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Quantum corrections as a tool for understanding nature

Investigating of quantum corrections can shed a light to the structure of the
surrounding world. For instance, the very precise agreement of the theoretical
prediction of the electron anomalous magnetic moment with the experimental
data tells us that the nature is described by quantum field theory.

The unification of running couplings and absence of divergent quantum
corrections to the Higgs boson mass can be considered indirect indications to
the existence of supersymmetry and Grand Unification.
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Figure 94.1: Running couplings in SM and MSSM using two-loop RG evolution. Tt
old at 2 TeV is clearly visible on the MSSM side. (We thank Ben Allanach for providi
created using SOFTSUSY [61].)

Some important information about new physics can be obtained from the
detailed analysis of quantum corrections to (light) Higgs boson in supersymmetric
theories, anomalous magnetic moment of muon, etc.
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Renormalization group invariants

The renormalization group invariants (RGI) are the scale independent values.
Some of them are approximate, but sometimes it is possible to construct the
expressions that are RGI in all orders.

For instance, in the MSSM it is possible to construct the approximate RGI from

the masses of down quarks and charged leptons

~ —-0.866 ~ —.
mam, 9 9

d (mﬁms) ~0: MeMs 1 1

dlnp \mgmy,

This expression is almost protected from quantum corrections and, therefore, at
the unification scale it is impossible to reconcile this result with the prediction
of the simplest SU(5) GUT

mq = Me; Ms = My, mpy = Mr.

A way to solve this problem is to consider more complicated models leading, for
example, to the Georgi and Jarlskog textures

H. Georgi, C. Jarlskog, Phys. Lett. B 86 (1979), 297. ‘
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RGls and Georgi—Jarlskog textures

If the Yukawa matrices for the down quarks and charged leptons are chosen in

the form
0 B O 0 B 0
Ya=| B A4 0|, Yv.=| B -34 0 |,
o o0 C 0 0 C
then for B < A we obtain .

MeMs ~ _
mamy, o
The factor —3 can be obtained either from from the Higgs superfield coming

from the representation 45, of the group SU(5)

5 x 10 x 45,
or with the help of the nonrenormalizable interaction
L5 %10 5 x 758,
M
where 75 acquires vev breaking SU(5) down to SU(3) x SU(2) x U(1), see

S. Raby, Lect. Notes Phys. 939 (2017), 1-308 Springer, 2017. ‘
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Supersymmetric gauge theories

RGls also exist in certain supersymmetric theories. In N' = 1 superspace they
are described by the action

S = % Retr/d4;r POWW, + i/d% 490" (2) b,
0

+{ /d4:c 4’0 (imm@ + %Agj’“@@m) + c.c.}.

Here V is the gauge superfield, ¢; are the chiral matter superfields in the
representation R of the gauge group G, and

W, = éD2 (672vDaezv>

is the supersymmetric gauge field strength.

The gauge invariant theory is obtained if the Yukawa couplings and masses satisfy
the constraints

() i (T = 0
)\E)jm(TA)mk + )\E})m,k(TA)mj + )\gljk(TA)ml — 07

where (T#);7 are the generators of the gauge group G in the representation R.
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RGls and the reduction of couplings

The so-called P = 1@ theories by definition satisfy the constraint

Aomn N7 — dmaC(R) = 2%&@5{,

where Q = T(R) — 3C>. It was demonstrated

‘ I.Jack, D.R.T.Jones, C.G.North, Nucl. Phys. B 473 (1996), 308

that in these theories in the first two orders of the perturbation theory the ratio
of the Yukawa couplings to the gauge coupling is RG invariant,

dlcrilu()\ej ) =0

similarly to N' = 2 supersymmetric theories. If this relation was exact, then it
would presumably allow to reduce a number of couplings if we set A% = ec*,

where ¢* are certain constants, see

‘ S. Heinemeyer, M. Mondragon, N. Tracas, G. Zoupanos, Phys. Rept. 814 (2019) 1 ‘

for more details. However, in the three-loop approximation the above relation is
not valid.
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NSVZ B-function for N’ = 1 supersymmetric theories

Nevertheless, in supersymmetric theories it is possible to construct RGIs using
the exact Novikov, Shifman, Vainshtein, and Zakharov (NSVZ) j-function

V. A. Novikov, M. A. Shifman, A. |. Vainshtein and V. |. Zakharov,
Nucl. Phys. B 229 (1983), 381; Phys. Lett. 166B(1986), 329;

D. R. T. Jones, Phys. Lett. 123B (1983), 45;

M. A. Shifman and A. I. Vainshtein, Nucl. Phys. B 277 (1986), 456

which relates the S-function and the anomalous dimension of the matter
superfields in A/ = 1 supersymmetric gauge theories.

