New Cosmological Solutions of a Nonlocal Gravity Model

Zoran Rakić

Faculty of Mathematics, University of Belgrade, Serbia

(joint work with I. Dimitrijević, B. Dragovich, and J. Stanković)

THE INTERNATIONAL WORKSHOP

Problems of the Modern Mathematical Physics – PMMP'25

February 10-14, 2025, Dubna

< ロ > < 同 > < 三 > < 三 > -

Ъ.

General theory of relativity

- GTR or ETG assumes that Universe is four dimensional homogeneous and isotropic pseudo-Riemannian manifold *M* with metric $(g_{\mu\nu})$ of signature (1,3).
- There exist three types of homogeneous and isotropic simple connected spaces of dimension 3:
 - sphere S³ (of constant positive sectional curvature).
 - flat space R³ (of curvature equal 0),
 - hyperbolic space III² (of constant negative sectional cutvature).
- Generic metric in these spaces is of the form (Friedmann-Robertson-Walker metric (FRW)):

$$ds^{2} = -dt^{2} + a^{2}(t) \left(\frac{dr^{2}}{1 - kr^{2}} + r^{2}d\theta^{2} + r^{2}\sin^{2}\theta d\phi^{2} \right), \quad k \in \{-1, 0, 1\}, \quad (1)$$

where a(t) is a cosmic scale factor which describes the evolution (in time) of Universe and parameter k which describes the curvature of the space.

Э

- GTR or ETG assumes that Universe is four dimensional homogeneous and isotropic pseudo-Riemannian manifold *M* with metric $(g_{\mu\nu})$ of signature (1, 3).
- There exist three types of homogeneous and isotropic simple connected spaces of dimension 3:
 - sphere S³ (of constant positive sectional curvature).
 - flat space \mathbb{R}^3 (of curvature equal 0),
 - hyperbolic space \mathbb{H}^3 (of constant negative sectional cutvature).
- Generic metric in these spaces is of the form (Friedmann-Robertson-Walker metric (FRW)):

$$ds^{2} = -dt^{2} + a^{2}(t) \left(\frac{dr^{2}}{1 - kr^{2}} + r^{2}d\theta^{2} + r^{2}\sin^{2}\theta d\phi^{2} \right), \quad k \in \{-1, 0, 1\}, \quad (1)$$

GTR or ETG assumes that Universe is four dimensional homogeneous and isotropic pseudo-Riemannian manifold *M* with metric $(g_{\mu\nu})$ of signature (1, 3).

There exist three types of homogeneous and isotropic simple connected spaces of dimension 3:

- sphere S³ (of constant positive sectional curvature).
- flat space \mathbb{R}^3 (of curvature equal 0),
- hyperbolic space \mathbb{H}^3 (of constant negative sectional cutvature).

Generic metric in these spaces is of the form (Friedmann-Robertson-Walker metric (FRW)):

$$ds^{2} = -dt^{2} + a^{2}(t) \left(\frac{dr^{2}}{1 - kr^{2}} + r^{2}d\theta^{2} + r^{2}\sin^{2}\theta d\phi^{2} \right), \quad k \in \{-1, 0, 1\}, \quad (1)$$

where a(t) is a cosmic scale factor which describes the evolution (in time) of Universe and parameter k which describes the curvature of the space. FRW metric

- GTR or ETG assumes that Universe is four dimensional homogeneous and isotropic pseudo-Riemannian manifold *M* with metric $(g_{\mu\nu})$ of signature (1, 3).
- There exist three types of homogeneous and isotropic simple connected spaces of dimension 3:
 - sphere \mathbb{S}^3 (of constant positive sectional curvature),
 - \circ flat space \mathbb{R}^3 (of curvature equal 0),
 - hyperbolic space \mathbb{H}^3 (of constant negative sectional cutvature).
- Generic metric in these spaces is of the form (Friedmann-Robertson-Walker metric (FRW)):

$$ds^{2} = -dt^{2} + a^{2}(t) \left(\frac{dr^{2}}{1 - kr^{2}} + r^{2}d\theta^{2} + r^{2}\sin^{2}\theta d\phi^{2} \right), \quad k \in \{-1, 0, 1\}, \quad (1)$$

- GTR or ETG assumes that Universe is four dimensional homogeneous and isotropic pseudo-Riemannian manifold *M* with metric $(g_{\mu\nu})$ of signature (1, 3).
- There exist three types of homogeneous and isotropic simple connected spaces of dimension 3:
 - sphere \mathbb{S}^3 (of constant positive sectional curvature),
 - flat space \mathbb{R}^3 (of curvature equal 0),
 - hyperbolic space \mathbb{H}^3 (of constant negative sectional cutvature).
 - Generic metric in these spaces is of the form (Friedmann-Robertson-Walker metric (FRW)):

$$ds^{2} = -dt^{2} + a^{2}(t) \left(\frac{dr^{2}}{1 - kr^{2}} + r^{2}d\theta^{2} + r^{2}\sin^{2}\theta d\phi^{2} \right), \quad k \in \{-1, 0, 1\}, \quad (1)$$

- GTR or ETG assumes that Universe is four dimensional homogeneous and isotropic pseudo-Riemannian manifold *M* with metric $(g_{\mu\nu})$ of signature (1, 3).
- There exist three types of homogeneous and isotropic simple connected spaces of dimension 3:
 - sphere \mathbb{S}^3 (of constant positive sectional curvature),
 - flat space \mathbb{R}^3 (of curvature equal 0),
 - hyperbolic space \mathbb{H}^3 (of constant negative sectional cutvature).
 - Generic metric in these spaces is of the form (Friedmann-Robertson-Walker metric (FRW)):

$$ds^{2} = -dt^{2} + a^{2}(t) \left(\frac{dr^{2}}{1 - kr^{2}} + r^{2}d\theta^{2} + r^{2}\sin^{2}\theta d\phi^{2} \right), \quad k \in \{-1, 0, 1\}, \quad (1)$$

- GTR or ETG assumes that Universe is four dimensional homogeneous and isotropic pseudo-Riemannian manifold *M* with metric $(g_{\mu\nu})$ of signature (1, 3).
- There exist three types of homogeneous and isotropic simple connected spaces of dimension 3:
 - sphere \mathbb{S}^3 (of constant positive sectional curvature),
 - flat space \mathbb{R}^3 (of curvature equal 0),
 - hyperbolic space \mathbb{H}^3 (of constant negative sectional cutvature).
- Generic metric in these spaces is of the form (Friedmann-Robertson-Walker metric (FRW)):

$$ds^{2} = -dt^{2} + a^{2}(t) \left(\frac{dr^{2}}{1 - kr^{2}} + r^{2}d\theta^{2} + r^{2}\sin^{2}\theta d\phi^{2} \right), \quad k \in \{-1, 0, 1\}, \quad (1)$$

- GTR or ETG assumes that Universe is four dimensional homogeneous and isotropic pseudo-Riemannian manifold *M* with metric $(g_{\mu\nu})$ of signature (1, 3).
- There exist three types of homogeneous and isotropic simple connected spaces of dimension 3:
 - o sphere S³ (of constant positive sectional curvature),
 - flat space \mathbb{R}^3 (of curvature equal 0),
 - hyperbolic space \mathbb{H}^3 (of constant negative sectional cutvature).
- Generic metric in these spaces is of the form (Friedmann-Robertson-Walker metric (FRW)):

$$ds^{2} = -dt^{2} + a^{2}(t) \left(\frac{dr^{2}}{1 - kr^{2}} + r^{2}d\theta^{2} + r^{2}\sin^{2}\theta d\phi^{2} \right), \quad k \in \{-1, 0, 1\}, \quad (1)$$

$$S = \int \left(\frac{R-2\Lambda}{16 \pi G c^4} + \mathcal{L}_m\right) \sqrt{-g} d^4x$$

where *R* is scalar curvature, $g = det(g_{\mu\nu})$ is determinant of metric tensor, Λ is cosmological constant and \mathcal{L}_m is Lagrangian of matter.

The variation of the action S we obtain equations of motion:

$$R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} + \Lambda g_{\mu\nu} = 8\pi G T_{\mu\nu}, \quad c = 1$$
(2)

where $T_{\mu\nu}$ is the energy momentum tensor, $g_{\mu\nu}$ is metric tensor, $R_{\mu\nu}$ is Ricci tensor and R is scalar curvature.

The energy momentum tensor for ideal fluid (matter in cosmology) is

$$\Gamma = diag(-\rho \, g_{00}, g_{11}\rho, g_{22}\rho, g_{33}\rho), \tag{3}$$

where ρ is energy density and p is pressure

- コン (雪) (ヨ) (ヨ)

$$S = \int \left(\frac{R-2\Lambda}{16\,\pi\,G\,c^4} + \mathcal{L}_m\right) \sqrt{-g} \,d^4x$$

where *R* is scalar curvature, $g = det(g_{\mu\nu})$ is determinant of metric tensor, Λ is cosmological constant and \mathcal{L}_m is Lagrangian of matter.

The variation of the action S we obtain equations of motion:

$$R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} + \Lambda g_{\mu\nu} = 8\pi G T_{\mu\nu}, \quad c = 1$$
 (2)

where $T_{\mu\nu}$ is the energy momentum tensor, $g_{\mu\nu}$ is metric tensor, $R_{\mu\nu}$ is Ricci tensor and *R* is scalar curvature.

The energy momentum tensor for ideal fluid (matter in cosmology) is

$$T = \text{diag}(-\rho \, g_{00}, g_{11} \rho, g_{22} \rho, g_{33} \rho), \tag{3}$$

where ρ is energy density and p is pressure.

・ 同 ト ・ ヨ ト ・ ヨ

$$S = \int \left(\frac{R-2\Lambda}{16\pi\,G\,c^4} + \mathcal{L}_m\right) \sqrt{-g} \, d^4x$$

where *R* is scalar curvature, $g = det(g_{\mu\nu})$ is determinant of metric tensor, Λ is cosmological constant and \mathcal{L}_m is Lagrangian of matter.

The variation of the action *S* we obtain equations of motion:

$$R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} + \Lambda g_{\mu\nu} = 8\pi G T_{\mu\nu}, \quad c = 1$$
 (2)

where $T_{\mu\nu}$ is the energy momentum tensor, $g_{\mu\nu}$ is metric tensor, $R_{\mu\nu}$ is Ricci tensor and R is scalar curvature.

The energy momentum tensor for ideal fluid (matter in cosmology) is

$$T = \text{diag}(-\rho \, g_{00}, g_{11} \rho, g_{22} \rho, g_{33} \rho), \tag{3}$$

where ρ is energy density and p is pressure.

<日本

$$S = \int \left(\frac{R-2\Lambda}{16\pi\,G\,c^4} + \mathcal{L}_m\right) \sqrt{-g} \, d^4x$$

where *R* is scalar curvature, $g = det(g_{\mu\nu})$ is determinant of metric tensor, Λ is cosmological constant and \mathcal{L}_m is Lagrangian of matter.

The variation of the action S we obtain equations of motion:

$$R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} + \Lambda g_{\mu\nu} = 8\pi G T_{\mu\nu}, \quad c = 1$$
 (2)

where $T_{\mu\nu}$ is the energy momentum tensor, $g_{\mu\nu}$ is metric tensor, $R_{\mu\nu}$ is Ricci tensor and R is scalar curvature.

The energy momentum tensor for ideal fluid (matter in cosmology) is

 $T = \text{diag}(-\rho \, g_{00}, g_{11} \rho, g_{22} \rho, g_{33} \rho), \tag{3}$

where ρ is energy density and p is pressure.

イロト イポト イヨト イヨト

$$S = \int \left(\frac{R-2\Lambda}{16\pi\,G\,c^4} + \mathcal{L}_m\right) \sqrt{-g} \, d^4x$$

where *R* is scalar curvature, $g = det(g_{\mu\nu})$ is determinant of metric tensor, Λ is cosmological constant and \mathcal{L}_m is Lagrangian of matter.

The variation of the action *S* we obtain equations of motion:

$$R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} + \Lambda g_{\mu\nu} = 8\pi G T_{\mu\nu}, \quad c = 1$$
 (2)

where $T_{\mu\nu}$ is the energy momentum tensor, $g_{\mu\nu}$ is metric tensor, $R_{\mu\nu}$ is Ricci tensor and *R* is scalar curvature.

The energy momentum tensor for ideal fluid (matter in cosmology) is

 $\Gamma = \text{diag}(-\rho \, g_{00}, g_{11} \rho, g_{22} \rho, g_{33} \rho), \tag{3}$

where ρ is energy density and p is pressure.

< ロ > < 同 > < 回 > < 回 > .

$$S = \int \left(\frac{R-2\Lambda}{16 \pi G c^4} + \mathcal{L}_m\right) \sqrt{-g} d^4x$$

where *R* is scalar curvature, $g = det(g_{\mu\nu})$ is determinant of metric tensor, Λ is cosmological constant and \mathcal{L}_m is Lagrangian of matter.

