which subtracts the coefficient in factor of the singularity 1/¢ in
the one-loop scalar p-type integral, i.e.,
#gzﬁkr%y—@wl+@.
['(2 — 2¢)

Following (Broadhurst: 1999),
we shall use a slight modification of this scale that we will refer
to as the g-scale and in which an additional factor 1/(1 — 2¢) is
subtracted from the one-loop result, 7.e.,
0e T2(1 —&)T(1 +¢)

['(1 — 2¢)

The advantage of the g-scale (over the G-scale) will reveal itself in

9 .
:uggzlu

discussions below related to the so-called transcendental weight of

various contributions.



We shall also introduce a new scale which is based on old calcu-
lations of massless diagrams performed by Vladimirov (Vladimirov:
1980), who added an additional factor ['(1 —¢) to each loop contri-
bution. The latter corresponds to adding the factor T~1(1 — &) to
the corresponding scale. We shall refer to this scale as the minimal

Vladimirov-scale, or MV-scale, and define

/128

2
NV = F(l —8) :

Notice that this form has been used once to define the MS scheme
(see Errata to (Kataev, Vardiashvili: 1988).)

As we will show below, the use of the MV-scale leads to simpler
results in comparison with the g one. Hence, the MV-scale is more
appropriate to our analysis and all our basic results will be given
in the MV-scale. After that we will discuss the differences coming

from the use of the g-scale.



In both the MV-scale and g-scale, we can rewrite the above result

in the following general form:

le

(A A
(—e)ll!

s
p2

00 1—(m+1)5

am(f) — am(n) ZEO 1 — (m + [+ 1)5

Op(m, 1)

)

where p =MV, g.

The factor (1 — (m + 1)e)/(1 — (m + 1+ 1)e) has been specially
extracted from ®,(m, [, ) in order to insure equal transcendental
level, i.e., the same value of s for (g at every order of the &-

expansion of ®,(m, [, ) (see below).



Central to the present work, the factors ®y\p(m, [, ) and O4(m, 1, €)

read:

(14 (m+ D)1 —¢)
(1—(m+1+1)e)

(1 — 2¢)
83U — )1 4¢)’

and may be expressed as expansions in (; (i > 3).

(1 —(m+1)e)l
['(1+me)l

Oypyv(m, le) =

(I)g(ma la 5) — (I)MV(ma la 6)



3. MV-scale

The [-function I'(1 + Se) has the following expansion:

P(1+ fe) =exp —yBe + ¥ (<1 npoe’], mo ="

that yields for the factor &y (m, 1, €):

Prypv(m, 1 e) = exp [;—% ns ps(m, 1) e’],

where
ps(m,l)= m+1)°—(m+1+1)°+204+ (=1)%{(m+1)° —m°},
and, as expected from the MV-scale, we do have:

p1(m, 1) =0, pa(m,l)=0.

Moreover ®y\pv(m, 1, e) contains (s-function values of a given

weight (or transcendental level) s in factor of £°.



4. Solution of the recurrence relations

We now focus on the polynomial ps(m,l) that is conveniently
separated in even and odd s values. Then, we see that the following

recursion relations hold:
ok = Pog—1 + Lpog—o+p3, L=11+1),
Pok—1 = Pok—2 + Lpog._3+ p3.

Specific to the MV-scheme, these relations only depend on L which

leads to strong simplifications.



Nevertheless, they are difficult to solve for arbitrary k. It is simpler

to proceed by explicitly considering the first values of k:

p4 = 2p3,
ps =ps+ Lps+ps = (3+ L)ps,
p6 = P5+ Lpy+p3 = (4+3L)ps,
showing that ps takes the form of a polynomial in L in factor of

p3. Then, taking Lps from the second equation and put it to the

thirs one, yields:

Lps = ps —3p3, pe = 3p5 — Op3

which reveals that the even polynomial pg can be entirely expressed

in terms of the lower order odd ones, p3 and ps.