For a general N/ = 1 supersymmetric gauge theory with a single gauge coupling
it can be written in the form
a2 (3C2 = T(R) + C(R) (7);' (e, \) /)

BlasA) = - 2n(1 — Caa/2m)

Here v and X are the gauge and Yukawa coupling constants, respectively, and
we use the notation

e (T2T7) = T(R) 575 (T4 (1) = C(R);

fACDfBCD _ CQ(SAB; r= 5AA —dima.
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RGIs in supersymmetric theories

For the pure N' =1 SYM theory

_ b
_26(2)

S Retr/d4:1c dPOWW,

from the NSVZ S-function we obtain the equation

i( 7020[) do 77@
a? o Jdlnp ~— 27w

Integrating it we obtain the all-loop RGI

3\ C2 27
(M—) exp ( — —) = RGlI
« «
Such expressions appear in calculating the instanton contributions to the

effective action, and the NSVZ p-function was first obtained by requiring their
renormalization group invariance.

V. A. Novikov, M. A. Shifman, A. |I. Vainshtein and V. |. Zakharov,
Nucl. Phys. B 229 (1983), 381.

For theories with chiral matter superfields the analogous invariants contain the
renormalization constants for the matter superfields or masses.
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RGls for theories with softly broken supersymmetry

It is known that the renormalization of soft term in theories with softly broken
supersymmetry can be related to the renormalization of the rigid theory

J. Hisano, M. A. Shifman, Phys. Rev. D 56 (1997), 5475;
I. Jack, D. R. T. Jones, Phys. Lett. B 415 (1997) 383;
L. V. Avdeev, D. I. Kazakov, |. N. Kondrashuk, Nucl. Phys. B 510 (1998) 289.

For instance, the renormalization of the gaugino mass in the softly broken ' =1
SYM theory
5= 2% Retr/d4md29 (1 + 2m0%) W W,
€0
is described by the RGI

a9 _ RGl.

Ble)
Differentiating this equation with respect to Inu and substituting the NSVZ
expression for the S-function it is possible to obtain the all-order expression for
the anomalous dimension of the gaugino mass.

The generalizations for theories containing the chiral matter superfields are also
possible.
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Scheme dependence of the NSVZ equation

Nevertheless, it is necessary to remember that the NSVZ equation is valid only
for certain renormalization prescriptions. Therefore, the all-loop renormalization
group invariance of the above expressions does not hold for a general subtraction
scheme.

Note that in the DR-scheme the NSVZ equation is not valid starting from the
order O(a) (the three-loop approximation for the S-function and the two-loop
approximation for the anomalous dimension)

I. Jack, D. R. T. Jones and C. G. North, Phys.Lett. B 386 (1996) 138;
Nucl.Phys. B 486 (1997) 479;

R. V. Harlander, D. R. T. Jones, P. Kant, L. Mihaila and M. Steinhauser,
JHEP 0612 (2006) 024.

However, in this case it is possible to make a special redefinition of the coupling
constant which restores the NSVZ relation.

The all-loop NSVZ schemes have been constructed with the help of the higher
covariant derivative regularization

A. A. Slavnov, Nucl. Phys. B 31 (1971), 301;
Theor. Math. Phys. 13 (1972), 1064; 33 (1977), 977.
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The HD+MSL scheme

In the supersymmetric case the higher covariant derivative regularization can be
formulated in terms of superfields and, therefore, does not break supersymmetry

V. K. Krivoshchekov, Theor. Math. Phys. 36 (1978), 745;
P. C. West, Nucl. Phys. B 268 (1986), 113.

In this case (logarithmic) divergences are given by powers of In A/, where A is
a dimensionful regularization parameter, and j is the renormalization point.

The NSVZ S-function is valid in all loops if a supersymmetric theory is regularized
by Higher covariant Derivatives and the renormalization is made by Minimal
Subtraction of Logarithms (the so-called HD+MSL scheme), see

‘ K.S., Eur. Phys. J. C 80 (2020) no.10, 911 ‘

and references therein.

The whole class of the NSVZ renormalization prescriptions can be obtained from
the HD+MSL scheme by making finite renormalizations which satisfy a special
constraint

I. O. Goriachuk, A. L. Kataev and K.S., Phys. Lett. B 785 (2018), 561;
I. O. Goriachuk and A. L. Kataev, JETP Lett. 111 (2020) no.12, 663.

K.V.Stepanyantz All-loop renormalization group invariants




The NSVZ relation for ' =1 SQED

Let us demonstrate the scheme dependence of the NSVZ equation in the simplest
case of N =1 SQED with Ny flavors

Ny
o 1 4 2 a 1 4 4 * 2V Tx =2V T
S——462Re/dmd oW Wa+a§:14/dxd 0(¢ae ba + dre ¢a).