The variation of the action *S* we obtain equations of motion:

$$R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} + \Lambda g_{\mu\nu} = 8\pi G T_{\mu\nu}, \quad c = 1$$
 (2)

where $T_{\mu\nu}$ is the energy momentum tensor, $g_{\mu\nu}$ is metric tensor, $R_{\mu\nu}$ is Ricci tensor and *R* is scalar curvature.

The energy momentum tensor for ideal fluid (matter in cosmology) is

$$T = \text{diag}(-\rho \, g_{00}, g_{11}\rho, g_{22}\rho, g_{33}\rho), \tag{3}$$

where ρ is energy density and p is pressure.

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3p) + \frac{\Lambda}{3}, \qquad H^2 = \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho - \frac{k}{a^2} + \frac{\Lambda}{3}$$

Hubble parameter describes the expansion of the Universe

$$H = \frac{a}{a} . \tag{4}$$

- Despite to the great success of GRT, observational discoveries of 20th century imply that they could not be explained by GTR without additional matter.
- Problem of Bing Bang singularity.
- It means that GRT should be modified. There are two approaches:
- (A1) Dark matter and energy

(A2) Modification of GTR, i.e. modification of its Lagrangian /C

< ロ > < 同 > < 三 > < 三 > 、

э

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(
ho + 3
ho) + \frac{\Lambda}{3}, \qquad H^2 = \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}
ho - \frac{k}{a^2} + \frac{\Lambda}{3}$$

Hubble parameter describes the expansion of the Universe

$$H = \frac{\dot{a}}{a} . \tag{4}$$

- Despite to the great success of GRT, observational discoveries of 20th century imply that they could not be explained by GTR without additional matter.
- Problem of Bing Bang singularity.
- It means that GRT should be modified. There are two approaches:
- (A1) Dark matter and energy
- (A2) Modification of GTR, i.e. modification of its Lagrangian ${\cal L}$

$$\mathcal{L} = rac{R-2\Lambda}{16 \pi G} + \mathcal{L}_m, \qquad \qquad c = 1.$$

A (1) > A (2) > A (2)

$$rac{\ddot{a}}{a}=-rac{4\pi G}{3}(
ho+3
ho)+rac{\Lambda}{3}, \qquad H^2=\left(rac{\dot{a}}{a}
ight)^2=rac{8\pi G}{3}
ho-rac{k}{a^2}+rac{\Lambda}{3}$$

Hubble parameter describes the expansion of the Universe

$$H = \frac{\dot{a}}{a} . \tag{4}$$

- Despite to the great success of GRT, observational discoveries of 20th century imply that they could not be explained by GTR without additional matter.
- Problem of Bing Bang singularity.
- It means that GRT should be modified. There are two approaches:
- (A1) Dark matter and energy
- (A2) Modification of GTR, i.e. modification of its Lagrangian ${\cal L}$

$$\mathcal{L} = rac{R-2\Lambda}{16 \pi G} + \mathcal{L}_m, \qquad \qquad c = 1.$$

A (1) > A (2) > A (2)

General theory of relativity

Now, Einstein equation implies Friedmann equations

$$rac{\ddot{a}}{a}=-rac{4\pi G}{3}(
ho+3
ho)+rac{\Lambda}{3}, \qquad \mathcal{H}^2=\left(rac{\dot{a}}{a}
ight)^2=rac{8\pi G}{3}
ho-rac{k}{a^2}+rac{\Lambda}{3}$$

Hubble parameter describes the expansion of the Universe

$$H = \frac{\dot{a}}{a} . \tag{4}$$

- Despite to the great success of GRT, observational discoveries of 20th century imply that they could not be explained by GTR without additional matter.
- Problem of Bing Bang singularity.
- It means that GRT should be modified. There are two approaches:
- (A1) Dark matter and energy
- (A2) Modification of GTR, i.e. modification of its Lagrangian ${\cal L}$

$$\mathcal{L} = rac{R-2\Lambda}{16 \pi G} + \mathcal{L}_m, \qquad \qquad c = 1.$$

< 同 > < 三 > < 三 >

$$rac{\ddot{a}}{a}=-rac{4\pi G}{3}(
ho+3
ho)+rac{\Lambda}{3}, \qquad \mathcal{H}^2=\left(rac{\dot{a}}{a}
ight)^2=rac{8\pi G}{3}
ho-rac{k}{a^2}+rac{\Lambda}{3},$$

Hubble parameter describes the expansion of the Universe

$$H = \frac{\dot{a}}{a} . \tag{4}$$

- Despite to the great success of GRT, observational discoveries of 20th century imply that they could not be explained by GTR without additional matter.
- Problem of Bing Bang singularity.
- It means that GRT should be modified. There are two approaches:
- (A1) Dark matter and energy
- (A2) Modification of GTR, i.e. modification of its Lagrangian ${\cal L}$

$$\mathcal{L} = rac{R-2\Lambda}{16 \pi G} + \mathcal{L}_m, \qquad \qquad c = 1.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

$$rac{\ddot{a}}{a}=-rac{4\pi G}{3}(
ho+3
ho)+rac{\Lambda}{3}, \qquad \mathcal{H}^2=\left(rac{\dot{a}}{a}
ight)^2=rac{8\pi G}{3}
ho-rac{k}{a^2}+rac{\Lambda}{3},$$

Hubble parameter describes the expansion of the Universe

$$H = \frac{\dot{a}}{a} . \tag{4}$$

- Despite to the great success of GRT, observational discoveries of 20th century imply that they could not be explained by GTR without additional matter.
- Problem of Bing Bang singularity.
- It means that GRT should be modified. There are two approaches:
- (A1) Dark matter and energy
- (A2) Modification of GTR, i.e. modification of its Lagrangian ${\cal L}$

$$\mathcal{L} = rac{R-2\Lambda}{16 \pi G} + \mathcal{L}_m, \qquad \qquad c = 1.$$

$$rac{\ddot{a}}{a}=-rac{4\pi G}{3}(
ho+3
ho)+rac{\Lambda}{3}, \qquad \mathcal{H}^2=\left(rac{\dot{a}}{a}
ight)^2=rac{8\pi G}{3}
ho-rac{k}{a^2}+rac{\Lambda}{3}.$$

Hubble parameter describes the expansion of the Universe

$$H = \frac{\dot{a}}{a} . \tag{4}$$

- Despite to the great success of GRT, observational discoveries of 20th century imply that they could not be explained by GTR without additional matter.
- In Problem of Bing Bang singularity.
- It means that GRT should be modified. There are two approaches:

A1) Dark matter and energy A2) Modification of GTR, i.e. modification of its Lagrangian \mathcal{L} $\mathcal{L} = \frac{R - 2\Lambda}{16 \pi G} + \mathcal{L}_m, \qquad c = 1.$

同 > < 三 > < 三 >

$$rac{\ddot{a}}{a}=-rac{4\pi G}{3}(
ho+3
ho)+rac{\Lambda}{3}, \qquad \mathcal{H}^2=\left(rac{\dot{a}}{a}
ight)^2=rac{8\pi G}{3}
ho-rac{k}{a^2}+rac{\Lambda}{3},$$

Hubble parameter describes the expansion of the Universe

$$H = \frac{\dot{a}}{a} . \tag{4}$$

- Despite to the great success of GRT, observational discoveries of 20th century imply that they could not be explained by GTR without additional matter.
- In Problem of Bing Bang singularity.
- It means that GRT should be modified. There are two approaches:

(A1) Dark matter and energy

(A2) Modification of GTR, i.e. modification of its Lagrangian $\mathcal L$

$$\mathcal{L} = \frac{R-2\Lambda}{16 \pi G} + \mathcal{L}_m, \qquad c = 1.$$

周 ト イ ヨ ト イ ヨ

$$rac{\ddot{a}}{a}=-rac{4\pi G}{3}(
ho+3
ho)+rac{\Lambda}{3}, \qquad \mathcal{H}^2=\left(rac{\dot{a}}{a}
ight)^2=rac{8\pi G}{3}
ho-rac{k}{a^2}+rac{\Lambda}{3},$$

Hubble parameter describes the expansion of the Universe

$$H = \frac{\dot{a}}{a} . \tag{4}$$

- Despite to the great success of GRT, observational discoveries of 20th century imply that they could not be explained by GTR without additional matter.
- In Problem of Bing Bang singularity.
- It means that GRT should be modified. There are two approaches:
- (A1) Dark matter and energy

(A2) Modification of GTR, i.e. modification of its Lagrangian $\mathcal L$

$$\mathcal{L} = \frac{R-2\Lambda}{16 \pi G} + \mathcal{L}_m, \qquad c = 1.$$

伺下 イヨト イヨ

$$rac{\ddot{a}}{a}=-rac{4\pi G}{3}(
ho+3
ho)+rac{\Lambda}{3}, \qquad \mathcal{H}^2=\left(rac{\dot{a}}{a}
ight)^2=rac{8\pi G}{3}
ho-rac{k}{a^2}+rac{\Lambda}{3},$$

Hubble parameter describes the expansion of the Universe

$$H = \frac{\dot{a}}{a} . \tag{4}$$

- Despite to the great success of GRT, observational discoveries of 20th century imply that they could not be explained by GTR without additional matter.
- In Problem of Bing Bang singularity.
- It means that GRT should be modified. There are two approaches:
- (A1) Dark matter and energy
- (A2) Modification of GTR, i.e. modification of its Lagrangian \mathcal{L}

$$\mathcal{L} = \frac{R-2\Lambda}{16 \pi G} + \mathcal{L}_m, \qquad c = 1.$$

周 ト イ ヨ ト イ ヨ ト

$$rac{\ddot{a}}{a}=-rac{4\pi G}{3}(
ho+3
ho)+rac{\Lambda}{3}, \qquad \mathcal{H}^2=\left(rac{\dot{a}}{a}
ight)^2=rac{8\pi G}{3}
ho-rac{k}{a^2}+rac{\Lambda}{3},$$

Hubble parameter describes the expansion of the Universe

$$H = \frac{\dot{a}}{a} . \tag{4}$$

- Despite to the great success of GRT, observational discoveries of 20th century imply that they could not be explained by GTR without additional matter.
- In Problem of Bing Bang singularity.
- It means that GRT should be modified. There are two approaches:
- (A1) Dark matter and energy
- (A2) Modification of GTR, i.e. modification of its Lagrangian \mathcal{L}

$$\mathcal{L} = \frac{R-2\Lambda}{16 \pi G} + \mathcal{L}_m, \qquad c = 1.$$

周 ト イ ヨ ト イ ヨ ト

- Dark matter is responsible for orbital speeds in galaxies, and dark energy is responsible for accelerated expansion of the Universe.
- If Einstein theory of gravity can be applied to the whole Universe then about 5% of ordinary matter, 27% of dark matter and 68% of dark energy.
- It means that 95% of total matter, or energy, represents dark side of the Universe, which nature is unknown.

Motivation for modification of Einstein theory of gravity

- The validity of General Relativity on cosmological scale is not confirmed.
- Dark matter and dark energy are not yet detected in the laboratory experiments.

э

- In the second second
- If Einstein theory of gravity can be applied to the whole Universe then
 the Universe contains about 5% of ordinary matter, 27% of dark matter and 68% of dark energy.
- It means that 95% of total matter, or energy, represents dark side of the Universe, which nature is unknown.

Motivation for modification of Einstein theory of gravity

- The validity of General Relativity on cosmological scale is not confirmed.
- In Dark matter and dark energy are not yet detected in the laboratory experiments.

< ロ > < 同 > < 三 > < 三 >

- Dark matter is responsible for orbital speeds in galaxies, and dark energy is responsible for accelerated expansion of the Universe.
- If Einstein theory of gravity can be applied to the whole Universe then
 the Universe contains about 5% of ordinary matter, 27% of dark matter and 68% of dark energy.
- It means that 95% of total matter, or energy, represents dark side of the Universe, which nature is unknown.

Motivation for modification of Einstein theory of gravity

- The validity of General Relativity on cosmological scale is not confirmed.
- In Dark matter and dark energy are not yet detected in the laboratory experiments.

< ロ > < 同 > < 三 > < 三 >

- Bark matter is responsible for orbital speeds in galaxies, and dark energy is responsible for accelerated expansion of the Universe.
- If Einstein theory of gravity can be applied to the whole Universe then
 the Universe contains about 5% of ordinary matter, 27% of dark matter and 68% of dark energy.
- It means that 95% of total matter, or energy, represents dark side of the Universe, which nature is unknown.

Motivation for modification of Einstein theory of gravity

- The validity of General Relativity on cosmological scale is not confirmed.
- Dark matter and dark energy are not yet detected in the laboratory experiments.

