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General theory of relativity 1

� GTR or ETG assumes that Universe is four dimensional homogeneous
and isotropic pseudo-Riemannian manifold M with metric (gµν) of signa-
ture (1, 3).

� There exist three types of homogeneous and isotropic simple connected
spaces of dimension 3:

◦ sphere S3 (of constant positive sectional curvature),
◦ flat space R3 (of curvature equal 0),
◦ hyperbolic space H3 (of constant negative sectional cutvature).

� Generic metric in these spaces is of the form (Friedmann-Robertson-
Walker metric (FRW)):

ds2 = −dt2 + a2(t)
(

dr 2

1− kr 2 + r 2dθ2 + r 2 sin2 θdφ2
)
, k ∈ {−1, 0, 1}, (1)

where a(t) is a cosmic scale factor which describes the evolution (in
time) of Universe and parameter k which describes the curvature of the
space. FRW metric
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Zoran Rakić New Cosmological Solutions of a Nonlocal Gravity Model



General theory of relativity 1

� GTR or ETG assumes that Universe is four dimensional homogeneous
and isotropic pseudo-Riemannian manifold M with metric (gµν) of signa-
ture (1, 3).

� There exist three types of homogeneous and isotropic simple connected
spaces of dimension 3:

◦ sphere S3 (of constant positive sectional curvature),
◦ flat space R3 (of curvature equal 0),
◦ hyperbolic space H3 (of constant negative sectional cutvature).

� Generic metric in these spaces is of the form (Friedmann-Robertson-
Walker metric (FRW)):

ds2 = −dt2 + a2(t)
(

dr 2

1− kr 2 + r 2dθ2 + r 2 sin2 θdφ2
)
, k ∈ {−1, 0, 1}, (1)

where a(t) is a cosmic scale factor which describes the evolution (in
time) of Universe and parameter k which describes the curvature of the
space. FRW metric
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General theory of relativity 2

� GTR is based on Einstein-Hilbert action:

S =

∫ ( R − 2Λ

16πG c4 + Lm

)√
−g d4x

where R is scalar curvature, g = det(gµν) is determinant of metric ten-
sor, Λ is cosmological constant and Lm is Lagrangian of matter.

� The variation of the action S we obtain equations of motion:

Rµν −
1
2

R gµν + Λ gµν = 8πG Tµν , c = 1 (2)

where Tµν is the energy momentum tensor, gµν is metric tensor, Rµν is
Ricci tensor and R is scalar curvature.

� The energy momentum tensor for ideal fluid (matter in cosmology) is

T = diag(−ρ g00, g11p, g22p, g33p), (3)

where ρ is energy density and p is pressure.
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General theory of relativity 3

~ Now, Einstein equation implies Friedmann equations

ä
a

= −4πG
3

(ρ+ 3p) +
Λ

3
, H2 =

(
ȧ
a

)2

=
8πG

3
ρ− k

a2 +
Λ

3
.

~ Hubble parameter describes the expansion of the Universe

H =
ȧ
a
. (4)

~ Despite to the great success of GRT, observational discoveries of 20th
century imply that they could not be explained by GTR without additional
matter.

~ Problem of Bing Bang singularity.
~ It means that GRT should be modified. There are two approaches:

(A1) Dark matter and energy

(A2) Modification of GTR, i.e. modification of its Lagrangian L

L =
R − 2Λ

16πG
+ Lm, c = 1.
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ȧ
a
. (4)

~ Despite to the great success of GRT, observational discoveries of 20th
century imply that they could not be explained by GTR without additional
matter.

~ Problem of Bing Bang singularity.
~ It means that GRT should be modified. There are two approaches:

(A1) Dark matter and energy

(A2) Modification of GTR, i.e. modification of its Lagrangian L

L =
R − 2Λ

16πG
+ Lm, c = 1.
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Zoran Rakić New Cosmological Solutions of a Nonlocal Gravity Model



General theory of relativity 3

~ Now, Einstein equation implies Friedmann equations

ä
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Dark matter and energy 4

Dark matter and energy

~ Dark matter is responsible for orbital speeds in galaxies, and dark
energy is responsible for accelerated expansion of the Universe.

~ If Einstein theory of gravity can be applied to the whole Universe then
the Universe contains about 5% of ordinary matter, 27% of dark matter

and 68% of dark energy.