For this theory the NSVZ S-function takes the form

(o) = “ N (12 ().

s

M. A. Shifman, A. |. Vainshtein and V. |. Zakharov,
JETP Lett. 42 (1985) 224; Phys. Lett. B 166 (1986) 334.

Expressions for the three-loop -function and the two-loop anomalous dimension
of the matter superfields for N' =1 SQED can be found in

A. L. Kataev and K.S., Phys. Lett. B 730 (2014) 184;
Theor. Math. Phys. 181 (2014) 1531.
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The three-loop NSVZ relation for N' =1 SQED

The HD+MSL-scheme
~ « o /1 NsA 3
YHp+msL () = = ﬁ(§ + Nylna+ Ny + T) + O(a”);

~ a’Ny a o?/1 Ny A 3
Bup+msL (@) = - (1+;—§(§+Nflna+Nf+T)+O(oz ))
The MOM-scheme (The result is the same for dimensional reduction and for the

higher derivative regularization.)

2 ;
?MOM(Q) = —% —+ % + O(a3),
~ 2 9
Buou(@) = X (14 5 = 75 (148N, (1~ ) + 0(a),

The DR-scheme

‘ I. Jack, D.R.T. Jones and C.G. North, Phys. Lett. B386 (1996) 138. ‘

~ a | a?(2+2Ny)

Yor(@) = i I +0(a”);
~ o’ Ny a  A*(2+3Ny) 3
Bor(e) = “F (14 2 - CEZ 4 0(a”).
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Gauge theories with multiple gauge couplings

Let us investigate a possibility of constructing RGls for some gauge theories with
multiple gauge couplings. In this case the gauge group is a direct product

G=G1 xGa X ...x Gy,

where any G; is either a simple group or U(1). In this case there are n gauge

coupling constants a1, as, ..., an.
Such theories can be interesting for phenomenology because they include
@ QCD+QED
@ The Standard Model
@ The MSSM
@ Some Grand Unified Theories, e.g., the flipped SU(5) theory.
Following

A. L. Kataev, K.S., arXiv:2410.12070 [hep-th];
D. Rystsov, K.S., Phys. Rev. D 111 (2025) no.1, 016012,

we argue that in some N = 1 supersymmetric theories with multiple gauge
couplings one can construct all-loop RGIs from the gauge and Yukawa couplings.
We will also discuss under what renormalization prescriptions the renormalization
group invariance is valid in all orders.
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The simplest example of a theory with two gauge coupling constants s = g2 /4w
and a = ¢*/47 is QCD+QED. In the massless limit this theory is described by
the Lagrangian

1

1
L= —trF,, 42

27 v+ Zwaw”mwa,

which is invariant under the transformations of the gauge group G x U(1).
The Dirac spinors ¥a (where the subscript a numerates flavors) lie in a certain
irreducible representation R of the group G and have the electromagnetic charges
ga. In this case the covariant derivatives are written in the form

Dptpa = auwa + A;ﬂ[}a + iqu;ﬂ/}a:

where A, and A, are the non-Abelian and Abelian gauge fields, respectively.
The corresponding gauge field strengths are given by the expressions

Fo =0,A, —0vAL + [Au, ALl F,, =0,A, —0,A,.
In quantum field theory the couplings a5 and « depend on scale,

do dos
= ﬁ(av as);

= ﬁs(a5705)-

dlnp dlnp
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It is convenient to formulate the supersymmetric version of the above model in
terms of superfields

s=_L Retr/d4m dPOW W, + 1 Re/d4xd20 WW,
2¢? 4e?

Ny
1 oy T oy T
Jrz Z/d4xd40 (¢;e2v+2an¢a+¢;6 2V 213V¢a),
a=1

because in this case N' = 1 supersymmetry is manifest.

Here V' and V are the gauge superfields corresponding to the subgroups G
and U(1), respectively. The chiral matter superfields ¢a and ¢a belong to the
(conjugated) representations R and R, respectively, and have opposite U(1)
charges.

Two supersymmetric gauge superfield strengths are written in the form

o 1—2 —2V 2V | - 1—2
W= 3D (e Dae ) W, =D D.V.

Is it possible to relate running of two gauge coupling constants in this model?
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The NSVZ equations for theories with multiple gauge couplings

The NSVZ equations can also be written for theories with multiple gauge
couplings,

M. A. Shifman, Int. J. Mod. Phys. A 11 (1996), 5761;
D. Korneev, D. Plotnikov, K.S. and N. Tereshina, JHEP 10 (2021), 046.

In the particular case ga = 1 for V' =1 SQCD+SQED they take the form

ﬁs(zg a) _ -3 ém/%) {302 - 2T(R)Nf(1 — y(as, a))} :
Bla, as)

_ %dim RNy (1-(as,a)),

o2
where we took into account that if the representation for the matter superfields
is irreducible, then in the case under consideration

’Y(O‘H ) _7(04&705) 6

where i and j include both the indices numerating chiral matter superfields ¢a
and qba and the indices corresponding to the representation R (or R).

Comparing the above expressions for the S-functions we see that the anomalous
dimension of the matter superfeilds can be eliminated.
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The RGI for ' =1 SQCD+SQED

After eliminating the anomalous dimension of the matter superfields we obtain
that the S-functions satisfy the all-order exact equation

(1 _ %) Bs(as,a) _ 3C N T(R) 6(0&,@5).

27 a? T oorn dim R a?