- Bark matter is responsible for orbital speeds in galaxies, and dark energy is responsible for accelerated expansion of the Universe.
- If Einstein theory of gravity can be applied to the whole Universe then
 the Universe contains about 5% of ordinary matter, 27% of dark matter and 68% of dark energy.
- It means that 95% of total matter, or energy, represents dark side of the Universe, which nature is unknown.

Motivation for modification of Einstein theory of gravity

- The validity of General Relativity on cosmological scale is not confirmed.
- In Dark matter and dark energy are not yet detected in the laboratory experiments.

- Bark matter is responsible for orbital speeds in galaxies, and dark energy is responsible for accelerated expansion of the Universe.
- If Einstein theory of gravity can be applied to the whole Universe then
 the Universe contains about 5% of ordinary matter, 27% of dark matter and 68% of dark energy.
- It means that 95% of total matter, or energy, represents dark side of the Universe, which nature is unknown.

Motivation for modification of Einstein theory of gravity

- The validity of General Relativity on cosmological scale is not confirmed.
- Dark matter and dark energy are not yet detected in the laboratory experiments.

- Dark matter is responsible for orbital speeds in galaxies, and dark energy is responsible for accelerated expansion of the Universe.
- If Einstein theory of gravity can be applied to the whole Universe then
 the Universe contains) about 5% of ordinary matter, 27% of dark matter and 68% of dark energy.
- It means that 95% of total matter, or energy, represents dark side of the Universe, which nature is unknown.

Motivation for modification of Einstein theory of gravity

- The validity of General Relativity on cosmological scale is not confirmed.
- Dark matter and dark energy are not yet detected in the laboratory experiments.

- Bark matter is responsible for orbital speeds in galaxies, and dark energy is responsible for accelerated expansion of the Universe.
- If Einstein theory of gravity can be applied to the whole Universe then
 the Universe contains) about 5% of ordinary matter, 27% of dark matter and 68% of dark energy.
- It means that 95% of total matter, or energy, represents dark side of the Universe, which nature is unknown.

Motivation for modification of Einstein theory of gravity

- * The validity of General Relativity on cosmological scale is not confirmed.
- Dark matter and dark energy are not yet detected in the laboratory experiments.

< ロ > < 同 > < 回 > < 回 > .

- Bark matter is responsible for orbital speeds in galaxies, and dark energy is responsible for accelerated expansion of the Universe.
- If Einstein theory of gravity can be applied to the whole Universe then
 the Universe contains) about 5% of ordinary matter, 27% of dark matter and 68% of dark energy.
- It means that 95% of total matter, or energy, represents dark side of the Universe, which nature is unknown.

Motivation for modification of Einstein theory of gravity

- * The validity of General Relativity on cosmological scale is not confirmed.
- Dark matter and dark energy are not yet detected in the laboratory experiments.

< ロ > < 同 > < 回 > < 回 > .

Nonlocal modified gravity

- Under nonlocal modification of gravity we understand replacement of the scalar curvature *R* in the Einstein-Hilbert action by a suitable function *F*(*R*, □), where □ = ∇_µ∇^µ is d'Alembert operator and ∇_µ denotes the covariant derivative
- Let M be a four-dimensional pseudo-Riemannian manifold with metric (g_{µν}) of signature (1,3). We consider a class of nonlocal gravity models without matter, given by the following action

$$S = \int_{M} \left(\frac{R - 2\Lambda}{16\pi G} + \mathcal{H}(R) \mathcal{F}(\Box) \mathcal{G}(R) \right) \sqrt{-g} \, \mathrm{d}^{4}x$$

where $\mathcal{F}(\Box) = \sum_{n=0}^{\infty} f_n \Box^n$ is an analytic function of \Box , and Λ is cosmolo-

gical constant.

In the case of FRW metric the scalar curvature and d'Alambert operator are given by

$$R = rac{6(a\ddot{a} + \dot{a}^2 + k)}{a^2}, \quad \Box R = -\ddot{R} - 3H\dot{R}, \quad H = rac{\dot{a}}{a}.$$

< 白 > < 同 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 二 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
- Solution When the Second Second
- * Let *M* be a four-dimensional pseudo-Riemannian manifold with metric $(g_{\mu\nu})$ of signature (1,3). We consider a class of nonlocal gravity models without matter, given by the following action

$$S = \int_{M} \left(\frac{R - 2\Lambda}{16\pi G} + \mathcal{H}(R) \mathcal{F}(\Box) \mathcal{G}(R) \right) \sqrt{-g} \, \mathrm{d}^{4}x,$$

where $\mathcal{F}(\Box) = \sum_{n=0}^{\infty} f_n \Box^n$ is an analytic function of \Box , and Λ is cosmolo-

gical constant.

In the case of FRW metric the scalar curvature and d'Alambert operator are given by

$$R = \frac{6(a\ddot{a} + \dot{a}^2 + k)}{a^2}, \quad \Box R = -\ddot{R} - 3H\dot{R}, \quad H = \frac{\dot{a}}{a}.$$

< D > < P > < E > < E</p>

- Inder nonlocal modification of gravity we understand replacement of the scalar curvature R in the Einstein-Hilbert action by a suitable function $\mathcal{F}(R,\Box)$, where $\Box = \nabla_{\mu}\nabla^{\mu}$ is d'Alembert operator and ∇_{μ} denotes the covariant derivative

$$S = \int_{M} \left(\frac{R - 2\Lambda}{16\pi G} + \mathcal{H}(R) \mathcal{F}(\Box) \mathcal{G}(R) \right) \sqrt{-g} \, \mathrm{d}^{4}x,$$

$$R = \frac{6(a\ddot{a} + \dot{a}^2 + k)}{a^2}, \quad \Box R = -\ddot{R} - 3H\dot{R}, \quad H = \frac{\dot{a}}{a}.$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

- ❀ Under nonlocal modification of gravity we understand replacement of the scalar curvature *R* in the Einstein-Hilbert action by a suitable function *F*(*R*, □), where □ = ∇_µ∇^µ is d'Alembert operator and ∇_µ denotes the covariant derivative
- * Let *M* be a four-dimensional pseudo-Riemannian manifold with metric $(g_{\mu\nu})$ of signature (1,3). We consider a class of nonlocal gravity models without matter, given by the following action

$$S = \int_{M} \left(\frac{R - 2\Lambda}{16\pi G} + \mathcal{H}(R) \,\mathcal{F}(\Box) \,\mathcal{G}(R) \right) \sqrt{-g} \,\mathrm{d}^{4}x,$$

where $\mathcal{F}(\Box) = \sum_{n=0}^{\infty} f_n \Box^n$ is an analytic function of \Box , and Λ is cosmolooical constant.

In the case of FRW metric the scalar curvature and d'Alambert operator are given by

$$R = \frac{6(a\ddot{a} + \dot{a}^2 + k)}{a^2} , \quad \Box R = -\ddot{R} - 3H\dot{R}, \quad H = \frac{\dot{a}}{a} .$$

- ❀ Under nonlocal modification of gravity we understand replacement of the scalar curvature *R* in the Einstein-Hilbert action by a suitable function *F*(*R*, □), where □ = ∇_µ∇^µ is d'Alembert operator and ∇_µ denotes the covariant derivative
- * Let *M* be a four-dimensional pseudo-Riemannian manifold with metric $(g_{\mu\nu})$ of signature (1,3). We consider a class of nonlocal gravity models without matter, given by the following action

$$S = \int_{M} \left(\frac{R - 2\Lambda}{16\pi G} + \mathcal{H}(R) \mathcal{F}(\Box) \mathcal{G}(R) \right) \sqrt{-g} \, \mathrm{d}^{4}x,$$

where $\mathcal{F}(\Box) = \sum_{n=0}^{\infty} f_n \Box^n$ is an analytic function of \Box , and Λ is cosmolo-

gical constant.

In the case of FRW metric the scalar curvature and d'Alambert operator are given by

$$R = \frac{6\left(a\ddot{a} + \dot{a}^2 + k\right)}{a^2}, \quad \Box R = -\ddot{R} - 3H\dot{R}, \quad H = \frac{\dot{a}}{a}.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- ❀ Under nonlocal modification of gravity we understand replacement of the scalar curvature *R* in the Einstein-Hilbert action by a suitable function *F*(*R*, □), where □ = ∇_µ∇^µ is d'Alembert operator and ∇_µ denotes the covariant derivative
- * Let *M* be a four-dimensional pseudo-Riemannian manifold with metric $(g_{\mu\nu})$ of signature (1,3). We consider a class of nonlocal gravity models without matter, given by the following action

$$S = \int_{M} \left(\frac{R - 2\Lambda}{16\pi G} + \mathcal{H}(R) \mathcal{F}(\Box) \mathcal{G}(R) \right) \sqrt{-g} \, \mathrm{d}^{4}x,$$

where $\mathcal{F}(\Box) = \sum_{n=0}^{\infty} f_n \Box^n$ is an analytic function of \Box , and Λ is cosmolo-

gical constant.

In the case of FRW metric the scalar curvature and d'Alambert operator are given by

$$R = \frac{6(a\ddot{a} + \dot{a}^2 + k)}{a^2}, \quad \Box R = -\ddot{R} - 3H\dot{R}, \quad H = \frac{\dot{a}}{a}.$$

- ❀ Under nonlocal modification of gravity we understand replacement of the scalar curvature *R* in the Einstein-Hilbert action by a suitable function *F*(*R*, □), where □ = ∇_µ∇^µ is d'Alembert operator and ∇_µ denotes the covariant derivative
- * Let *M* be a four-dimensional pseudo-Riemannian manifold with metric $(g_{\mu\nu})$ of signature (1,3). We consider a class of nonlocal gravity models without matter, given by the following action

$$S = \int_{M} \left(\frac{R - 2\Lambda}{16\pi G} + \mathcal{H}(R) \mathcal{F}(\Box) \mathcal{G}(R) \right) \sqrt{-g} \, \mathrm{d}^{4}x,$$

where $\mathcal{F}(\Box) = \sum_{n=0}^{\infty} f_n \Box^n$ is an analytic function of \Box , and Λ is cosmolo-

gical constant.

In the case of FRW metric the scalar curvature and d'Alambert operator are given by

$$R = \frac{6(a\ddot{a} + \dot{a}^2 + k)}{a^2}, \quad \Box R = -\ddot{R} - 3H\dot{R}, \quad H = \frac{\dot{a}}{a}.$$

For calculating variation of the action, $\delta S = \frac{1}{16\pi G} \delta S_0 + \delta S_1$, we need the following

Lemma 1. For any two scalar functions G and H hold

$$\begin{split} \int_{M} \mathcal{H}\delta(\sqrt{-g}) \, \mathrm{d}^{4}x &= -\frac{1}{2} \int_{M} g_{\mu\nu} \mathcal{H}\delta g^{\mu\nu} \sqrt{-g} \, \mathrm{d}^{4}x, \\ \int_{M} \mathcal{H}\delta \mathcal{H}\sqrt{-g} \, \mathrm{d}^{4}x &= \int_{M} \left(\mathcal{R}_{\mu\nu} \mathcal{H} - \mathcal{K}_{\mu\nu} \mathcal{H}\right) \delta g^{\mu\nu} \sqrt{-g} \, \mathrm{d}^{4}x, \\ \int_{M} \mathcal{H}\delta(\mathcal{F}(\Box)\mathcal{G})\sqrt{-g} \, \mathrm{d}^{4}x &= \int_{M} \left(\mathcal{R}_{\mu\nu} - \mathcal{K}_{\mu\nu}\right) \left(\mathcal{G}'\mathcal{F}(\Box)\mathcal{H}\right) \delta g^{\mu\nu} \sqrt{-g} \, \mathrm{d}^{4}x \\ &+ \sum_{n=1}^{\infty} \frac{\hbar}{2} \sum_{k=0}^{n-1} \int_{M} \mathcal{S}_{\mu\nu} (\Box^{l}\mathcal{H}, \Box^{n-1-l}\mathcal{G}) \delta g^{\mu\nu} \sqrt{-g} \, \mathrm{d}^{4}x. \end{split}$$

where

$$\begin{split} & K_{\mu\nu} = \nabla_{\mu} \nabla_{\nu} - g_{\mu\nu} \Box, \\ & S_{\mu\nu}(A, B) = g_{\mu\nu} \nabla^{\alpha} A \nabla_{\alpha} B - 2 \nabla_{\mu} A \nabla_{\nu} B + g_{\mu\nu} A \Box B, \end{split}$$

Equations of motion

❀ For calculating variation of the action, $\delta S = \frac{1}{16\pi G} \delta S_0 + \delta S_1$, we need the following