~ It means that 95% of total matter, or energy, represents dark side of the
Universe, which nature is unknown.

Motivation for modification of Einstein theory of gravity

~ The validity of General Relativity on cosmological scale is not confirmed.

~ Dark matter and dark energy are not yet detected in the laboratory
experiments.
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Nonlocal modified gravity 5

~ Under nonlocal modification of gravity we understand replacement of the
scalar curvature R in the Einstein-Hilbert action by a suitable function
F(R,�), where � = ∇µ∇µ is d’Alembert operator and ∇µ denotes the
covariant derivative

~ Let M be a four-dimensional pseudo-Riemannian manifold with metric
(gµν) of signature (1,3). We consider a class of nonlocal gravity models
without matter, given by the following action

S =

∫
M

(R − 2Λ

16πG
+H(R)F(�)G(R)

)√
−g d4x ,

where F(�) =
∞∑

n=0

fn �n is an analytic function of �, and Λ is cosmolo-

gical constant.

~ In the case of FRW metric the scalar curvature and d’Alambert operator
are given by

R =
6
(
a ä + ȧ2 + k

)
a2 , �R = −R̈ − 3 H Ṙ, H =

ȧ
a
.
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ȧ
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Equations of motion 6

~ For calculating variation of the action, δS =
1

16πG
δS0 + δS1, we need

the following

Lemma 1. For any two scalar functions G and H hold∫
M
Hδ(

√
−g) d4x = −1

2

∫
M

gµνHδgµν
√
−g d4x ,∫

M
HδR

√
−g d4x =

∫
M

(RµνH− KµνH) δgµν
√
−g d4x ,∫

M
Hδ(F(�)G)

√
−g d4x =

∫
M

(Rµν − Kµν)
(
G′F(�)H

)
δgµν

√
−g d4x

+
∞∑

n=1

fn
2

n−1∑
l=0

∫
M

Sµν(�lH,�n−1−lG)δgµν
√
−g d4x .

where

Kµν = ∇µ∇ν − gµν�,

Sµν(A,B) = gµν∇αA∇αB − 2∇µA∇νB + gµνA�B,
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Equations of motion 7

~ The action S0 is Einstein-Hilbert action without matter its variation is

δS0 =

∫
M

Gµν

√
−gδgµν d4x + Λ

∫
M

gµν

√
−gδgµν d4x , (5)

where Gµν = Rµν − 1
2 Rgµν is Einstein tensor.

~ Using previous Lemma 1. we find the variation of S1,

δS1 = −1
2

∫
M

gµνH(R)F(�)G(R)δgµν
√
−g d4x

+

∫
M

(
RµνW − KµνW +

1
2

Ωµν

)
δgµν

√
−g d4x . (6)

~ Since, S =
1

16πG
S0 + S1, finally we get equations of motion (EOM).
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Equations of motion 8

Theorem 2 (EOM) The equations of motion for system given by S are:

G̃µν = 0, (7)

where

G̃µν =
Gµν + Λgµν

16πG
− 1

2
gµνH(R)F(�)G(R) + RµνW − KµνW +

1
2

Ωµν ,

Ωµν =
∞∑

n=1

fn
n−1∑
l=0

Sµν

(
�lH(R),�n−1−lG(R)

)
,

Kµν = ∇µ∇ν − gµν�,

Sµν(A,B) = gµν∇αA∇αB − 2∇µA∇νB + gµνA�B,

W = H′(R)F(�)G(R) + G′(R)F(�)H(R).

~ Let us note that ∇µG̃µν = 0.

~ EOM are invariant on the replacement of functions G and H in S.
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Equations of motion (EOM) 9

~ If we suppose that the manifold M is endowed with FRW metric, then we
have just two linearly independent equations (trace and 00-equation):

−2HF(�)G + RW + 3�W +
1
2

Ω =
R − 4Λ

16πG
, Ω = gµνΩµν ,

1
2
HF(�)G + R00W − K00W +

1
2

Ω00 = −G00 − Λ

16πG
.