Evidently, this equation is valid in the HD+MSL scheme, because the original
NSVZ equations are satisfied for this renormalization prescription.

Taking into account the boundary conditions for the HD+MSL scheme it is
possible to integrate the relation between the S-functions over p. Then we obtain
the equation which relates running of the strong and electromagnetic couplings
in the theory under consideration.

- ~2 — a :
Qs Qs + or Qs 2r  u  dimR

1 1 Cs as %lnA T(R) (1 i)
[e% (e%s)

This in particular implies that the expression

(%)Cz ex (Q—W — T(R) . 21) = RGI

s dmR «

is the renormalization group invariant, i.e. the expression which vanishes afer
differentiating with respect to In p.
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N =1 SQCD+SQED with different U(1) changes

Let us again consider the theory in which the matter superfields have different
U(1) charges qa,

s= 1 Retr/d41: d*OW W, + 4—12 Re/d4xd29 WW,
g e

Ny
1 — o -
+Z Z/d4xd49 (¢;€2v+2qav¢a +¢;r€ 2V 2an¢a)
a=1

and investigate the limit & = e?/47 — 0. In this case the renormalization
group running of the strong coupling constant « is exactly the same as in usual
N =1 SQCD with the gauge group G and Ny flavors. The running of the
electromagnetic coupling constant is described by the Adler D-function

‘ S. L. Adler, Phys. Rev. D 10 (1974), 3714,

which is related to the S-function for the coupling constant « in the limit a — 0,

D(as) = 3m lim M.

2 a—0 a?
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The NSVZ-like expression for the Adler D-function

In the limit &« — 0 the anomalous dimensions of the matter superfields do not
depend on « and, therefore, on ¢a. This implies that in this case all anomalous
dimensions of chiral matter superfields are the same,

lim 7a (as, @) = y(as).

a—0

Then the NSVZ S-function for N' =1 SQCD takes the form

Pl = e Gy |3~ NS (1 7(“5))} '

The exact NSVZ-like expression for the Adler D-function in the theory under
consideration has been derived in

M. Shifman and K.S., Phys. Rev. Lett. 114 (2015) 051601;
Phys. Rev. D 91 (2015), 105008.

D(as) = 7d|mRZ qa) (1 - )) = g‘f dimR(l _V(Oés))’
where ¢q EZ(Qa) .

a=1
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N =1 SQCD+SQED with different U(1) changes

Therefore, the S-function of N' =1 SQCD can be related to the Adler D-function
by the all-loop equation

B a? 4T(R)N;D(aw)
Belas) = =5 A= Cranom) {302 T T 3q2dimR ]

which connects the renormalization group running of the strong and
electromagnetic coupling constants in the limit & — 0. Evidently, this equation
is valid in the HD+MSL scheme in all orders.

Thus, from the NSVZ equation we see that

1. If all U(1) charges ga are the same, then in the ' = 1 SQCD+SQED, which
is a theory with two gauge couplings, it is possible to relate their running.

2. If the charges ¢a are different, then it is possible to relate the S-function of
N =1 SQCD to the Adler D-function. Actually, in this case the exact relation
exists only in the limit o — 0.
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The Minimal Supersymmetric Standard Model (MSSM)

The MSSM is the simplest supersymmetric extension of the Standard Model. It is
a gauge theory with the group SUs x SUz x U1 and softly broken supersymmetry.
Consequently, there are 3 gauge coupling constants es, ez, and e; in the MSSM
(their number is equal to the number of factors in the gauge group). Quarks,
leptons, and Higgs fields are components of the chiral matter superfields:

Superfield | SUs | SUz | Uy (Y) || Superfield | SUs | SU> | Ur (V)
3xQ 3 2 —-1/6 3x N 1 1 0
3xU 3 1 2/3 3x FE 1 1 —1
3x D 3 1 -1/3 Hy 1 2 1/2
3x L 1 2 1/2 H, 1 2 | —1/2

where for the superfields which include left quarks and leptons we use the brief

notations B B
U N
-(8) o (3)
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The MSSM superpotential

The MSSM contains three gauge couplings
= B, a8 454
57 4 T ar "7 3 an
corresponding to the subgroups SU(3), SU(2), and U(1), respectively. (The
factor 5/3 in the coupling constant «; is introduced in order that the unification
of couplings has the form a1 = a2 = ag.) There are also dimensionless Yukawa
couplings (Yu)rs, (Yp)1rs, and (Ye)rs (which are 3 x 3 matrices) inside the
superpotential

Moreover, the superpotential includes a term with the parameter p, which has
the dimension of mass.
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The NSVZ equations for the MSSM

The renormalization group running of the gauge couplings in the MSSM can be
described exactly in all loops with the help of the NSVZ S-functions