Lemma 1. For any two scalar functions \mathcal{G} and \mathcal{H} hold

$$\begin{split} \int_{M} \mathcal{H}\delta(\sqrt{-g}) \, \mathrm{d}^{4}x &= -\frac{1}{2} \int_{M} g_{\mu\nu} \mathcal{H}\delta g^{\mu\nu} \sqrt{-g} \, \mathrm{d}^{4}x, \\ \int_{M} \mathcal{H}\delta R \sqrt{-g} \, \mathrm{d}^{4}x &= \int_{M} \left(R_{\mu\nu} \mathcal{H} - K_{\mu\nu} \mathcal{H} \right) \delta g^{\mu\nu} \sqrt{-g} \, \mathrm{d}^{4}x, \\ \int_{M} \mathcal{H}\delta(\mathcal{F}(\Box)\mathcal{G}) \sqrt{-g} \, \mathrm{d}^{4}x &= \int_{M} \left(R_{\mu\nu} - K_{\mu\nu} \right) \left(\mathcal{G}' \mathcal{F}(\Box) \mathcal{H} \right) \delta g^{\mu\nu} \sqrt{-g} \, \mathrm{d}^{4}x \\ &+ \sum_{n=1}^{\infty} \frac{f_{n}}{2} \sum_{l=0}^{n-1} \int_{M} S_{\mu\nu} (\Box^{l} \mathcal{H}, \Box^{n-1-l} \mathcal{G}) \delta g^{\mu\nu} \sqrt{-g} \, \mathrm{d}^{4}x. \end{split}$$

where

$$egin{aligned} & \mathcal{K}_{\mu
u} =
abla_{\mu}
abla_{
u} - g_{\mu
u} \Box, \ & S_{\mu
u}(\mathcal{A},\mathcal{B}) = g_{\mu
u}
abla^{lpha} \mathcal{A}
abla_{lpha} \mathcal{B} - 2
abla_{\mu} \mathcal{A}
abla_{
u} \mathcal{B} + g_{\mu
u} \mathcal{A} \Box \mathcal{B}, \end{aligned}$$

Equations of motion

* For calculating variation of the action, $\delta S = \frac{1}{16\pi G} \delta S_0 + \delta S_1$, we need the following

Lemma 1. For any two scalar functions \mathcal{G} and \mathcal{H} hold

$$\begin{split} \int_{M} \mathcal{H}\delta(\sqrt{-g}) \, \mathrm{d}^{4}x &= -\frac{1}{2} \int_{M} g_{\mu\nu} \mathcal{H}\delta g^{\mu\nu} \sqrt{-g} \, \mathrm{d}^{4}x, \\ \int_{M} \mathcal{H}\delta R \sqrt{-g} \, \mathrm{d}^{4}x &= \int_{M} \left(R_{\mu\nu} \mathcal{H} - K_{\mu\nu} \mathcal{H} \right) \delta g^{\mu\nu} \sqrt{-g} \, \mathrm{d}^{4}x, \\ \int_{M} \mathcal{H}\delta(\mathcal{F}(\Box)\mathcal{G}) \sqrt{-g} \, \mathrm{d}^{4}x &= \int_{M} \left(R_{\mu\nu} - K_{\mu\nu} \right) \left(\mathcal{G}' \mathcal{F}(\Box) \mathcal{H} \right) \delta g^{\mu\nu} \sqrt{-g} \, \mathrm{d}^{4}x \\ &+ \sum_{n=1}^{\infty} \frac{f_{n}}{2} \sum_{l=0}^{n-1} \int_{M} S_{\mu\nu} (\Box^{l} \mathcal{H}, \Box^{n-1-l} \mathcal{G}) \delta g^{\mu\nu} \sqrt{-g} \, \mathrm{d}^{4}x. \end{split}$$

where

$$egin{aligned} & \mathcal{K}_{\mu
u} =
abla_{\mu}
abla_{
u} - g_{\mu
u} \Box, \ & S_{\mu
u}(\mathcal{A},\mathcal{B}) = g_{\mu
u}
abla^{lpha} \mathcal{A}
abla_{lpha} \mathcal{B} - 2
abla_{\mu} \mathcal{A}
abla_{
u} \mathcal{B} + g_{\mu
u} \mathcal{A} \Box \mathcal{B}, \end{aligned}$$

Lemma 1. For any two scalar functions \mathcal{G} and \mathcal{H} hold

$$\begin{split} &\int_{M} \mathcal{H}\delta(\sqrt{-g}) \, \mathrm{d}^{4}x = -\frac{1}{2} \int_{M} g_{\mu\nu} \mathcal{H}\delta g^{\mu\nu} \sqrt{-g} \, \mathrm{d}^{4}x, \\ &\int_{M} \mathcal{H}\delta R \sqrt{-g} \, \mathrm{d}^{4}x = \int_{M} \left(R_{\mu\nu} \mathcal{H} - K_{\mu\nu} \mathcal{H} \right) \delta g^{\mu\nu} \sqrt{-g} \, \mathrm{d}^{4}x, \\ &\int_{M} \mathcal{H}\delta(\mathcal{F}(\Box)\mathcal{G}) \sqrt{-g} \, \mathrm{d}^{4}x = \int_{M} \left(R_{\mu\nu} - K_{\mu\nu} \right) \left(\mathcal{G}' \mathcal{F}(\Box) \mathcal{H} \right) \delta g^{\mu\nu} \sqrt{-g} \, \mathrm{d}^{4}x \\ &+ \sum_{n=1}^{\infty} \frac{f_{n}}{2} \sum_{l=0}^{n-1} \int_{M} S_{\mu\nu} (\Box^{l} \mathcal{H}, \Box^{n-1-l} \mathcal{G}) \delta g^{\mu\nu} \sqrt{-g} \, \mathrm{d}^{4}x. \end{split}$$

where

$$egin{aligned} & \mathcal{K}_{\mu
u} =
abla_{\mu}
abla_{
u} - g_{\mu
u} \Box, \ & \mathcal{S}_{\mu
u}(\mathcal{A},\mathcal{B}) = g_{\mu
u}
abla^{lpha}\mathcal{A}
abla_{lpha}\mathcal{B} - 2
abla_{\mu}\mathcal{A}
abla_{
u}\mathcal{B} + g_{\mu
u}\mathcal{A}\Box\mathcal{B}, \end{aligned}$$

 \odot The action S_0 is Einstein-Hilbert action without matter its variation is

$$\delta S_0 = \int_M G_{\mu\nu} \sqrt{-g} \delta g^{\mu\nu} d^4 x + \Lambda \int_M g_{\mu\nu} \sqrt{-g} \delta g^{\mu\nu} d^4 x, \tag{5}$$

where $G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu}$ is Einstein tensor.

 \circledast Using previous Lemma 1. we find the variation of S_1 ,

$$\delta S_{1} = -\frac{1}{2} \int_{M} g_{\mu\nu} \mathcal{H}(R) \mathcal{F}(\Box) \mathcal{G}(R) \delta g^{\mu\nu} \sqrt{-g} d^{4}x + \int_{M} \left(R_{\mu\nu} W - K_{\mu\nu} W + \frac{1}{2} \Omega_{\mu\nu} \right) \delta g^{\mu\nu} \sqrt{-g} d^{4}x.$$
(6)

Since, $S = \frac{1}{16\pi G} S_0 + S_1$, finally we get equations of motion (EOM).

 \circledast The action S_0 is Einstein-Hilbert action without matter its variation is

$$\delta S_0 = \int_M G_{\mu\nu} \sqrt{-g} \delta g^{\mu\nu} d^4 x + \Lambda \int_M g_{\mu\nu} \sqrt{-g} \delta g^{\mu\nu} d^4 x, \qquad (5)$$

where $G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu}$ is Einstein tensor.

Ising previous Lemma 1. we find the variation of S₁,

$$\delta S_{1} = -\frac{1}{2} \int_{M} g_{\mu\nu} \mathcal{H}(R) \mathcal{F}(\Box) \mathcal{G}(R) \delta g^{\mu\nu} \sqrt{-g} d^{4}x + \int_{M} \left(R_{\mu\nu} W - K_{\mu\nu} W + \frac{1}{2} \Omega_{\mu\nu} \right) \delta g^{\mu\nu} \sqrt{-g} d^{4}x.$$
(6)

 \circledast Since, $S=rac{1}{16\pi G}\,S_0+S_1$, finally we get equations of motion (EOM).

<ロ> < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 \circledast The action S_0 is Einstein-Hilbert action without matter its variation is

$$\delta S_0 = \int_M G_{\mu\nu} \sqrt{-g} \delta g^{\mu\nu} d^4 x + \Lambda \int_M g_{\mu\nu} \sqrt{-g} \delta g^{\mu\nu} d^4 x, \qquad (5)$$

where $G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu}$ is Einstein tensor.

Ising previous Lemma 1. we find the variation of S₁,

$$\delta S_{1} = -\frac{1}{2} \int_{M} g_{\mu\nu} \mathcal{H}(R) \mathcal{F}(\Box) \mathcal{G}(R) \delta g^{\mu\nu} \sqrt{-g} d^{4}x + \int_{M} \left(R_{\mu\nu} W - K_{\mu\nu} W + \frac{1}{2} \Omega_{\mu\nu} \right) \delta g^{\mu\nu} \sqrt{-g} d^{4}x.$$
(6)

 \circledast Since, $S=rac{1}{16\pi G}\,S_0+S_1$, finally we get equations of motion (EOM).

The action S₀ is Einstein-Hilbert action without matter its variation is

$$\delta S_0 = \int_M G_{\mu\nu} \sqrt{-g} \delta g^{\mu\nu} d^4 x + \Lambda \int_M g_{\mu\nu} \sqrt{-g} \delta g^{\mu\nu} d^4 x, \qquad (5)$$

where $G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu}$ is Einstein tensor.

 \circledast Using previous Lemma 1. we find the variation of S_1 ,

$$\delta S_{1} = -\frac{1}{2} \int_{M} g_{\mu\nu} \mathcal{H}(R) \mathcal{F}(\Box) \mathcal{G}(R) \delta g^{\mu\nu} \sqrt{-g} d^{4}x + \int_{M} \left(R_{\mu\nu} W - K_{\mu\nu} W + \frac{1}{2} \Omega_{\mu\nu} \right) \delta g^{\mu\nu} \sqrt{-g} d^{4}x.$$
(6)

 \circledast Since, $S=rac{1}{16\pi G}\,S_0+S_1$, finally we get equations of motion (EOM).

<ロ> <同> <同> < 回> < 回> < 三</p>

The action S₀ is Einstein-Hilbert action without matter its variation is

$$\delta S_0 = \int_M G_{\mu\nu} \sqrt{-g} \delta g^{\mu\nu} d^4 x + \Lambda \int_M g_{\mu\nu} \sqrt{-g} \delta g^{\mu\nu} d^4 x, \qquad (5)$$

where $G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu}$ is Einstein tensor.

 \circledast Using previous Lemma 1. we find the variation of S_1 ,

$$\delta S_{1} = -\frac{1}{2} \int_{M} g_{\mu\nu} \mathcal{H}(R) \mathcal{F}(\Box) \mathcal{G}(R) \delta g^{\mu\nu} \sqrt{-g} d^{4}x + \int_{M} \left(R_{\mu\nu} W - K_{\mu\nu} W + \frac{1}{2} \Omega_{\mu\nu} \right) \delta g^{\mu\nu} \sqrt{-g} d^{4}x.$$
(6)

* Since, $S = \frac{1}{16\pi G} S_0 + S_1$, finally we get equations of motion (EOM).

▲□▶▲□▶▲□▶▲□▶▲□ ● ● ●

Equations of motion

- \circledast Let us note that $abla^{\mu} ilde{G}_{\mu
 u}=0.$
- EOM are invariant on the replacement of functions G and H in S.

Theorem 2 (EOM) The equations of motion for system given by S erection $\tilde{G}_{\mu\nu}=0,$

- $\circledast~$ Let us note that $abla^\mu \widetilde{G}_{\mu
 u}=0.$
- EOM are invariant on the replacement of functions G and H in S.

Theorem 2 (EOM) The equations of motion for system given by S vare:

$$\tilde{G}_{\mu\nu} = 0, \tag{7}$$

where

$$\begin{split} \tilde{G}_{\mu\nu} &= \frac{G_{\mu\nu} + \Lambda g_{\mu\nu}}{16\pi G} - \frac{1}{2} g_{\mu\nu} \mathcal{H}(R) \mathcal{F}(\Box) \mathcal{G}(R) + R_{\mu\nu} W - K_{\mu\nu} W + \frac{1}{2} \Omega_{\mu\nu}, \\ \Omega_{\mu\nu} &= \sum_{n=1}^{\infty} f_n \sum_{l=0}^{n-1} S_{\mu\nu} \big(\Box^l \mathcal{H}(R), \Box^{n-1-l} \mathcal{G}(R) \big), \\ K_{\mu\nu} &= \nabla_{\mu} \nabla_{\nu} - g_{\mu\nu} \Box, \\ S_{\mu\nu}(A, B) &= g_{\mu\nu} \nabla^{\alpha} A \nabla_{\alpha} B - 2 \nabla_{\mu} A \nabla_{\nu} B + g_{\mu\nu} A \Box B, \\ W &= \mathcal{H}'(R) \mathcal{F}(\Box) \mathcal{G}(R) + \mathcal{G}'(R) \mathcal{F}(\Box) \mathcal{H}(R). \end{split}$$

- \circledast Let us note that $abla^{\mu}G_{\mu
 u}=0$
- ${}_{\circledast}$ EOM are invariant on the replacement of functions ${\cal G}$ and ${\cal H}$ in S.