~ If we take
~ H(R) = G(R) and

~ G(R) be an eigenfunction of the corresponding d’Alembert-Beltrami �
operator: �G(R) = q G(R), and consequently F(�)G(R) = F(q)G(R) ,

we obtain

Gµν + Λgµν −
gµν

2
F(q)G2 + 2F(q)(Rµν − Kµν)GG′ (8)

+
1
2
F ′(q)Sµν(G,G) = 0.
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−2HF(�)G + RW + 3�W +
1
2

Ω =
R − 4Λ

16πG
, Ω = gµνΩµν ,

1
2
HF(�)G + R00W − K00W +

1
2

Ω00 = −G00 − Λ

16πG
.

~ If we take
~ H(R) = G(R) and

~ G(R) be an eigenfunction of the corresponding d’Alembert-Beltrami �
operator: �G(R) = q G(R), and consequently F(�)G(R) = F(q)G(R) ,

we obtain

Gµν + Λgµν −
gµν

2
F(q)G2 + 2F(q)(Rµν − Kµν)GG′ (8)

+
1
2
F ′(q)Sµν(G,G) = 0.
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Models of Nonlocal gravity 10

~ Earlier, we considered models of nonlocal gravity without matter which
are described by the action,

S =

∫
M

(R − 2Λ

16πG
+H(R)F(�)G(R)

)√
−g d4x ,

for the following cases:

1. H(R) = R, G(R) = R,

2. H(R) = R−1, G(R) = R,

3. H(R) = Rp, G(R) = Rq ,

4. H(R) = (R + R0)m, G(R) = (R + R0)m,

5. R = const.
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Special cosmological models 11

~ Recently, we have considered classes of nonlocal gravity models with
cosmological constant Λ and without matter, given by

(M4) S =
1

16πG

∫
M

(
R − 2Λ + (R − 4Λ)F(�)(R − 4Λ)

)√
−g d4x ,

(MS) S =
1

16πG

∫
M

(
R − 2Λ +

√
R − 2ΛF(�)

√
R − 2Λ

)√
−g d4x ,

where P(R) and Q(R) are some differentiable functions of R, while
F(�) =

∑+∞
n=1 fn�n +

∑+∞
n=1 f−n �−n, � = ∇µ∇µ = 1√

−g ∂µ (
√
−g gµν ∂ν)

is d’Alembert-Beltrami operator and Λ is cosmologicalconstant.

~ The action (M4) is limit case od the action (MS) since: the expansion of
√

R − 2 Λ =
√
−2 Λ

√
1− R

2 Λ
where |R| � |2L|.

~ Linear approximation in R/2 Λ gives
√

R − 2 Λ =
√
−2 Λ (1− R

4 Λ
),

then the nonlocal term in (MS) becomes√
R − 2 ΛF(�)

√
R − 2 Λ ' − R

8 Λ
(R − 4 Λ)F(�) (R − 4 Λ),
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Special cosmological models 12

~ where factor − R
8 Λ

can be included in nonlocal operator F(�) by its

redefinition, and at the same time, R − 2 Λ =
√

R − 2 Λ
√

R − 2 Λ

remains unchanged in the linear approximation.

~ The further significantly simplification of EOM could be obtained if P(R)

is an eigenfunction of the corresponding d’Alembert operator �, and
consequently also of its inverse �−1, i.e. if hold

�P(R) = q P(R), �−1P(R) = q−1 P(R), F(�)P(R) = F(q) P(R), (9)

where q = ζΛ and q−1 = ζ−1Λ−1 (ζ dimensionless parameter) are
eigenvalues, respectively, then

W = 2F(q)P′P, F(q) =
+∞∑
n=1

fn qn +
+∞∑
n=1

f−n q−n,Ωµν = F ′(q)Sµν(P,P), (10)
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Special cosmological models 13

Gµν + Λgµν −
gµν

2
F(q)P2 + 2F(q)RµνPP′ − 2F(q)KµνPP′ +

1
2
F ′(q)Sµν(P,P) = 0. (11)

~ The last equation transforms to

(Gµν + Λgµν)
(
1 + 2F(q)PP′

)
+ F(q)gµν

(
−1

2
P2 + PP′(R − 2Λ)

)
−2F(q)KµνPP′ +

1
2
F ′(q)Sµν(P,P) = 0. (12)

~ Let now P = R − 4Λ, then P P′ = P = R − 4Λ and EOM simplify to(
Gµν + Λgµν + F(q)