\ M. A. Shifman, Int. J. Mod. Phys. A 11 (1996), 5761. \

ﬁ—;:—§~i[—11+tr(17Q+é7U+lvD+17L+WE)+17H +1’7H:|'
o2 5 o2r 6 3 3 2 g THu T T a |
%I—;{—lﬁ-tr(é’mﬁ-l’m)ﬁ-l’m, +1’YH }

a? 27(1 — as /) 2 2 2 g e

Bs 1

1 1
S S+ =)
a2 27T(173a3/27r)[ + r(7Q+ 27U+27D)}

They relate three gauge SB-functions of the theory to the anomalous dimensions
of the chiral matter superfields. The renormalization group functions (RGFs) are
defined by the equations

dIn Z;
dlnp

o dOzi
T dlnp

) fyl(O‘?Y) =

ag,Yp=const

Bi(a’ Y)

ki
ag,Yp=const

where the subscript 0 denotes the bare values.
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The exact equations describing the renormalization of the MSSM Yukawa

couplings

RGFs describing the renormalization of the Yukawa couplings and of the
parameter p can also be related to the anomalous dimensions of the matter
superfields due to the nonrenormalization of the superpotential

M. T. Grisaru, W. Siegel, M. Rocek, Nucl. Phys. B 159 (1979), 429.

ddlYnzL = 5 (Yo + (60) ™Yo + Yo );
o = 5 (Yo + ()Y + Yoo )
ddl};Eu - %("/HdYE + (o) Ye + YE'VE);
d(ljrl:p - %(”/Hu +'YHd);L.

It is important that these equations are valid in the HD+MSL scheme because in
this scheme all renormalization constants contain only powers of In A/u, where
A is the dimensionful regularization parameter.
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The equations for the determinants of the Yukawa matrices

The renormalization group equations for the Yukawa couplings can be multiplied
by the corresponding inverse matrices. After that, it is possible to calculate traces
of the resulting equations using the formula

/]
tr[M‘1 dM} 4 M=

d
= Indet M
dlnp dlnp dlnp faet A,

Then (taking into account that the indices numerating generators range from 1
to 3) we see that the equations describing how the determinants of the Yukawa
matrices depend on the renormalization point p are written as

o dlndetYU _ 1 dYU o 1 .
et = g = (00 Grg) = 5 (s +ule +0);
_ dlndetYp - _1 dYp - 1 .
Vdetyp = “dinp tf[(YD) dlnu] =3 (37Hd +tr(ve +’YD)),
_ dlndet YE 1 dYE 1
Tdetve = " ging tf[(YE) dlnu] = 5(3%{0[ +tr(ve +’YE)).

They can be solved together with the NSVZ equations and the equation
describing the renormalization of the parameter p.
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The renormalization group equations for the (rigid part of the) MSSM

Collecting the above equations we obtain the system of differential equations
describing the renormalization of the MSSM parameters exactly in all orders

d (é‘ﬁr),_nw(l IV N )+1 LS
dnp\3 o)~ G T 3wt g+ S e )+ Svm, v
d s2om 3 1 1 1
dinp (072 +21H0¢2> =-1 +tr(§VQ + §’YL) + 5 VHu + 5 THa
d 27 1 1
dng <07; +3lna3) = 3+tr(m 3w+ 57]3);
dlndet Y 1
g = 3 (B +ule+0));
dlndetY] 1
ZTND = 5(37Hd +tr(vg +’YD));
dlndetY] 1
I;TME = 5(3'YHd +tr(vL +7E));
dlnp 1
dinpg 5("/Hu +’YHd>~

The anomalous dimensions of the chiral matter superfields and p can be
eliminated, thereby obtaining a differential equation which contains only
derivatives of the gauge and Yukawa couplings.
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Eliminating the anomalous dimensions of the matter superfields

First, we eliminate tr(vz), tr(ye), and vm, + vm,. The resulting equations
contain vq, vp, and vy only in the combination tr(2vq + yuv + vp).

d (27 + 31n a\;) =3+ *tr(Q’YQ +yu +’yD)

dlnp
d 2 2 4
(— +2lnas + 2. olnp - 2lndetygy +21ndetYD) — 124 —tr(QO + U +wD);
dlnp Nag a1 3

d (lndetYD + Indet Yy — Slnp,) = ltr(2'yc,g + U +’yD).
dlnp 2

This allows either eliminating the one-loop constants or eliminating the parameter
. The resulting equations take the form

d 5
dlnu<—+3lna3+7+ 1na2+£
1
—7lndetYE—£1ndetYD—glndetYU-‘r91nu> 0,
d <2 31 s 1 57
— nag — — —Ilnas — —
dlnp 8 oo 2 3aq

2 1
+Indet Vi — - Indet Yp +  Indet Yy —91n,u> -0,

respectively.
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The all-loop RGIs for the MSSM

Integrating the first equation we obtain the expression RGI;, which does not
explicitly depend on the scale i, but contains the parameter p. Integrating the
second equation gives the expression RGly independent of p, but containing the

scale p,
9/2 3 1/2 9 5
RGl, = {‘/2 (as) (?/23) - (j LT i);
(det YE) (det YU) (det YD) as 200 Go
(013)3 det YE (det YU) 1/3 21 T 5%¢
RGl, = w(ffff—)
2/3 as [e%) 30&1