We may automate this procedure for higher values of £. The

general expression of pg is given by:
41
Ds = 2 As,m L™ ps.

m=0
Taking Lkpg from the equations for py;._ 1 and substituting them

in the equations for py;. yields:

k k=1
Pok = > P2s—1C2% 251 = T DPog—2m+1C2%k 26—2m+1-



From these results, it is possible to determine the exact k-dependence
of Uyj. 25—1, which has the following structure:

: » (2%)!

with the first coefficients b9,,,__1 taking the values:

1 1 1 17 31
by — _ _ - _ _
1= 5 b3 T b > b7 5 by 5
b _@ b H461 b _929569
11 T 4 9 13 T 2 ) 15 T 16 )
3202291 221930581
b17 = 5 b1g = — 1 ,
4722116521 968383680827
bo1 = ; : bo3 = — 2 :

Examining the numerators of b9,,_1, one can see that they are
proportional to the numerators of Bernoulli numbers. Indeed, a

closer inspection reveals that, accurate to a sign, the coefficients



boy,—1 coincide with the zero values of Euler polynomials E,(z):

bo—1 = —Eopm—1(x =0),

and therefore to Bernoulli and Genocchi numbers, B,, and G,

respectively, because

Go
Eop_1(z =0) = 277?’ Gop = —2(2°™ — 1) By, .
Hence, the compact formula for the coefficients b9,,,_1, expressed

through the well known Bernoulli numbers B,,,, reads:

22" — 1)

bom—1 = Bop, -



4.1 Hatted (-values

At this point, it is convenient to represent the argument of the

exponential as follows:

0.9

S Qk—l.

Ns Ps € = OZO 772/<P2k€2k+ OZO Mk —-1P2k—1¢€
s=3 k=2 k=2

Then

k

0 o% X ok
X Mo Pok€T = X mopeT X pos—1 0ok as—1
k=2 k=2 §=2

Y p2s—1 X Mo Copos_167.
§=2 k=s

25—1 \where

2(k=s)+1

Then, can be written as =25 7951 P2s_1€

. O
Ms—1=Ms—1+ X 1oy Cop 2518

=S



Thus, we have

o0 52 1 _
Oypy(m, Ly e) = GXP[ Z fos 102516 1 =exp| & 22 pog 171,
— s=2 2s — 1

where

. . R B

(2s—1 = G2s—1 F kES Gok Gk 251 g2k—s)+]
with

o _ (Qk)

25 — 1 (2k —1)!
Cop2s—1 = o 2251 = b2k—2s11 (25— 2) (% — 25 + 1)1

So, we provide an exact expression for the hatted (-values in terms

of the standard ones valid for all .



4.2 g-scale

We may proceed in a similar way for the factor ®4(m, [, ), which

has the form

(Dg(ma l7 8) — CXP [8052

where the new polynomial pJ(m,[) can be expressed in terms of
ps(m, 1), as:

pd(m,l) = ps(m, 1) + 0s(m,l), ds(m,l)=(2°—=3—(—=1)"),
where dg(m,l) = 0 for s = 1 and s = 2 and, thus,

p‘%(m, l) =0, pg(ma l) =0, (2)

similarly to the Vladimirov case, considered earlier.

Uspg(m, ) 58] ;



We may then consider the even and odd values of s separately

leading to the following recursion relations:
2k—2
D3k = Dok + 02, Og = 4277 = 1)1,
1
D1 = Pok—1 + Oop—1, Oop_1 = 502% -
These recurrence relations depend on the variable [ but not on the
product L = I[(l + 1) as it was for the MV-scale. So, the g-scale

recursion relations are essentially more complicated than the MV-

scale ones. Fortunately, it is very simple to see that in the relations:

k
g _ kg
Dok = 2, D251 C2k 251

the coefficients Uy o1 are exactly the same as earlier because the
corrections 09;. and 09;._ 1 exactly cancel each other. So, the hatted

(-values for the g-scale are identical to the ones of the MV-scale.