(
Gµν + Λgµν +

R
2

gµν − 2Kµν

)
P
)

+
1
2
F ′(q)Sµν(P,P) = 0,

(13)

~ It is evident that EOM are satisfied if

F ′(p) = 0, and (14)

Gµν + Λgµν + F(q)

(
Gµν + Λgµν +

R
2

gµν − 2Kµν

)
P = 0. (15)
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1
2
F ′(q)Sµν(P,P) = 0. (11)

~ The last equation transforms to

(Gµν + Λgµν)
(
1 + 2F(q)PP′

)
+ F(q)gµν

(
−1

2
P2 + PP′(R − 2Λ)

)
−2F(q)KµνPP′ +

1
2
F ′(q)Sµν(P,P) = 0. (12)

~ Let now P = R − 4Λ, then P P′ = P = R − 4Λ and EOM simplify to(
Gµν + Λgµν + F(q)

(
Gµν + Λgµν +

R
2

gµν − 2Kµν

)
P
)

+
1
2
F ′(q)Sµν(P,P) = 0,

(13)

~ It is evident that EOM are satisfied if

F ′(p) = 0, and (14)

Gµν + Λgµν + F(q)

(
Gµν + Λgµν +

R
2

gµν − 2Kµν

)
P = 0. (15)
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~ Let us note that EOM can be rewritten in the form

Ĝµν = Gµν + Λgµν − 8πGT̂µν = 0 , (16)

~ The corresponding Friedmann equations are

ä
a

= −4πG
3

(ρ̄+ 3p̄) +
Λ

3
,

ȧ2 + k
a2 =

8πG
3

ρ̄+
Λ

3
, (17)

where ρ̄ and p̄ play a role of the energy density and pressure of the dark
side of the universe, respectively.

~ The related equation of state is

p̄(t) = w̄(t) ρ̄(t). (18)
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Model H(R) = G(R) = R − 4Λ - old solutions 15

~ 1. Cosmological solution for a(t) = A
√

t e
Λ
4 t2
, k = 0

For this solution we have

ȧ(t) = a(t)
1
2

(1
t

+ Λt
)
, ä(t) = a(t)

1
4

(
Λ2t2 + 4Λ− 1

t2

)
, (19)

and scalar curvature becomes

R(t) = 3Λ(Λt2 + 3). (20)

The Hubble parameter

H(t) =
1
2
(1

t
+ Λ t

)
. (21)

The eigenvalue problem for operator � gives

�
(
R − 4Λ

)
= −3Λ

(
R − 4Λ

)
(22)

which implies

F(�)
(
R − 4Λ

)
= F

(
− 3Λ

) (
R − 4Λ

)
. (23)
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Model H(R) = G(R) = R − 4Λ - old solutions 16

R00 and G00 are:

R00 =
3
4
( 1

t2 − 4Λ− Λ2t2) , G00 =
3
4
(1

t
+ Λt

)2
. (24)

EOM are satisfied under conditions

F
(
− 3Λ

)
= − 1

10Λ
, F ′

(
− 3Λ

)
= 0 , Λ 6= 0, (25)

which are satisfied by nonlocal operator

F(�) =
�

30Λ2 exp

(
�
3Λ

+ 1
)
. (26)

Friedman equations imply

ρ̄(t) =
3t−2 + 3Λ2t2 + 2Λ

32πG
, p̄(t) =

t−2 − 3Λ2t2 − 6Λ

32πG
(27)

where ρ̄ and p̄ are analogs of the energy density and pressure.
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From the corresponding equation of state, p̄(t) = w̄(t) ρ̄(t), it follows

w̄ =
t−2 − 3Λ2t2 − 6Λ

3t−2 + 3Λ2t2 + 2Λ
→

−1, t →∞,
1
3
, t → 0.

The expressions (28) implies that w̄(t)→ −1 when t →∞, what cor-
responds to an analog of Λ dark energy dominance in the standard
cosmological model,

and w̄(t)→ 1/3 when t → 0, what corresponds to early times as for the
case of radiation.