/.Lg o (det YD)

Instead of the renormalization group invariants (RGl1, RGI») it is possible to use
the equivalent set (RGl3, RGly), where the expressions

RGI1>2/3 B u® 18

- exp (1 + 5i>
RGl2 (det YE) (detYU)4/3 (det YD)1/3 o 3oy )

ngz(

3 3
- 2/3 L 1l C) N 3
RGl, = (RGIl) (RGIQ) = A detYy etV exp (ag)

also have a rather simple form.
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The three-loop check

Differentiating In(RGls) and In(RGls) with respect to Inpu we obtain the

equations
1 5w 4 1
0= (az )ﬁ2— aﬂﬂl + 6+ 37 — VYdet vg ~ g detyy ~ 3Vdet¥p;

3 27r
0= (a3 a§)53—3+3’m Vdet Y, — Ydet Yp -
The scheme dependence of these equations becomes essential starting from the
order O(a?,aY?,Y*) corresponding to the three-loop approximation for the 3-
functions and to the two-loop approximation for the anomalous dimensions.

In the HD4+MSL scheme they should be satisfied in all orders independently of
the regularization parameters

M 3 My 2
A= [delne — ——; 03 = — = ;
/ T nx :(‘) ayp,3 A Ap2 = A
d 1 M: M M
BE/dzlnx—‘i; a;;E—d; as = Z; a,lz—l,
dx F?(z) A A A
0

where R(z) and F(z) are the higher derivative regulator functions, and A/; are
the Pauli-Villars masses.
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The three-loop verification, the HD+MSL scheme

The three-loop 3-functions for the MSSM in the HD+MSL scheme have been
calculated in

\ 0. Haneychuk, V. Shirokova, K.S., JHEP 09 (2022), 189. \

B1(a,Y) 1 3{ 19907  9as 2203 1 13 LT . ‘
JEEE S S it S s w( =YuY,i + —YpYS +3YgY
a2 2 5 60 4m 3r  8n2 ( 3 Utu TP B E)
1 [5131a? 2702 88a2 23ajas  137aias 21892 A
—[ 1 2 TS T T L agas l(lna1+1+—)
2 3600 16 9 40 45 100 2
9o

+ (71na2—61nnﬂ_ +1+2)—22a§(31nawg—21n113+1+2)]+ tr(YU ])

169c1 132 52a3
+ + )|+
180 4 9

><(419;)1 7%2 28:3)} + tr(YEYg){— +(B - 4)(

x tr((YUYJ)2) + %tr((YDYg)Q) + %tr((YEYg)Q) + Etr(‘y,;)YgYUYU*) n Z(tr(YUY[jr))

+Z(tr(YDYg))2 + Z(tr(YEYg))2 T %tr(YEYg) t.(yDYg)]} +0(a®,a2y2, av?t, vo),

.
tr(YDYB—) { ?2 +2a3 + (B — A)

x[2a2 + 205 + (B 7A)<

271 jeTe%) )] 1 { 15
4 (8m2)2

83
2

y Y
B2l Y) L 0(a®, 022, av?, vO), M,Z) — . 403, a%Y2, ay?, Y.

2
aj asg
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The three-loop verification, the HD+MSL scheme

The two-loop anomalous dimensions in the HD+MSL scheme can be calculated
starting from the anomalous dimensions of the chiral matter superfields

Vet vy, (@ Y) = (SWH,‘ (. Y) +tryg(a,Y) + tryy (a, )
13a1  9an 4oz 1 1 [169u§ 2703 16a3
= 2y tr(12YyY,F +YpY) + — + +—=
207 an ™ 167 r( viu b D) 272 [ 1200 16 3
3oy 17y a3 27a2 2 A
s 5 + 3asaz — (lna,2+l+ )736a3(lna¢,3+1+;)
42907 63a3 1
oo (lan1+1+ )+ (lnrlo+1+ )+24ad(1nug+1+ )]+16W3
X tr(Yy Y, )[7a1+3a2+12 + (B 4)( )]+ ! e(vpyih)
r _— _— «@ — r
Uty 3 1673 DYp
Tap 3an 4oy 1 4.2 +.2
{7 +(B- 4)( T 3 )] ~ (1672)2 [Sltr((YUYU) ) +2u(0pyE)?)