5. Integral representations

Taking the integral representation for (-values

1 dt 1
_ ™=
we have
1 dt o —1 1 dt
Now it is convenient to rewrite ézm_|_1 as

N m A . L

Cm+1=Cm+1+ X CopCopomyl g2h=m)=1,
k=m+1

The integral expression for the first term in the r.h.s. is shown

above. The second term in the r.h.s. can be represented as

62(/€—m)—1 dt

OO A
— > C
k=m+1 2k,2m+1 (2]6—1)! /O 1 —1t !




The subintegral expression can be rewritten as (k = m +[)

—m)— 2(k—m)—1
S, g2lk—m) 11n2k—1t: 55 bz(k—m)—1€( )
e R DY ] k=m+1 (2m)!(2(k — m) — 1)
In™ ¢ PRl
—2 - ° % By (¢ nt)2—1.

(2m)! 1=1 (20)!

Now we use the property of the Bernoulli numbers B,

~ B x B
eyy—lzl_g+ngzr;yn:1_g+z§1 (QZQ)Z!yQZ’
since B9y, 11 =0, when m > 1.
So, we have
o 220 —1
=1 (20! By = Z - eyy+ 1
and
o 220 —1 o1 2 2
O] Bulelmt) ™ =1= w1 =1 e



Combining this result with the one for (9,11, we obtain the Lee

formula for (9,1 1:

1
(2m)!

dt 2 QOt’
(1—1) (t5+1)

i.e. the transform (9,11 — égmH corresponds to the simple
transition 1 — 2/(¢° 4 1) in their integrands.

I

Com+1 =



c.l.=0 MO.,l Ml’l M1,2 M1,3 M174
M 5 My 4 M 5 Ms,

cl=1 My, My My My 7
Ms3 5 M3 3 M3 4 M3 6

cl.=2 M35 My, My
M473 M4,4 M5,2

C.I.:3 @ @ C.l.:4 @ @

My 5 Ms 4 M1 M o M 3

Figure 1: Master diagrams for four-loop massless propagators.



6. More complicated cases: (,j

From an analysis of master-integrals (Lee, Smirnov, Smirnov:
2012) we have (up to the transcendentality weight 12)

(53 = (53— §C8 — EQLC5€ — 2397065@08 + C6C5€ + a5 3C12e" + O(”);
C? 3=0(73— 793(10 — 3e(5¢6¢5 + 7C4C7) + az, 3C12€ +0(e”);

(533 = (533 + 45C2Co + 3CuC7 — §C6C5 +e(as 5,3C12 — §C4C5,3) + O(e?);
Co3 = Co.3 + ag3Cio + O(eh);
. 3 1 9
G6.4,1,1 = 64,11 1t a6.4.1,1612 — §C4C5,3 + §C4C5C3 + 4C6C§ — 362073
7
50263 = 1062¢7¢3 + O(e),

where a_ are known but have rather long expressions.



5.1 Integral representations

Introduce
1 1
st 5
o m rmﬂwmﬁj1—t ”bl—ﬁ

and the generalizations

dty  m-1 (’5)
£y

1 dt 2 a1 (1
" <n>/01 T " ') |
t .
Q””:rmﬂvmk}u—wﬂ1+ﬁwln %J
hy ° ’ mm—l(t)
V(1 —ty) L+ (t/0)F2) (1+18) t1)’

which can be cansidered as candidates for Q:n and én,m-



From above analyses, we have

2 _, 22221—1
te+1 1 (20)!
7
1 &3 31 £? 51
= ] —1———1 — 4+ —1n
oM T T T
since
1 1 1
Bo=- Bi=—— Bs=_—.

5
o (eInt)?'~ 1—1—33251nt—4B4( elnt)’



5.1.1 O(¢)

Consider 5573 up to O(e1), O(eg) and O(¢)
DET 3€9 €

(5.3 =53+ 7%,3 + 7@5,4 + 5(3&3,4 +5C63) + ...