From expression for Hubble parameter, (21), follows:

the first term ( 1
2t ) is the same as for the radiation dominance in Einstein’s

gravity, while the second term ( Λ t
2 ) can be related to the dark energy

generated by cosmological constant Λ.
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Model H(R) = G(R) = R − 4Λ - old solutions 18

At the present cosmic time t0 = 13.801 · 109 yr and Λ = 0.98 · 10−35 s−2,
both terms in (21) are of the same order of magnitude.

Since, the value for the Hubble parameter, and H(t0) = 100.2 km/s/Mpc,
is larger than current Planck mission result H0 = 67.40± 0.50km/s/
Mpc, this cosmological solution may be of interest for the early universe
with radiation dominance and for far-future accelerated expansion.
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~ 2. Cosmological solution for a(t) = A eΛt2
, k = 0

For this solution we have

ȧ(t) = a(t) 2Λt , ä(t) = a(t) 2Λ
(
2Λt2 + 1

)
(28)

and scalar curvature becomes

R(t) = 12Λ
(
4Λt2 + 1

)
. (29)

The Hubble parameter

H(t) = 2Λ t . (30)

There is useful equality

�(R − 4Λ) = −12Λ(R − 4Λ), (31)

which implies

F(�)(R − 4Λ) = F(−12Λ)(R − 4Λ). (32)
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(
2Λt2 + 1

)
(28)

and scalar curvature becomes

R(t) = 12Λ
(
4Λt2 + 1

)
. (29)

The Hubble parameter

H(t) = 2Λ t . (30)

There is useful equality

�(R − 4Λ) = −12Λ(R − 4Λ), (31)

which implies

F(�)(R − 4Λ) = F(−12Λ)(R − 4Λ). (32)
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R00 and G00 are:

R00 = −6Λ
(
1 + 2Λt2) , G00 = 12Λ2t2. (33)

EOM are satisfied under conditions

F
(
− 12Λ

)
= − 1

64Λ
, F ′

(
− 12Λ

)
= 0 , Λ 6= 0, (34)

which are satisfied by nonlocal operator

F(�) =
�

768Λ2 exp

(
�

12Λ
+ 1
)
. (35)

Friedman equations give

ρ̄(t) =
Λ
(
12Λt2 − 1

)
8πG

, p̄(t) = −
3Λ
(
4Λt2 + 1

)
8πG

. (36)

It follows

w̄ =
−12Λt2 − 3
12Λt2 − 1

→

{
−1, t →∞
3, t → 0.

(37)
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Old results.

~ The solutions a1(t) = A
√

te
Λ
4 t2

and a2(t) = AeΛt2
are not contained in

Einstein’s gravity with cosmological constant Λ. The solution a1(t) mi-
mics interference between expansion with radiation a1(t) and a dark e-
nergy a2(t).

~ The solution a2(t) is a nonsingular bounce one and an even function of

cosmic time. An exact cosmological solution of the type a(t) = AeαΛt2
,

where α ∈ R, appears also at least in the following two models:
(1) P(R) = Q(R) = R, and (2) P(R) = Q(R) =

√
R − 2Λ.

~ The nonlocal analytic operator F(�) that takes into account both solu-
tions a1(t) and a2(t) have the form F(�) = a u

Λ
exp(bu3 + cu2 + du),

where a, b, c, d , are constants and u = �/Λ is dimensionless operator.

~ According to our solutions a(t) = A
√

te
Λ
4 t2

and a(t) = At
2
3 e

Λ
14 t2

, it follows

that effects of the dark radiation (
√

t), the dark matter (t
2
3 ) and the dark

energy (eαΛt2
) at the cosmic scale can be generated by suitable nonlocal

gravity models.
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~ Let us consider the scale factor

a(t) = (αeλt + βe−λt )γ , (38)

~ and the corresponding eigenvalue problem

�(R − 4Λ) = p(R − 4Λ), (39)

for some constant p.

~ Solving the eigenvalue problem (39) we found that it is satisfied in

the following two cases:
1 γ = 1, p = 2λ2, Λ = 3λ2, k ∈ {0,−1, 1}

2 γ = 1
2 , Λ = 3

4λ
2, k = 0.

~ Let us consider the scale factor

a(t) = (α cosλt + β sinλt)γ , (40)

and same eigenvalue problem

�(R − 4Λ) = q(R − 4Λ). (41)
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~ It has solutions in the following two cases:

1 γ = 1, q = −2λ2, Λ = −3λ2, k ∈ {0,−1, 1}

2 γ = 1
2 , Λ = − 3

4λ
2, k = 0.