+11tr(YDYgYUYJ)+9(tr(YUYJ:)) +3(tr(YDY )) + (YY) (VY] )}

+O(o¢ s 2y2 aY4,Y6);

1 4
Vdet vp, (a,Y) = E(S'YH[J (a, V) +tryg(e,Y) + tryp (e, Y)) =...+ O(as,azYQ, DcY4,Y6);
1
Vet vy (V) = 5 (3, (V) + 71 (0, V) + ryp (e, ¥)) =+ 0(a®, a®v2, av®, v0);
1
oY) = o (v, (00 ¥) + iy (e, Y)) = -+ 0(e®, a®¥?, av?, ¥0).
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The three-loop verification, the HD+MSL scheme

Substituting the above expressions for RGFs in the HD+MSL scheme we see
that in the considered approximation the derivatives of the expressions RGI; and
RGl4 vanish independently of the values of the regularization parameters,

1 ™ 5T

- _ _ 2 6+ 3, —
[(ag Oé%)ﬁQ 304%’614— + 9% T ety

1
T3 detyy ~ g”ydetYD} = O(a37a2}/27ay47y6);
HD+MSL

3 2T

2 28, 3434, — _
[(ag ag)ﬂs + 3%~ Vdet vy, ’vdetyDme

= O(a37a2Y27o¢Y4,Y6).

Therefore, in the considered approximation the expressions RGl; and RGl; also
do not depend on the renormalization point p in the HD+MSL scheme.

Certainly, this is quite expected because the HD+MSL scheme is NSVZ in all
orders.
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Dimensional technique in the supersymmetric case

However, the most popular renormalization prescription in the supersymmetric
case is the DR scheme. The matter is that dimensional regularization

G. 't Hooft and M. J. G. Veltman, Nucl. Phys. B 44 (1972), 189;
C. G. Bollini and J. J. Giambiagi, Nuovo Cim. B 12 (1972), 20;
J. F. Ashmore, Lett. Nuovo Cim. 4 (1972), 289;

G. M. Cicuta and E. Montaldi, Lett. Nuovo Cim. 4 (1972), 329.

explicitly breaks supersymmetry, because the numbers of boson and fermion
degrees of freedom differently depend on the space-time dimension.

That is why in the supersymmetric case it is more convenient to use its
modification called dimensional reduction

W. Siegel, Phys. Lett. B 84 (1979), 193. \

In this case the y-matrices are taken in the integer dimension (usually, D = 4),
while the loop integrals are calculated in the dimension D =4 — ¢.

The DR scheme is obtained if the dimensional reduction is supplemented by
modified minimal subtraction.
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The three-loop verification, the DR scheme

The three-loop -functions for the MSSM in the DR scheme have been calculated

in
‘ I. Jack, D. R. T. Jones, A. F. Kord, Annals Phys. 316 (2005), 213. ‘
B1(a,Y) 1 3{ 19907  9ap  22a3 1 13 LT " n
JEEE S S S it s tr( Yy Yl + —YpY +3YgY,
a2 2 5 607 47 3r  8n2 (3 viu T gthip e E)
1 /32117a2 2702  121a2  23ajas  137ajas 1 16901
+
—_—— - + + + azasz ) + —tr( Yy Y,
27r2( 1800 8 18 40 45 ) 873 ( v U)( 360
29a 4403 1 + 4901 1lag 32a3 1 + 27aq 2lag
+ + + tr(YpY, + + + tr(YgY, +
8 9 ) ) (DD)(360 8 9 ) ) (vevi)( 40 8 )
9 . 9 . 29
ot +y2) , 92 +y2) , 2 +2) 29 + +
TIE [7tr((YUYU) ) + 2tr((YDYD) ) + 2tr((YEYE) ) + 5 tr(YDYD YUYU)

+1§(tr(YUYJ))2 +3(e(vpy))” +2(evevi))” + Te(vEYE) tr(YDYg)]}

+0(a®,a?y?, av?, vy,

2(a, Y
LQ') =...4+ O(ULSA, (x2Y2, (xY47 YG);
a
2
a,Y
Lz) = ... 40> a%yY?, av?* v%).
@3
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The three-loop verification, the DR scheme

Again, the two-loop anomalous dimensions in the DR scheme can be calculated
starting from the anomalous dimensions of the chiral matter superfields

1
et vy, (00 Y) = 5 (871, (0, V) - tr3g (e, V) 4ty (e, V)

13 9o 4o 1 1 [27430% 4502 2432
—_oar Tez Tas tr(12YU +YDY+)+—[ 1 2 _ 2%
207 4w ™ 1672 272 [ 1200 16 3
3aqan 17 a3 Ty 3042 1
it S 3aza3] + —— (VoY) [— + 224 12a3] + w(YpY)
8 15 167 3

aq

XI5~ TenTeE {Sltv((YUYJ)z) +2u((vpY)?) + 11 tr(YDYgYUYJ) + g(t.r(yyylj))2

+3(tr(YDYBF))2 +tr(YpYD) tr(YDYg)] + O(QSY a2v?, av?, y(s);

Vdet vp, (a,Y) = (S'YHd (a, V) +tryg (e, Y) + tryp (e, Y)) R O(ag,azYz, aY4,Y6);
1 . P .
Vet vy, (00 V) = 2 (371, (e, V) +tryp (0, V) + tryp (e, Y)) = 4+ 0(e®, 0¥ 2, ax®, v0);
1
oY) = (v, (0 ¥) + iy (@, YV)) = .+ 0(a®, a®y?, av?, v0).