(日)

Theorem 2 (EOM) The equations of motion for system given by S vare:

$$\tilde{G}_{\mu\nu} = \mathbf{0},\tag{7}$$

where

$$\begin{split} \tilde{G}_{\mu\nu} &= \frac{G_{\mu\nu} + \Lambda g_{\mu\nu}}{16\pi G} - \frac{1}{2} g_{\mu\nu} \mathcal{H}(R) \mathcal{F}(\Box) \mathcal{G}(R) + R_{\mu\nu} W - K_{\mu\nu} W + \frac{1}{2} \Omega_{\mu\nu}, \\ \Omega_{\mu\nu} &= \sum_{n=1}^{\infty} f_n \sum_{l=0}^{n-1} S_{\mu\nu} \big(\Box^l \mathcal{H}(R), \Box^{n-1-l} \mathcal{G}(R) \big), \\ K_{\mu\nu} &= \nabla_{\mu} \nabla_{\nu} - g_{\mu\nu} \Box, \\ S_{\mu\nu}(A, B) &= g_{\mu\nu} \nabla^{\alpha} A \nabla_{\alpha} B - 2 \nabla_{\mu} A \nabla_{\nu} B + g_{\mu\nu} A \Box B, \\ W &= \mathcal{H}'(R) \mathcal{F}(\Box) \mathcal{G}(R) + \mathcal{G}'(R) \mathcal{F}(\Box) \mathcal{H}(R). \end{split}$$

* Let us note that $\nabla^{\mu} \tilde{G}_{\mu\nu} = 0$.

 \circledast EOM are invariant on the replacement of functions \mathcal{G} and \mathcal{H} in S.

同 > < 三 > < 三 >

Theorem 2 (EOM) The equations of motion for system given by S vare:

$$\tilde{G}_{\mu\nu} = \mathbf{0},\tag{7}$$

where

$$\begin{split} \tilde{G}_{\mu\nu} &= \frac{G_{\mu\nu} + \Lambda g_{\mu\nu}}{16\pi G} - \frac{1}{2} g_{\mu\nu} \mathcal{H}(R) \mathcal{F}(\Box) \mathcal{G}(R) + R_{\mu\nu} W - K_{\mu\nu} W + \frac{1}{2} \Omega_{\mu\nu}, \\ \Omega_{\mu\nu} &= \sum_{n=1}^{\infty} f_n \sum_{l=0}^{n-1} S_{\mu\nu} \big(\Box^l \mathcal{H}(R), \Box^{n-1-l} \mathcal{G}(R) \big), \\ K_{\mu\nu} &= \nabla_{\mu} \nabla_{\nu} - g_{\mu\nu} \Box, \\ S_{\mu\nu}(A, B) &= g_{\mu\nu} \nabla^{\alpha} A \nabla_{\alpha} B - 2 \nabla_{\mu} A \nabla_{\nu} B + g_{\mu\nu} A \Box B, \\ W &= \mathcal{H}'(R) \mathcal{F}(\Box) \mathcal{G}(R) + \mathcal{G}'(R) \mathcal{F}(\Box) \mathcal{H}(R). \end{split}$$

* Let us note that $\nabla^{\mu} \tilde{G}_{\mu\nu} = 0$.

 \circledast EOM are invariant on the replacement of functions ${\cal G}$ and ${\cal H}$ in S.

If we suppose that the manifold M is endowed with FRW metric, then we have just endowed independent equations (trace and 00-equation):

$$-2\mathcal{HF}(\Box)\mathcal{G} + RW + 3\Box W + \frac{1}{2}\Omega = \frac{R-4\Lambda}{16\pi G}, \quad \Omega = g^{\mu\nu}\Omega_{\mu\nu},$$
$$\frac{1}{2}\mathcal{HF}(\Box)\mathcal{G} + R_{00}W - K_{00}W + \frac{1}{2}\Omega_{00} = -\frac{G_{00}-\Lambda}{16\pi G}.$$

If we take

- $\operatorname{source}(R) := \mathcal{G}(R)$ and
- 0.0 < 0.01 be an eigenfunction of the consequently $\mathcal{F}(C) \mathcal{F}(R) = \mathcal{F}(Q) \mathcal{F}(R)$

$$\begin{aligned} G_{\mu\nu} + \Lambda g_{\mu\nu} - \frac{g_{\mu\nu}}{2} \mathcal{F}(q) \mathcal{G}^2 + 2\mathcal{F}(q) (R_{\mu\nu} - K_{\mu\nu}) \mathcal{G} \mathcal{G}' \qquad (8) \\ + \frac{1}{2} \mathcal{F}'(q) S_{\mu\nu}(\mathcal{G}, \mathcal{G}) = 0. \end{aligned}$$

<ロ> <部> < 部> < き> < き> < き</p>

If we suppose that the manifold M is endowed with FRW metric, then we have just <u>use</u> linearly independent equations (trace and 00-equation):

$$-2\mathcal{HF}(\Box)\mathcal{G} + RW + 3\Box W + \frac{1}{2}\Omega = \frac{R-4\Lambda}{16\pi G}, \quad \Omega = g^{\mu\nu}\Omega_{\mu\nu},$$
$$\frac{1}{2}\mathcal{HF}(\Box)\mathcal{G} + R_{00}W - K_{00}W + \frac{1}{2}\Omega_{00} = -\frac{G_{00}-\Lambda}{16\pi G}.$$

- If we take
 - $\mathfrak{S}(R) = \mathcal{G}(R)$ and

$$\begin{aligned} G_{\mu\nu} + \Lambda g_{\mu\nu} - \frac{g_{\mu\nu}}{2} \mathcal{F}(q) \mathcal{G}^2 + 2\mathcal{F}(q) (R_{\mu\nu} - K_{\mu\nu}) \mathcal{G} \mathcal{G}' \qquad (8) \\ + \frac{1}{2} \mathcal{F}'(q) S_{\mu\nu}(\mathcal{G}, \mathcal{G}) = 0. \end{aligned}$$

э

If we suppose that the manifold *M* is endowed with FRW metric, then we have just <u>be</u> linearly independent equations (trace and 00-equation):

$$\begin{split} -2\mathcal{HF}(\Box)\mathcal{G}+RW+3\Box W+\frac{1}{2}\Omega=\frac{R-4\Lambda}{16\pi G}, \quad \Omega=g^{\mu\nu}\Omega_{\mu\nu},\\ \frac{1}{2}\mathcal{HF}(\Box)\mathcal{G}+R_{00}W-K_{00}W+\frac{1}{2}\Omega_{00}=-\frac{G_{00}-\Lambda}{16\pi G}. \end{split}$$

If we take

- $\mathcal{H}(R) = \mathcal{G}(R)$ and

we obtain

$$G_{\mu\nu} + \Lambda g_{\mu\nu} - \frac{g_{\mu\nu}}{2} \mathcal{F}(q) \mathcal{G}^2 + 2\mathcal{F}(q) (R_{\mu\nu} - K_{\mu\nu}) \mathcal{G} \mathcal{G}' \qquad (8)$$
$$+ \frac{1}{2} \mathcal{F}'(q) S_{\mu\nu}(\mathcal{G}, \mathcal{G}) = 0.$$

< ロ > < 同 > < 三 > < 三 > -

If we suppose that the manifold *M* is endowed with FRW metric, then we have just <u>be</u> linearly independent equations (trace and 00-equation):

$$\begin{split} -2\mathcal{HF}(\Box)\mathcal{G}+RW+3\Box W+\frac{1}{2}\Omega=\frac{R-4\Lambda}{16\pi G}, \quad \Omega=g^{\mu\nu}\Omega_{\mu\nu},\\ \frac{1}{2}\mathcal{HF}(\Box)\mathcal{G}+R_{00}W-K_{00}W+\frac{1}{2}\Omega_{00}=-\frac{G_{00}-\Lambda}{16\pi G}. \end{split}$$

If we take

 $\circledast \mathcal{H}(R) = \mathcal{G}(R)$ and

* $\mathcal{G}(R)$ be an eigenfunction of the corresponding d'Alembert-Beltrami operator: $\Box \mathcal{G}(R) = q \mathcal{G}(R)$, and consequently $\mathcal{F}(\Box)\mathcal{G}(R) = \mathcal{F}(q)\mathcal{G}(R)$, we obtain

$$egin{aligned} G_{\mu
u} + \Lambda g_{\mu
u} - rac{g_{\mu
u}}{2} \mathcal{F}(q) \mathcal{G}^2 + 2 \mathcal{F}(q) (R_{\mu
u} - K_{\mu
u}) \, \mathcal{G} \mathcal{G}' \ & (8) \ & + rac{1}{2} \mathcal{F}'(q) S_{\mu
u}(\mathcal{G},\mathcal{G}) = 0. \end{aligned}$$

< ロ > < 同 > < 回 > < 回 > .

If we suppose that the manifold *M* is endowed with FRW metric, then we have just **•** two linearly independent equations (trace and 00-equation):

$$\begin{split} -2\mathcal{HF}(\Box)\mathcal{G}+RW+3\Box W+\frac{1}{2}\Omega=\frac{R-4\Lambda}{16\pi G}, \quad \Omega=g^{\mu\nu}\Omega_{\mu\nu},\\ \frac{1}{2}\mathcal{HF}(\Box)\mathcal{G}+R_{00}W-K_{00}W+\frac{1}{2}\Omega_{00}=-\frac{G_{00}-\Lambda}{16\pi G}. \end{split}$$

If we take

- $\circledast \mathcal{H}(R) = \mathcal{G}(R)$ and
- $\circledast \mathcal{G}(R)$ be an eigenfunction of the corresponding d'Alembert-Beltrami operator: $\Box \mathcal{G}(R) = q \mathcal{G}(R)$, and consequently $\mathcal{F}(\Box) \mathcal{G}(R) = \mathcal{F}(q) \mathcal{G}(R)$,

$$G_{\mu\nu} + \Lambda g_{\mu\nu} - \frac{g_{\mu\nu}}{2} \mathcal{F}(q) \mathcal{G}^2 + 2\mathcal{F}(q) (R_{\mu\nu} - K_{\mu\nu}) \mathcal{G} \mathcal{G}' \qquad (8)$$
$$+ \frac{1}{2} \mathcal{F}'(q) S_{\mu\nu}(\mathcal{G}, \mathcal{G}) = 0.$$

< 同 > < 三 > < 三 > -

If we suppose that the manifold *M* is endowed with FRW metric, then we have just <u>be</u> linearly independent equations (trace and 00-equation):

$$\begin{aligned} -2\mathcal{HF}(\Box)\mathcal{G}+RW+3\Box W+\frac{1}{2}\Omega&=\frac{R-4\Lambda}{16\pi G},\quad \Omega=g^{\mu\nu}\Omega_{\mu\nu},\\ \frac{1}{2}\mathcal{HF}(\Box)\mathcal{G}+R_{00}W-K_{00}W+\frac{1}{2}\Omega_{00}&=-\frac{G_{00}-\Lambda}{16\pi G}. \end{aligned}$$

If we take

- $\circledast \mathcal{H}(R) = \mathcal{G}(R)$ and
- * $\mathcal{G}(R)$ be an eigenfunction of the corresponding d'Alembert-Beltrami operator: $\Box \mathcal{G}(R) = q \mathcal{G}(R)$, and consequently $\mathcal{F}(\Box)\mathcal{G}(R) = \mathcal{F}(q)\mathcal{G}(R)$, we obtain

$$G_{\mu\nu} + \Lambda g_{\mu\nu} - \frac{g_{\mu\nu}}{2} \mathcal{F}(q) \mathcal{G}^2 + 2\mathcal{F}(q) (R_{\mu\nu} - K_{\mu\nu}) \mathcal{G} \mathcal{G}' \qquad (8)$$
$$+ \frac{1}{2} \mathcal{F}'(q) S_{\mu\nu}(\mathcal{G}, \mathcal{G}) = 0.$$

< ロ > < 同 > < 三 > < 三 > -

$$S = \int_{M} \left(\frac{R - 2\Lambda}{16\pi G} + \mathcal{H}(R) \mathcal{F}(\Box) \mathcal{G}(R) \right) \sqrt{-g} \, \mathrm{d}^{4}x,$$

for the following cases:

- 1. $\mathcal{H}(\mathbf{R}) = \mathbf{R}, \mathcal{G}(\mathbf{R}) = \mathbf{R},$
- 2. $\mathcal{H}(R) = R^{-1}, \mathcal{G}(R) = R,$
- 3. $\mathcal{H}(R) = R^{p}, \mathcal{G}(R) = R^{q},$
- 4. $\mathcal{H}(\boldsymbol{R}) = (\boldsymbol{R} + \boldsymbol{R}_0)^m, \, \mathcal{G}(\boldsymbol{R}) = (\boldsymbol{R} + \boldsymbol{R}_0)^m,$

5. R = const.

・ロ・・(型・・目・・(目・)

$$S = \int_{M} \left(\frac{R - 2\Lambda}{16\pi G} + \mathcal{H}(R) \,\mathcal{F}(\Box) \,\mathcal{G}(R) \right) \sqrt{-g} \, \mathrm{d}^{4}x,$$

for the following cases:

- 1. $\mathcal{H}(R) = R, \mathcal{G}(R) = R,$
- 2. $\mathcal{H}(\mathbf{R}) = \mathbf{R}^{-1}, \mathcal{G}(\mathbf{R}) = \mathbf{R},$
- 3. $\mathcal{H}(R) = R^p, \mathcal{G}(R) = R^q,$
- 4. $\mathcal{H}(R) = (R + R_0)^m, \, \mathcal{G}(R) = (R + R_0)^m,$

5. R = const.

< D > < P > < E > < E</p>

$$S = \int_{M} \left(\frac{R - 2\Lambda}{16\pi G} + \mathcal{H}(R) \mathcal{F}(\Box) \mathcal{G}(R) \right) \sqrt{-g} \, \mathrm{d}^{4}x,$$

for the following cases:

- 1. $\mathcal{H}(R) = R, \mathcal{G}(R) = R,$
- 2. $\mathcal{H}(\mathbf{R}) = \mathbf{R}^{-1}, \mathcal{G}(\mathbf{R}) = \mathbf{R},$
- 3. $\mathcal{H}(\mathbf{R}) = \mathbf{R}^{p}, \mathcal{G}(\mathbf{R}) = \mathbf{R}^{q},$
- 4. $\mathcal{H}(R) = (R + R_0)^m, \, \mathcal{G}(R) = (R + R_0)^m,$

Zoran Rakić

5. R = const.

< ロ > < 同 > < 回 > < 回 > < 回 > <

$$S = \int_{M} \left(\frac{R - 2\Lambda}{16\pi G} + \mathcal{H}(R) \mathcal{F}(\Box) \mathcal{G}(R) \right) \sqrt{-g} \, \mathrm{d}^{4}x,$$

for the following cases:

- 1. $\mathcal{H}(R) = R, \mathcal{G}(R) = R,$
- 2. $\mathcal{H}(\mathbf{R}) = \mathbf{R}^{-1}, \mathcal{G}(\mathbf{R}) = \mathbf{R},$
- 3. $\mathcal{H}(\mathbf{R}) = \mathbf{R}^{p}, \mathcal{G}(\mathbf{R}) = \mathbf{R}^{q},$
- 4. $\mathcal{H}(R) = (R + R_0)^m, \, \mathcal{G}(R) = (R + R_0)^m,$
- 5. R = const.

< ロ > < 同 > < 回 > < 回 > .

$$S = \int_{M} \left(\frac{R - 2\Lambda}{16\pi G} + \mathcal{H}(R) \mathcal{F}(\Box) \mathcal{G}(R) \right) \sqrt{-g} \, \mathrm{d}^{4}x,$$

for the following cases:

- 1. $\mathcal{H}(R) = R, \mathcal{G}(R) = R$,
- 2. $\mathcal{H}(R) = R^{-1}, \mathcal{G}(R) = R,$
- 3. $\mathcal{H}(R) = R^p, \mathcal{G}(R) = R^q,$
- 4. $\mathcal{H}(R) = (R + R_0)^m, \, \mathcal{G}(R) = (R + R_0)^m,$

5. R = const.

< ロ > < 同 > < 回 > < 回 > .

$$S = \int_{M} \left(\frac{R - 2\Lambda}{16\pi G} + \mathcal{H}(R) \mathcal{F}(\Box) \mathcal{G}(R) \right) \sqrt{-g} \, \mathrm{d}^{4}x,$$

for the following cases:

- 1. $\mathcal{H}(R) = R, \mathcal{G}(R) = R$,
- 2. $\mathcal{H}(R) = R^{-1}, \mathcal{G}(R) = R$,
- 3. $\mathcal{H}(R) = R^{p}, \mathcal{G}(R) = R^{q},$
- 4. $\mathcal{H}(R) = (R + R_0)^m, \, \mathcal{G}(R) = (R + R_0)^m,$

5. R = const.

< ロ > < 同 > < 三 > < 三 > -

$$S = \int_{M} \left(\frac{R - 2\Lambda}{16\pi G} + \mathcal{H}(R) \mathcal{F}(\Box) \mathcal{G}(R) \right) \sqrt{-g} \, \mathrm{d}^{4}x,$$

for the following cases:

- 1. $\mathcal{H}(R) = R, \mathcal{G}(R) = R$,
- 2. $\mathcal{H}(R) = R^{-1}, \mathcal{G}(R) = R$,
- 3. $\mathcal{H}(R) = R^{p}, \mathcal{G}(R) = R^{q},$
- 4. $\mathcal{H}(R) = (R + R_0)^m, \, \mathcal{G}(R) = (R + R_0)^m,$
- 5. R = const.

< ロ > < 同 > < 三 > < 三 > -

$$S = \int_{M} \left(\frac{R - 2\Lambda}{16\pi G} + \mathcal{H}(R) \mathcal{F}(\Box) \mathcal{G}(R) \right) \sqrt{-g} \, \mathrm{d}^{4}x,$$

for the following cases:

- 1. $\mathcal{H}(R) = R, \mathcal{G}(R) = R$,
- 2. $\mathcal{H}(R) = R^{-1}, \mathcal{G}(R) = R$,
- 3. $\mathcal{H}(R) = R^{p}, \mathcal{G}(R) = R^{q},$
- 4. $\mathcal{H}(R) = (R + R_0)^m, \, \mathcal{G}(R) = (R + R_0)^m,$

5. R = const.

< 同 > < 三 > < 三 > -

$$S = \int_{M} \left(\frac{R - 2\Lambda}{16\pi G} + \mathcal{H}(R) \mathcal{F}(\Box) \mathcal{G}(R) \right) \sqrt{-g} \, \mathrm{d}^{4}x,$$

for the following cases:

- 1. $\mathcal{H}(R) = R, \mathcal{G}(R) = R$,
- 2. $\mathcal{H}(R) = R^{-1}, \mathcal{G}(R) = R$,
- 3. $\mathcal{H}(R) = R^{p}, \mathcal{G}(R) = R^{q},$
- 4. $\mathcal{H}(R) = (R + R_0)^m, \, \mathcal{G}(R) = (R + R_0)^m,$
- 5. R = const.

・ 同 ト ・ ヨ ト ・ ヨ ト

 Recently, we have considered classes of nonlocal gravity models with cosmological constant ∧ and without matter, given by

(M4)
$$S = \frac{1}{16\pi G} \int_{M} \left(R - 2\Lambda + (R - 4\Lambda) \mathcal{F}(\Box)(R - 4\Lambda) \right) \sqrt{-g} \, \mathrm{d}^{4}x,$$

(MS)
$$S = \frac{1}{16\pi G} \int_M \left(R - 2\Lambda + \sqrt{R - 2\Lambda} \mathcal{F}(\Box) \sqrt{R - 2\Lambda} \right) \sqrt{-g} \, \mathrm{d}^4 x,$$

where P(R) and Q(R) are some differentiable functions of R, while $\mathcal{F}(\Box) = \sum_{n=1}^{+\infty} f_n \Box^n + \sum_{n=1}^{+\infty} f_{-n} \Box^{-n}, \Box = \nabla_\mu \nabla^\mu = \frac{1}{\sqrt{-g}} \partial_\mu (\sqrt{-g} g^{\mu\nu} \partial_\nu)$ is d'Alembert-Beltrami operator and Λ is cosmological constant.

- The action (M4) is **limit case** od the action (MS) since: the expansion of $\sqrt{R-2\Lambda} = \sqrt{-2\Lambda}\sqrt{1-\frac{R}{2\Lambda}}$ where $|R| \ll |2L|$.
- Inear approximation in R/2A gives $\sqrt{R-2A} = \sqrt{-2A}(1-\frac{R}{4A})$, then the nonlocal term in (MS) becomes

$\sqrt{R-2\Lambda} \mathcal{F}(\Box) \sqrt{R-2\Lambda} \simeq -\frac{H}{8\Lambda} (R-4\Lambda) \mathcal{F}(\Box) (R-4\Lambda),$
Recently, we have considered classes of nonlocal gravity models with cosmological constant ∧ and without matter, given by

(M4)
$$S = \frac{1}{16\pi G} \int_M (R - 2\Lambda + (R - 4\Lambda) \mathcal{F}(\Box)(R - 4\Lambda)) \sqrt{-g} d^4x,$$

(MS)
$$S = \frac{1}{16\pi G} \int_M \left(R - 2\Lambda + \sqrt{R - 2\Lambda} \mathcal{F}(\Box) \sqrt{R - 2\Lambda} \right) \sqrt{-g} \, \mathrm{d}^4 x,$$

where P(R) and Q(R) are some differentiable functions of R, while $\mathcal{F}(\Box) = \sum_{n=1}^{+\infty} f_n \Box^n + \sum_{n=1}^{+\infty} f_{-n} \Box^{-n}, \Box = \nabla_\mu \nabla^\mu = \frac{1}{\sqrt{-g}} \partial_\mu (\sqrt{-g} g^{\mu\nu} \partial_\nu)$ is d'Alembert-Beltrami operator and Λ is cosmological constant.

- * The action (M4) is **limit case** od the action (MS) since: the expansion of $\sqrt{R-2\Lambda} = \sqrt{-2\Lambda} \sqrt{1 \frac{R}{2\Lambda}}$ where $|R| \ll |2L|$.
- Linear approximation in R/2 A gives \(\sqrt{R} 2A\) = \(\sqrt{-2A}\) (1 \(\frac{R}{4A}\)), then the nonlocal term in (MS) becomes

$$\sqrt{R-2\Lambda}\mathcal{F}(\Box)\sqrt{R-2\Lambda}\simeq-rac{R}{8\Lambda}(R-4\Lambda)\mathcal{F}(\Box)(R-4\Lambda),$$

< ロ > < 同 > < 回 > < 国

 Recently, we have considered classes of nonlocal gravity models with cosmological constant Λ and without matter, given by

(M4)
$$S = \frac{1}{16\pi G} \int_{M} \left(R - 2\Lambda + (R - 4\Lambda) \mathcal{F}(\Box)(R - 4\Lambda) \right) \sqrt{-g} \, \mathrm{d}^{4}x,$$

(MS)
$$S = \frac{1}{16\pi G} \int_M \left(R - 2\Lambda + \sqrt{R - 2\Lambda} \mathcal{F}(\Box) \sqrt{R - 2\Lambda} \right) \sqrt{-g} \, \mathrm{d}^4 x,$$

where P(R) and Q(R) are some differentiable functions of R, while $\mathcal{F}(\Box) = \sum_{n=1}^{+\infty} f_n \Box^n + \sum_{n=1}^{+\infty} f_{-n} \Box^{-n}, \Box = \nabla_\mu \nabla^\mu = \frac{1}{\sqrt{-g}} \partial_\mu (\sqrt{-g} g^{\mu\nu} \partial_\nu)$ is d'Alembert-Beltrami operator and Λ is cosmological constant.

- * The action (M4) is **limit case** od the action (MS) since: the expansion of $\sqrt{R-2\Lambda} = \sqrt{-2\Lambda}\sqrt{1-\frac{R}{2\Lambda}}$ where $|R| \ll |2L|$.
- The Linear approximation in $R/2\Lambda$ gives $\sqrt{R-2\Lambda} = \sqrt{-2\Lambda} (1 \frac{R}{4\Lambda})$, then the nonlocal term in (MS) becomes

$$\sqrt{R-2\Lambda} \mathcal{F}(\Box) \sqrt{R-2\Lambda} \simeq -rac{R}{8\Lambda} (R-4\Lambda) \mathcal{F}(\Box) (R-4\Lambda),$$

 Recently, we have considered classes of nonlocal gravity models with cosmological constant Λ and without matter, given by

(M4)
$$S = \frac{1}{16\pi G} \int_{M} \left(R - 2\Lambda + (R - 4\Lambda) \mathcal{F}(\Box)(R - 4\Lambda) \right) \sqrt{-g} \, \mathrm{d}^{4}x,$$

(MS)
$$S = \frac{1}{16\pi G} \int_M \left(R - 2\Lambda + \sqrt{R - 2\Lambda} \mathcal{F}(\Box) \sqrt{R - 2\Lambda} \right) \sqrt{-g} \, \mathrm{d}^4 x,$$

where P(R) and Q(R) are some differentiable functions of R, while $\mathcal{F}(\Box) = \sum_{n=1}^{+\infty} f_n \Box^n + \sum_{n=1}^{+\infty} f_{-n} \Box^{-n}, \Box = \nabla_\mu \nabla^\mu = \frac{1}{\sqrt{-g}} \partial_\mu \left(\sqrt{-g} g^{\mu\nu} \partial_\nu \right)$ is d'Alembert-Beltrami operator and Λ is cosmological constant.