~ We found that this nonlocal gravity model has the following new

cosmological soulutions.

(i1) for Λ ≥ 0, and scaling factors of the form

a3(t) = α e
√

1
3 Λ t

+ βe−
√

1
3 Λ t

, (42)

a4(t) =

(
αe

√
2
3 Λ t

+ βe−
√

2
3 Λ t
) 1

2
, (43)

(i2) for Λ ≤ 0, and the trigonometric scaling factors of the form

a5(t) = α cos

√
−

1
3

Λ t + β sin

√
−

1
3

Λ, (44)

a6(t) = A

(
α cos

√
2
3

Λ t + β sin

√
2
3

Λ t

) 1
2

. (45)
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~ 3. Cosmological solution for a(t) = αe
√

Λ
3 t + βe−

√
Λ
3 t

For this solution we have

ȧ(t) =

√
Λ

3

(
αe

√
Λ
3 t − βe−

√
Λ
3 t
)
, ä(t) =

Λ

3
a(t), (46)

R(t) = 4Λ + (6k − 8Λαβ) a(t)−2, (47)

H(t) =

√
Λ

3

(
1− 2βe−

√
Λ
3 ta(t)−1

)
, (48)

R00 = −Λ, G00 = Λ + (3k − 4Λαβ) a(t)−2. (49)

The corresponding eigenvalue problem has the solutions,

�(R − 4Λ) =
2
3

Λ(R − 4Λ), F(�)(R − 4Λ) = F(
2
3

Λ)(R − 4Λ). (50)
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ȧ(t) =

√
Λ

3

(
αe

√
Λ
3 t − βe−

√
Λ
3 t
)
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Zoran Rakić New Cosmological Solutions of a Nonlocal Gravity Model



Model H(R) = G(R) = R − 4Λ - New Cosmological Solutions 24

~ 3. Cosmological solution for a(t) = αe
√

Λ
3 t + βe−

√
Λ
3 t

For this solution we have
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~ Equations of motion are satisfied in the following 3 nontrivial cases:

3.1 αβ = 3k
4Λ

,

3.2 αβ = 0, F( 2
3 Λ) = 1

12Λ
, F ′( 2

3 Λ) = 1
24Λ2 , k 6= 0,

3.3 αβ = − k
4Λ

, F( 2
3 Λ) = 1

12Λ
, F ′( 2

3 Λ) = 0.

Case 3.1 αβ = 0, R(t) = 4Λ.

3.1.1 For k = 0 we have a(t) ∼ e±
√

Λ
3 t ,

3.1.2 Λ > 0, k = +1, gives a(t) =
√

3
Λ

cosh
√

Λ
3 t

3.1.3 Λ > 0, k = −1, gives a(t) =
√

3
Λ

sinh
√

Λ
3 t

Case 3.2 α = 0 or β = 0 and R(t) = 6ka(t)−2 + 4Λ,

3.2.1 For α = 0 we have a(t) = βe−
√

Λ
3 t
,

3.2.2 For β = 0 we have a(t) = αe
√

Λ
3 t .

Case 3.3 R(t) = 4Λ + 8ka(t)−2,

3.3.1 For k = 1 we have a(t) = 1√
Λ

sinh(ϕ+
√

Λ
3 t),

3.2.2 For k = −1 we have a(t) = 1√
Λ

cosh(ϕ+
√

Λ
3 t).
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From the related eigenvalue problem follows: k = 0 and R = 4Λ.

The EOM yield the condition

αβ = 0. (52)

Hence, we only have solutions with a(t) ∼ e±
√

Λ
3 t , which we already

have in in the Einstein theory of gravity.
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~ 5. Cosmological solution for a(t) = α cos
√
− Λ

3 t + β sin
√
− Λ

3 t

In this case we have

ȧ(t) =

√
−Λ

3

(
β cos

√
−Λ

3
t − α sin

√
−Λ

3
t
)
, ä(t) =

Λ

3
a(t), (53)

R(t) = 4Λ + 6
(

k − (α2 + β2)
Λ

3
a(t)−2

)
, (54)

H(t) =

√
−Λ

3

(
β cos

√
−Λ

3
t − α sin

√
−Λ

3
t
)

a(t)−1, (55)

R00 = −Λ, G00 = 3
(

k − Λ

3

(
β cos

√
−Λ

3
t − α sin

√
−Λ

3
t
)2)

a(t)−2.