We note that (5 ¢ with s +¢ = 2N + 1 can be represented as

combination of the simple (-values.

Indeed, for even s > 0 andodd ¢t > 1 with s +¢t =2N + 1

1 N—1
Cs,t — CSCt + Q(Cg—l_t o 1)C8+t -

2 2
§1 [Csil + Cpr—l]CQ’/“JrlCQN—QT
and other cases can be reproduced from the property:

Cst = CsCt — Ct.s — Cotts | Oy =

n!

m!(n —m)!



Taking the results, we have for 55’3
5eq (83 ) - 3e2 (127

G53=C53+ |~ Co— 6¢5¢s — 21¢7G 5 15 G9 — 9C5G64 — 35C7Co

2 \2
3
+§(17C9 — 15(5¢y) + ...

We can see that for nonzero £1 and &9 there are the contribu-
tions ~ (9, which are absend in exact results above. But they are

cancelled for the case £; = e9.



So we have two different possibilities

) _ N o2 e
nim = [y [ ) (1—t) (1+ ) (
/B — SRS 4
M D) (m) Y (1 —t) (1 +t9) t
§ /t dtq 2 lnm—l (tl)
Y=t (L+ (/1)) t)’

which can be cansidered as candidates for én,m-

We note that they coincide at O(¢), i.e. g}%l,)n + 0(53) —

O(e%) = én,m +0(e%).



So, we have

(5.3 = (53 + (1769 — 15¢5¢) + O(%),
(73=C(r3— 3¢ (7C7C4 + 5C6C5 + 155C11) +0(e”),

Co3=Co3— 5 (27C9C4 + 27C7C6 + 14¢8C5 — 139@3) +0(e”),

where the products of (-values coinside exactly with the exact re-

sults obtained above. Moreover, the results contain also the term

~ (g9, ~ (11 and ~ (q3, which can be obtained from the corre-
sponding one-fold representation.



5.1.2 Beyond O(¢)

Taking the expansion in 2/(1 + {) up to O(c”) we have for éé}g

and (1

C5(,13 = (5,3 F (17C9 — 15¢5¢4) — 5 (CGCE) — 189411)
+125 (7C8C5 + 5C6C7 — 1540C2C11 — 114967C13) +0(e");
) = Gria = 3¢ 61+ 56665 + 5 G

+Te (5C7C6 + 6¢8C5 — 39(13) +0(e),

where the products of (-values differ from the exact results ob-

+(2) ~(2)

tained above. The situation is similar also for (5 3 and (7 3.

The construction of the integral representations for é@,b,... need

additional investigations!!!



5. Summary

From the LKF transformation of the fermion and scalar propaga-
tors we have found peculiar recursion relations between even and
odd values of the polynomial associated to the uniformly transcen-

dental factor &y (m, [, €).

These relations are most simple in the new MV-scheme. They
relate the even and odd parts in a rather simple way which reveals
the possibility to express all results for yp(m, 1, €) in terms of
hatted (-values.

In the more popular g-scheme, the corresponding recursion re-
lations are slightly more complicated but lead to the same rela-
tions between even and odd parts of the polynomial associated to

®4(m, 1, e) and, correspondingly, to the same hatted (-values.



Our careful study of the recursion relations allowed us to derive
exact formulas, relating hatted and standard (-values to all orders
of perturbation theory.

The coefficients of the relations are expressed trough the well-
known Bernoulli numbers, By,,,. The corresponding integral repre-

sentations have a very compact form.

For the hatted multi-zeta values CAa,b,... the situation is more com-
plicate. From e-expansion of 4-loop master integrals we have the
results up to the transcendentality weight 14.

! However, the derivation of the corresponding integral represen-

tations requires additional research.!!!

Our results for ¢, and Q’b,_“ provide stringent constraints on the

results of multi-loop calculations.