- The action (M4) is **limit case** od the action (MS) since: the expansion of
 $√R 2\Lambda = \sqrt{-2\Lambda} \sqrt{1 \frac{R}{2\Lambda}}$ where |*R*| ≪ |2*L*|.
- Inear approximation in $R/2\Lambda$ gives $\sqrt{R-2\Lambda} = \sqrt{-2\Lambda} (1 \frac{R}{4\Lambda})$, then the nonlocal term in (MS) becomes

$$\sqrt{R-2\Lambda}\,\mathcal{F}(\Box)\,\sqrt{R-2\Lambda}\simeq -rac{R}{8\Lambda}\,(R-4\Lambda)\,\mathcal{F}(\Box)\,(R-4\Lambda),$$

A (1) > A (2) > A (2) >

 Recently, we have considered classes of nonlocal gravity models with cosmological constant Λ and without matter, given by

(M4)
$$S = \frac{1}{16\pi G} \int_{M} \left(R - 2\Lambda + (R - 4\Lambda) \mathcal{F}(\Box)(R - 4\Lambda) \right) \sqrt{-g} \, \mathrm{d}^{4}x,$$

(MS)
$$S = \frac{1}{16\pi G} \int_M \left(R - 2\Lambda + \sqrt{R - 2\Lambda} \mathcal{F}(\Box) \sqrt{R - 2\Lambda} \right) \sqrt{-g} \, \mathrm{d}^4 x,$$

where P(R) and Q(R) are some differentiable functions of R, while $\mathcal{F}(\Box) = \sum_{n=1}^{+\infty} f_n \Box^n + \sum_{n=1}^{+\infty} f_{-n} \Box^{-n}, \Box = \nabla_\mu \nabla^\mu = \frac{1}{\sqrt{-g}} \partial_\mu \left(\sqrt{-g} g^{\mu\nu} \partial_\nu \right)$ is d'Alembert-Beltrami operator and Λ is cosmological constant.

- The action (M4) is **limit case** od the action (MS) since: the expansion of
 $√R 2\Lambda = \sqrt{-2\Lambda} \sqrt{1 \frac{R}{2\Lambda}}$ where |*R*| ≪ |2*L*|.
- ❀ Linear approximation in $R/2\Lambda$ gives $\sqrt{R-2\Lambda} = \sqrt{-2\Lambda} (1 \frac{R}{4\Lambda})$, then the nonlocal term in (MS) becomes

$$\sqrt{R-2\Lambda} \mathcal{F}(\Box) \sqrt{R-2\Lambda} \simeq -\frac{R}{8\Lambda} (R-4\Lambda) \mathcal{F}(\Box) (R-4\Lambda),$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

- where factor − $\frac{R}{8\Lambda}$ can be included in nonlocal operator $\mathcal{F}(\Box)$ by its redefinition, and at the same time, $R 2\Lambda = \sqrt{R 2\Lambda}\sqrt{R 2\Lambda}$ remains unchanged in the linear approximation.
- The further significantly simplification of EOM could be obtained if P(R) is an eigenfunction of the corresponding d'Alembert operator
 and consequently also of its inverse
 and and another intervention.

where $q = \zeta \Lambda$ and $q^{-1} = \zeta^{-1} \Lambda^{-1}$ (ζ dimensionless parameter) are eigenvalues, respectively, then

$W = 2\mathcal{F}(q)P'P, \quad \mathcal{F}(q) = \sum_{n=1}^{+\infty} f_n q^n + \sum_{n=1}^{+\infty} f_{-n} q^{-n}, \Omega_{\mu\nu} = \mathcal{F}'(q)S_{\mu\nu}(P, P), \quad (10)$

- where factor $-\frac{R}{8\Lambda}$ can be included in nonlocal operator $\mathcal{F}(\Box)$ by its redefinition, and at the same time, $R 2\Lambda = \sqrt{R 2\Lambda}\sqrt{R 2\Lambda}$ remains unchanged in the linear approximation.
- The further significantly simplification of EOM could be obtained if *P*(*R*) is an eigenfunction of the corresponding d'Alembert operator □, and consequently also of its inverse □⁻¹, i.e. if hold

where $q = \zeta \Lambda$ and $q^{-1} = \zeta^{-1} \Lambda^{-1}$ (ζ dimensionless parameter) are eigenvalues, respectively, then

$$W = 2\mathcal{F}(q)P'P, \quad \mathcal{F}(q) = \sum_{n=1}^{+\infty} f_n \ q^n + \sum_{n=1}^{+\infty} f_{-n} \ q^{-n}, \Omega_{\mu\nu} = \mathcal{F}'(q)S_{\mu\nu}(P,P), \quad (10)$$

< D > < P > < E > < E</p>

- where factor $-\frac{R}{8\Lambda}$ can be included in nonlocal operator $\mathcal{F}(\Box)$ by its redefinition, and at the same time, $R 2\Lambda = \sqrt{R 2\Lambda}\sqrt{R 2\Lambda}$ remains unchanged in the linear approximation.
- The further significantly simplification of EOM could be obtained if *P*(*R*)
 is an eigenfunction of the corresponding d'Alembert operator □, and
 consequently also of its inverse □⁻¹, i.e. if hold

where $q = \zeta \Lambda$ and $q^{-1} = \zeta^{-1} \Lambda^{-1}$ (ζ dimensionless parameter) are eigenvalues, respectively, then

$$W = 2\mathcal{F}(q)P'P, \quad \mathcal{F}(q) = \sum_{n=1}^{+\infty} f_n \ q^n + \sum_{n=1}^{+\infty} f_{-n} \ q^{-n}, \Omega_{\mu\nu} = \mathcal{F}'(q)S_{\mu\nu}(P,P), \quad (10)$$

< ロ > < 同 > < 三 > < 三 > -

- ⊗ where factor $-\frac{R}{8\Lambda}$ can be included in nonlocal operator $\mathcal{F}(\Box)$ by its redefinition, and at the same time, $R 2\Lambda = \sqrt{R 2\Lambda}\sqrt{R 2\Lambda}$ remains unchanged in the linear approximation.
- The further significantly simplification of EOM could be obtained if *P*(*R*)
 is an eigenfunction of the corresponding d'Alembert operator □, and
 consequently also of its inverse □⁻¹, i.e. if hold

where $q = \zeta \Lambda$ and $q^{-1} = \zeta^{-1} \Lambda^{-1}$ (ζ dimensionless parameter) are eigenvalues, respectively, then

$$W = 2\mathcal{F}(q)P'P, \quad \mathcal{F}(q) = \sum_{n=1}^{+\infty} f_n \ q^n + \sum_{n=1}^{+\infty} f_{-n} \ q^{-n}, \Omega_{\mu\nu} = \mathcal{F}'(q)S_{\mu\nu}(P,P), \quad (10)$$

- ⊗ where factor $-\frac{R}{8\Lambda}$ can be included in nonlocal operator $\mathcal{F}(\Box)$ by its redefinition, and at the same time, $R 2\Lambda = \sqrt{R 2\Lambda}\sqrt{R 2\Lambda}$ remains unchanged in the linear approximation.
- The further significantly simplification of EOM could be obtained if *P*(*R*)
 is an eigenfunction of the corresponding d'Alembert operator □, and
 consequently also of its inverse □⁻¹, i.e. if hold

where $q = \zeta \Lambda$ and $q^{-1} = \zeta^{-1} \Lambda^{-1}$ (ζ dimensionless parameter) are eigenvalues, respectively, then

$$W = 2\mathcal{F}(q)P'P, \quad \mathcal{F}(q) = \sum_{n=1}^{+\infty} f_n q^n + \sum_{n=1}^{+\infty} f_{-n} q^{-n}, \Omega_{\mu\nu} = \mathcal{F}'(q)S_{\mu\nu}(P,P), \quad (10)$$

 $G_{\mu\nu} + \Lambda g_{\mu\nu} - \frac{g_{\mu\nu}}{2} \mathcal{F}(q) P^2 + 2\mathcal{F}(q) R_{\mu\nu} P P' - 2\mathcal{F}(q) K_{\mu\nu} P P' + \frac{1}{2} \mathcal{F}'(q) S_{\mu\nu}(P, P) = 0.$ (11) The last equation transforms to

$$(G_{\mu\nu} + \Lambda g_{\mu\nu}) \left(1 + 2\mathcal{F}(q)PP'\right) + \mathcal{F}(q)g_{\mu\nu} \left(-\frac{1}{2}P^2 + PP'(R - 2\Lambda)\right) - 2\mathcal{F}(q)K_{\mu\nu}PP' + \frac{1}{2}\mathcal{F}'(q)S_{\mu\nu}(P, P) = 0.$$
(12)

E Let now $P = R - 4\Lambda$, then $PP' = P = R - 4\Lambda$ and EOM simplify to

$$\left(G_{\mu\nu} + \Lambda g_{\mu\nu} + \mathcal{F}(q) \left(G_{\mu\nu} + \Lambda g_{\mu\nu} + \frac{R}{2} g_{\mu\nu} - 2K_{\mu\nu}\right) P\right) + \frac{1}{2} \mathcal{F}'(q) S_{\mu\nu}(P, P) = 0,$$
(13)

It is evident that EOM are satisfied if

$$\mathcal{F}'(\boldsymbol{\rho}) = 0, \text{ and }$$
(14)

 $G_{\mu\nu} + \Lambda g_{\mu\nu} + \mathcal{F}(q) \left(G_{\mu\nu} + \Lambda g_{\mu\nu} + \frac{n}{2} g_{\mu\nu} - 2K_{\mu\nu} \right) P = 0.$ (15)

・ロト ・四ト ・ヨト ・ヨト ・ヨ

$$G_{\mu\nu} + \Lambda g_{\mu\nu} - \frac{g_{\mu\nu}}{2} \mathcal{F}(q) P^2 + 2\mathcal{F}(q) R_{\mu\nu} P P' - 2\mathcal{F}(q) K_{\mu\nu} P P' + \frac{1}{2} \mathcal{F}'(q) S_{\mu\nu}(P, P) = 0.$$
(11)

$$(G_{\mu\nu} + \Lambda g_{\mu\nu}) \left(1 + 2\mathcal{F}(q)PP'\right) + \mathcal{F}(q)g_{\mu\nu} \left(-\frac{1}{2}P^2 + PP'(R - 2\Lambda)\right) - 2\mathcal{F}(q)K_{\mu\nu}PP' + \frac{1}{2}\mathcal{F}'(q)S_{\mu\nu}(P, P) = 0.$$
(12)

 \circledast Let now $P = R - 4\Lambda$, then $PP' = P = R - 4\Lambda$ and EOM simplify to

$$\left(G_{\mu\nu} + \Lambda g_{\mu\nu} + \mathcal{F}(q)\left(G_{\mu\nu} + \Lambda g_{\mu\nu} + \frac{R}{2}g_{\mu\nu} - 2K_{\mu\nu}\right)P\right) + \frac{1}{2}\mathcal{F}'(q)S_{\mu\nu}(P,P) = 0,$$
(13)

It is evident that EOM are satisfied if

$$\mathcal{F}'(p) = 0, \text{ and} \tag{14}$$

$$G_{\mu\nu} + \Lambda g_{\mu\nu} + \mathcal{F}(q) \left(G_{\mu\nu} + \Lambda g_{\mu\nu} + \frac{R}{2} g_{\mu\nu} - 2K_{\mu\nu} \right) P = 0.$$
 (15)

(日)

Э

$$G_{\mu
u} + \Lambda g_{\mu
u} - rac{g_{\mu
u}}{2} \mathcal{F}(q) P^2 + 2 \mathcal{F}(q) R_{\mu
u} P P' - 2 \mathcal{F}(q) K_{\mu
u} P P' + rac{1}{2} \mathcal{F}'(q) S_{\mu
u}(P,P) = 0.$$
 (11)

$$(G_{\mu\nu} + \Lambda g_{\mu\nu}) \left(1 + 2\mathcal{F}(q)PP'\right) + \mathcal{F}(q)g_{\mu\nu} \left(-\frac{1}{2}P^2 + PP'(R - 2\Lambda)\right) - 2\mathcal{F}(q)K_{\mu\nu}PP' + \frac{1}{2}\mathcal{F}'(q)S_{\mu\nu}(P, P) = 0.$$
(12)