The corresponding eigenvalue problem has the same solution as in the
previous case (50),

�(R − 4Λ) =
2
3

Λ(R − 4Λ), F(�)(R − 4Λ) = F(
2
3

Λ)(R − 4Λ). (56)
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~ Equations of motion are satisfied in the following two nontrivial cases:

5.1 α2 + β2 = 3k
Λ

,

5.2 F( 2
3 Λ) = 1

12Λ
, F ′( 2

3 Λ) = 0, α2 + β2 = − k
Λ

.

Case 5.1 In this case we have R(t) = 4Λ.

Case 5.2 In this case, we have R(t) = 8 k a(t)−2 + 4Λ,

5.2.1 For k = 1 we can transform scale factor a(t) = α cos
√
− Λ

3 t + β sin
√
− Λ

3 t
into form:

a(t) =
1
√
−Λ

sin
(√
−

Λ

3
t − ϕ

)
.

~ Effective density and pressure are given by:

ρ =
3k − Λ(α2 + β2)

8πG a(t)2 , p̄ =
Λ(α2 + β2)− 3k

24πG a(t)2 . (57)

~ For k 6= Λ
3 (α2 + β2) the corresponding w̄ parameter is w̄ = − 1

3 .
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~ 6. Cosmological solution for a(t) =
(
α cos

√
− Λ

3 t + β sin
√
− Λ

3 t
) 1

2
,

In this case, k = 0 and R = 4Λ.

From the EOM follows
α2 + β2 = 0. (58)

Hence, there are no nontrivial solutions of the form

a(t) =
(
α cos

√
−Λ

3
t + β sin

√
−Λ

3
t
) 1

2
.

~ On new cosmological solutions. In the previous considerations, rela-
ted to the finding of new cosmological solutions of nonlocal gravity mo-
del, in a class of possible scale factors of the form

a(t) = (αeλt + βe−λt )γ

we found four new solutions when γ = 1 and no nontrivial solutions if
γ 6= 1. The new solutions are:
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The new solutions are:

~ 1. a(t) = Ae±
√

Λ
3 t , R(t) =

6 k
A2 e∓2

√
Λ
3 t + 4Λ, k = −1,+1, Λ > 0,

~ 2. a(t) =
1√
Λ

cosh(

√
Λ

3
t), R(t) =

8 k Λ
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3 t
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√
−Λ

3
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√
−Λ
3 t

+ 4Λ, k = +1, Λ < 0.

Recall that in the de Sitter (anti-de Sitter) case, analogous solutions are:
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De Sitter (anti-de Sitter) Solutions 31

~ 1. a(t) = Ae±
√

Λ
3 t , R(t) = 4Λ, k = 0, Λ > 0,

~ 2. a(t) =

√
3
Λ

cosh(

√
Λ

3
t), R(t) = 4Λ, k = 1, Λ > 0,

~ 3. a(t) =

√
3
Λ

sinh(

√
Λ

3
t), R(t) = 4Λ, k = −1, Λ > 0,

~ 4. a(t) =

√
−3
Λ

sin(

√
−Λ

3
t), R(t) = 4Λ, k = −1, Λ < 0.

~ Change of topology. If we compare solutions of de Sitter (anti-de Sitter)
and new nonlocal solutions, we can note that for the same cosmological
constant Λ, there are analogous scale factors with the same time depen-
dence, but with different curvature constant k .

~ This fact can be interpreted as change in topology in de Sitter (anti-de
Sitter) space by the inclusion of the nonlocal term of the form
(R − 4Λ)F(�)(R − 4Λ)
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Conclusions 32

Conclusions.

~ Four new exact cosmological solutions are obtained,

~ Effective energy density and effective pressure are computed for
all new solutions,

~ Change of space topology by nonlocal gravity is noted,

~ A connection between nonlocal gravity models (M4) and (MS) is shown.

Zoran Rakić New Cosmological Solutions of a Nonlocal Gravity Model



Conclusions 32

Conclusions.