However, in the DR scheme the derivatives of In RGl3 and In RGl, with respect

to Inp do not vanish in that orders where the scheme dependence becomes
essential.
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The three-loop verification, the DR scheme

[( 1 ™ )ﬁ 57 614643 4 1 }
— T 5 )P2— 5P T — -3 Fe —
2 302 w detyp = 37det vy 3 'detyp bR
1431 1lag 44a3

)
180 4

9
|:r(YEYJr)(9a1 37)

1 (1243(y21’ 1702

+
tr(Yy Y,
400 16 Oy U)(

. 1
2
—5a3 ) +
3) 1673

l4a 32«
+ 1 3
3tr(YDYD )( P o4 5 ) +

{lltr((YUYU) )+8tr((YDYD) )+6tr((YEYg) ) YDYgYUYJ)

1
~(1672)2 (
+11(tr(YUYJ))2 T 8(tr(YDY5))2 n 2(tr(yEYE+))2 236tr(YEY ) (YDYg)]

+O(o¢3, oz2Y2, aY4, Yb)qé O(a:;, Q2Y21 aY4, Y“);

3 27 1 (363a§ 904%721&%)

2 )B3—-3+3 _ ] -
[(&3 a3)3 Tk T Vdetyy T Vet Yp [ 5p T 572 \ 400 16 8

Ta 3a 8as
v+ 1 2 3
(D D)( 30 2 3 )

+

131 3ag 8as
+ =)+

1678 tr(YUYJ)( 2 3 1673
_m {6tr((YuYJ)2) +ou((Ypy)?) + ﬁ(tr(YUYJ))z + 6(tr(YDYg))2
+2u(YeYd ) u(voyh) + 4tr(YDYgYUYJ):| +0(a® 0?2, av ", v°)

# O((\S, (\QYZ, ()(Yd, YG)A
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The NMSSM

The parameter p in the MSSM superpotential should be of the order of the
electroweak scale, which is impossible to explain in MSSM. The p problem can
be solved in the Next-to-Minimal Supersymmetric Standard Model (NMSSM)

M. Maniatis, Int. J. Mod. Phys. A 25 (2010), 3505;
U. Ellwanger, C. Hugonie, A. M. Teixeira,Phys. Rept. 496 (2010), 1,

which contains an additional chiral matter superfield S. This superfield is a singlet
with respect to SU(3) x SU(2) x U(1). Then it is possible to replace the p term

0 1 H
by the gauge invariant expression
, 0 1 H K,
AWnMsSM = AS (Hu1 Huz) ( 10 ) ( HZ; > + 5537

in which X and « are new dimensionless couplings. In this case the effective value
of w is equal to the vacuum expectation value of (the lowest component of) S
multiplied by A and can have an order of the electroweak scale.
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RGlIs for the NMSSM

Due to the nonrenormalization of the superpotential, the anomalous dimensions
of \ and « satisfy the all-loop equations

_dlahk 3 _dlnX 1

= 57S; T 5 (75 +vH, + VHd) .

vﬁ:dln,u 2 :dlnu 2

Therefore, the sum which for the MSSM gives v,, can be written as
o o) =
2 YHy, T VHgq ) = A 3’VN~

The NSVZ relations for NMSSM are the same as for MSSM (although the
anomalous dimensions are different). The equations describing the running of
the Yukawa couplings Y&, Y, and Yp also remain unchanged. That is why RGls
for NMSSM can be obtained from the ones for MSSM after the replacement

©no— A3,

The expression RGl> does not depend on p and, therefore, is also RGI for
NMSSM. The RGI; after this replacement takes the form

_ \9/2 (043)3 (a2)1/2 o r 5
RGl; = 2r w5y
Y (det YE)1/2 (det YU)S/3 (det YD)7/6 P (Oég o T 6a1)
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Conclusion

@ In certain A = 1 supersymmetric theories with multiple gauge couplings one
can construct such combinations of various couplings that do not depend on
scale in all orders or, in other words, RGls.

@ In particular, in N’ =1 SQCD interacting with A’ = 1 SQED RGlI can be
constructed from the strong and electromagnetic coupling constants (if the
matter superfields have the same absolute values of the electromagnetic
charges). Therefore, in this theory two gauge couplings do not run
independently.

@ If the (absolute values of the) electromagnetic charges of matter superfields are
different, then it is possible to construct an equation relating the S-function of
N =1 SQCD to the Adler D-function.

@ For the MSSM and NMMSM one can construct two independent RGls from the
gauge couplings, Yukawa couplings and the 1 parameter. They are scale
independent in all orders in the HD+MSL scheme, when a theory is regularized
by higher covariant derivatives, and divergences are removed by minimal
subtractions of logarithms.

@ The explicit three-loop calculations for the MSSM confirm the renormalization
group invariance of the constructed expressions in the HD+MSL scheme.
However, in the DR scheme they start to depend on scale in such an
approximation where the scheme dependence becomes essential.
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Thank you for the attention!