~ Four new exact cosmological solutions are obtained,

~ Effective energy density and effective pressure are computed for
all new solutions,

~ Change of space topology by nonlocal gravity is noted,

~ A connection between nonlocal gravity models (M4) and (MS) is shown.
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Model H(R) = G(R) = R − 4Λ - Scalar Field 33

~ Let us start with the action

S =
1

16πG

∫ √
−g R d4x +

1
8πG

∫ √
−g(−1

2
∇µϕ∇µϕ− V (ϕ))d4x .

(59)
~ By variation of the previous action with respect to metric gµν we obtain

1
16πG

Gµν +
1

8πG

(1
4

gµν∇ρϕ∇ρϕ+
1
2

gµνV (ϕ)− 1
2
∇µϕ∇νϕ

)
= 0.

(60)
~ Variation over ϕ yields �ϕ = V ′(φ). The corresponding EOM are:

Gµν = 8 πG Tµν , �ϕ = V ′(ϕ). (61)

~ Now, we obtain

8πGρ =
1
2
ϕ̇2 + V (ϕ), 8πGp =

1
2
ϕ̇2 − V (ϕ). (62)

Therefore we have

8πG(ρ+ p) = ϕ̇2 4πG(ρ− p) = V (ϕ). (63)
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Therefore we have

8πG(ρ+ p) = ϕ̇2 4πG(ρ− p) = V (ϕ). (63)
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Model H(R) = G(R) = R − 4Λ - Scalar Field 33

~ In the case of cosmological solution for a(t) = A
√

t e
Λ
4 t2
, k = 0

~ Corresponding effective density and pressure for this solution are:

ρ =
Λt2 (3Λt2 + 2

)
+ 3

32πGt2 , p =
1− 3Λt2 (Λt2 + 2

)
32πGt2 . (64)

~ Substituting the previous expressions into (63) we obtain

ϕ̇2 =
1
t2 − Λ,

ϕ = ±t

√
1
t2 − Λ±

t
√

1
t2 − Λ arccot

(√
Λt2 − 1

)
√

Λt2 − 1
+ C, (65)

V (ϕ) = Λ +
3Λ2t2

4
+

1
4t2 .
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FRW metric – Christoffel symbols 1a

Non-trivial Christoffel symbols of Friedman – Robertson – Walker metric

Γ1
01 =

ȧ
a

Γ2
02 =

ȧ
a

Γ3
03 =

ȧ
a

Γ0
11 =

a ȧ
1− k r 2 Γ1

11 =
k r

1− k r 2 Γ2
12 =

1
r

Γ3
13 =

1
r

Γ0
22 = r 2 a ȧ Γ1

22 = r (k r 2 − 1) Γ3
23 = cot θ

Γ0
33 = r 2 a ȧ sin2 θ Γ1

33 = r (k r 2 − 1) sin2 θ Γ2
33 = − sin θ cos θ
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FRW metric – Curvature and Ricci 1a

Non-trivial components of curvature tensor

R0110 =
a ä

1− k r 2 R1221 = − r 2 a2 (ȧ2 + k)

1− k r 2

R0220 = r 2 a ä R1331 = − r 2 a2 sin2 θ (ȧ2 + k)

1− k r 2

R0330 = r 2 a ä sin2 θ R2332 = −r 4 a2 sin2 θ (ȧ2 + k)

Ricci tensor

Rµν =


− 3ä

a 0 0 0

0 u g11 0 0

0 0 u g22 0

0 0 0 u g33

 , u =
a ä + 2 (ȧ2 + k)

a2
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1− k r 2
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R0330 = r 2 a ä sin2 θ R2332 = −r 4 a2 sin2 θ (ȧ2 + k)
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FRW metric – Einstein tensor 1a

Scalar curvature

R =
6 (a ä + ȧ2 + k)

a2

Einstein tensor

Gµν =


3 (ȧ2+k)

a2 0 0 0

0 −v g11 0 0

0 0 −v g22 0

0 0 0 −v g33

 , v =
2 a ä + ȧ2 + k

a2

FRW metric EOM EOM-2
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Zoran Rakić New Cosmological Solutions of a Nonlocal Gravity Model



FRW metric – Einstein tensor 1a

Scalar curvature

R =
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a2

Einstein tensor

Gµν =


3 (ȧ2+k)
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