 \circledast Let now $P = R - 4\Lambda$, then $PP' = P = R - 4\Lambda$ and EOM simplify to

$$\left(G_{\mu\nu} + \Lambda g_{\mu\nu} + \mathcal{F}(q)\left(G_{\mu\nu} + \Lambda g_{\mu\nu} + \frac{R}{2}g_{\mu\nu} - 2K_{\mu\nu}\right)P\right) + \frac{1}{2}\mathcal{F}'(q)S_{\mu\nu}(P,P) = 0,$$
(13)

It is evident that EOM are satisfied if

$$\mathcal{F}'(p) = 0, \text{ and} \tag{14}$$

$$G_{\mu\nu} + \Lambda g_{\mu\nu} + \mathcal{F}(q) \left(G_{\mu\nu} + \Lambda g_{\mu\nu} + \frac{R}{2} g_{\mu\nu} - 2K_{\mu\nu} \right) P = 0.$$
 (15)

(日)

Э

$$G_{\mu
u} + \Lambda g_{\mu
u} - rac{g_{\mu
u}}{2} \mathcal{F}(q) P^2 + 2 \mathcal{F}(q) R_{\mu
u} P P' - 2 \mathcal{F}(q) K_{\mu
u} P P' + rac{1}{2} \mathcal{F}'(q) S_{\mu
u}(P,P) = 0.$$
 (11)

$$(G_{\mu\nu} + \Lambda g_{\mu\nu}) \left(1 + 2\mathcal{F}(q)PP'\right) + \mathcal{F}(q)g_{\mu\nu} \left(-\frac{1}{2}P^2 + PP'(R - 2\Lambda)\right) - 2\mathcal{F}(q)K_{\mu\nu}PP' + \frac{1}{2}\mathcal{F}'(q)S_{\mu\nu}(P, P) = 0.$$
(12)

 \circledast Let now $P = R - 4\Lambda$, then $P P' = P = R - 4\Lambda$ and EOM simplify to

$$\left(G_{\mu\nu} + \Lambda g_{\mu\nu} + \mathcal{F}(q) \left(G_{\mu\nu} + \Lambda g_{\mu\nu} + \frac{R}{2} g_{\mu\nu} - 2K_{\mu\nu} \right) P \right) + \frac{1}{2} \mathcal{F}'(q) S_{\mu\nu}(P, P) = 0,$$

$$(13)$$

It is evident that EOM are satisfied if

$$\mathcal{F}'(\boldsymbol{p}) = \mathbf{0}, \text{ and }$$
(14)

$$G_{\mu\nu} + \Lambda g_{\mu\nu} + \mathcal{F}(q) \left(G_{\mu\nu} + \Lambda g_{\mu\nu} + \frac{R}{2} g_{\mu\nu} - 2K_{\mu\nu} \right) P = 0.$$
 (15)

$$G_{\mu
u} + \Lambda g_{\mu
u} - rac{g_{\mu
u}}{2} \mathcal{F}(q) P^2 + 2 \mathcal{F}(q) R_{\mu
u} P P' - 2 \mathcal{F}(q) K_{\mu
u} P P' + rac{1}{2} \mathcal{F}'(q) S_{\mu
u}(P,P) = 0.$$
 (11)

$$(G_{\mu\nu} + \Lambda g_{\mu\nu}) \left(1 + 2\mathcal{F}(q)PP' \right) + \mathcal{F}(q)g_{\mu\nu} \left(-\frac{1}{2}P^2 + PP'(R - 2\Lambda) \right) -2\mathcal{F}(q)K_{\mu\nu}PP' + \frac{1}{2}\mathcal{F}'(q)S_{\mu\nu}(P, P) = 0.$$
(12)

 \circledast Let now $P = R - 4\Lambda$, then $P P' = P = R - 4\Lambda$ and EOM simplify to

$$\left(G_{\mu\nu} + \Lambda g_{\mu\nu} + \mathcal{F}(q) \left(G_{\mu\nu} + \Lambda g_{\mu\nu} + \frac{R}{2} g_{\mu\nu} - 2K_{\mu\nu} \right) P \right) + \frac{1}{2} \mathcal{F}'(q) S_{\mu\nu}(P, P) = 0,$$

$$(13)$$

It is evident that EOM are satisfied if

$$\mathcal{F}'(\boldsymbol{\rho}) = \mathbf{0}, \text{ and}$$
 (14)

$$G_{\mu\nu} + \Lambda g_{\mu\nu} + \mathcal{F}(q) \left(G_{\mu\nu} + \Lambda g_{\mu\nu} + \frac{R}{2} g_{\mu\nu} - 2K_{\mu\nu} \right) P = 0.$$
 (15)

$$\hat{G}_{\mu\nu} = G_{\mu\nu} + \Lambda g_{\mu\nu} - 8\pi G \hat{T}_{\mu\nu} = 0 ,$$
 (16)

The corresponding Friedmann equations are

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\bar{\rho} + 3\bar{\rho}) + \frac{\Lambda}{3}, \qquad \frac{\dot{a}^2 + k}{a^2} = \frac{8\pi G}{3}\bar{\rho} + \frac{\Lambda}{3}, \qquad (17)$$

where $\bar{\rho}$ and $\bar{\rho}$ play a role of the energy density and pressure of the dark side of the universe, respectively.

The related equation of state is

$$\bar{\boldsymbol{\rho}}(t) = \bar{\boldsymbol{w}}(t)\,\bar{\boldsymbol{\rho}}(t).\tag{18}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

э

$$\hat{G}_{\mu\nu} = G_{\mu\nu} + \Lambda g_{\mu\nu} - 8\pi G \hat{T}_{\mu\nu} = 0,$$
 (16)

The corresponding Friedmann equations are

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\bar{\rho} + 3\bar{\rho}) + \frac{\Lambda}{3}, \qquad \frac{\dot{a}^2 + k}{a^2} = \frac{8\pi G}{3}\bar{\rho} + \frac{\Lambda}{3}, \qquad (17)$$

where $\bar{\rho}$ and \bar{p} play a role of the energy density and pressure of the dark side of the universe, respectively.

The related equation of state is

$$\bar{\boldsymbol{p}}(t) = \bar{\boldsymbol{w}}(t)\,\bar{\boldsymbol{\rho}}(t). \tag{18}$$

A (1) > A (2) > A (2)

$$\hat{G}_{\mu\nu} = G_{\mu\nu} + \Lambda g_{\mu\nu} - 8\pi G \hat{T}_{\mu\nu} = 0, \qquad (16)$$

The corresponding Friedmann equations are

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\bar{\rho} + 3\bar{\rho}) + \frac{\Lambda}{3}, \qquad \frac{\dot{a}^2 + k}{a^2} = \frac{8\pi G}{3}\bar{\rho} + \frac{\Lambda}{3}, \qquad (17)$$

where $\bar{\rho}$ and \bar{p} play a role of the energy density and pressure of the dark side of the universe, respectively.

The related equation of state is

$$\bar{\boldsymbol{p}}(t) = \bar{\boldsymbol{w}}(t)\,\bar{\boldsymbol{\rho}}(t). \tag{18}$$

A (10) > A (10) > A (10)

$$\hat{G}_{\mu\nu} = G_{\mu\nu} + \Lambda g_{\mu\nu} - 8\pi G \hat{T}_{\mu\nu} = 0,$$
 (16)

The corresponding Friedmann equations are

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\bar{\rho} + 3\bar{\rho}) + \frac{\Lambda}{3}, \qquad \frac{\dot{a}^2 + k}{a^2} = \frac{8\pi G}{3}\bar{\rho} + \frac{\Lambda}{3}, \qquad (17)$$

where $\bar{\rho}$ and \bar{p} play a role of the energy density and pressure of the dark side of the universe, respectively.

The related equation of state is

$$\bar{p}(t) = \bar{w}(t)\,\bar{\rho}(t). \tag{18}$$

< 同 > < 三 > < 三 >

$$\hat{G}_{\mu\nu} = G_{\mu\nu} + \Lambda g_{\mu\nu} - 8\pi G \hat{T}_{\mu\nu} = 0,$$
 (16)

The corresponding Friedmann equations are

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\bar{\rho} + 3\bar{\rho}) + \frac{\Lambda}{3}, \qquad \frac{\dot{a}^2 + k}{a^2} = \frac{8\pi G}{3}\bar{\rho} + \frac{\Lambda}{3}, \qquad (17)$$

where $\bar{\rho}$ and \bar{p} play a role of the energy density and pressure of the dark side of the universe, respectively.

The related equation of state is

$$\bar{p}(t) = \bar{w}(t)\,\bar{\rho}(t). \tag{18}$$

周 ト イ ヨ ト イ ヨ

I. Cosmological solution for $a(t) = A \sqrt{t} e^{\frac{\pi}{4}t}$, k = 0.

For this solution we have

$$\ddot{a}(t) = a(t)\frac{1}{2}\left(\frac{1}{t} + \Lambda t\right), \qquad \ddot{a}(t) = a(t)\frac{1}{4}\left(\Lambda^2 t^2 + 4\Lambda - \frac{1}{t^2}\right),$$
 (19)

and scalar curvature becomes

$$R(t) = 3\Lambda(\Lambda t^2 + 3). \tag{20}$$

The Hubble parameter

$$H(t) = \frac{1}{2} (\frac{1}{t} + \Lambda t).$$
 (21)

The eigenvalue problem for operator
gives

$$(22)$$

which implies

$$\mathcal{F}(\Box) \left(R - 4\Lambda \right) = \mathcal{F}(-3\Lambda) \left(R - 4\Lambda \right).$$
 (23)

<ロ> <同> <同> < 回> < 回> < 三</p>

* 1. Cosmological solution for $a(t) = A\sqrt{t} e^{\frac{h}{4}t^2}$, k = 0

• For this solution we have

$$\dot{a}(t) = a(t)\frac{1}{2}\left(\frac{1}{t} + \Lambda t\right), \qquad \ddot{a}(t) = a(t)\frac{1}{4}\left(\Lambda^2 t^2 + 4\Lambda - \frac{1}{t^2}\right),$$
(19)

and scalar curvature becomes

$$R(t) = 3\Lambda(\Lambda t^2 + 3). \tag{20}$$

The Hubble parameter

$$H(t) = \frac{1}{2} \left(\frac{1}{t} + \wedge t \right). \tag{21}$$

The eigenvalue problem for operator □ gives

$$\Box(R-4\Lambda) = -3\Lambda(R-4\Lambda) \tag{22}$$

which implies

$$\mathcal{F}(\Box)\left(R-4\Lambda\right) = \mathcal{F}(-3\Lambda)\left(R-4\Lambda\right). \tag{23}$$

< D > < P > < E > < E</p>

* 1. Cosmological solution for $a(t) = A \sqrt{t} e^{\frac{\Lambda}{4}t^2}$, k = 0

• For this solution we have

$$\dot{a}(t) = a(t)\frac{1}{2}\left(\frac{1}{t} + \Lambda t\right), \qquad \ddot{a}(t) = a(t)\frac{1}{4}\left(\Lambda^2 t^2 + 4\Lambda - \frac{1}{t^2}\right),$$
 (19)

and scalar curvature becomes

$$R(t) = 3\Lambda(\Lambda t^2 + 3). \tag{20}$$

The Hubble parameter

$$H(t) = \frac{1}{2} \left(\frac{1}{t} + \Lambda t \right).$$
 (21)

The eigenvalue problem for operator □ gives

$$\Box(R-4\Lambda) = -3\Lambda(R-4\Lambda) \tag{22}$$

• which implies

$$\mathcal{F}(\Box)\left(R-4\Lambda\right) = \mathcal{F}(-3\Lambda)\left(R-4\Lambda\right). \tag{23}$$

* 1. Cosmological solution for $a(t) = A\sqrt{t} e^{\frac{\Lambda}{4}t^2}$, k = 0

For this solution we have

$$\dot{a}(t) = a(t)\frac{1}{2}\left(\frac{1}{t} + \Lambda t\right), \qquad \ddot{a}(t) = a(t)\frac{1}{4}\left(\Lambda^2 t^2 + 4\Lambda - \frac{1}{t^2}\right), \qquad (19)$$

and scalar curvature becomes

$$R(t) = 3\Lambda(\Lambda t^2 + 3). \tag{20}$$

The Hubble parameter

$$H(t) = \frac{1}{2} \left(\frac{1}{t} + \Lambda t \right).$$
 (21)

The eigenvalue problem for operator □ gives

$$\Box(R-4\Lambda) = -3\Lambda(R-4\Lambda) \tag{22}$$

• which implies

$$\mathcal{F}(\Box)\left(R-4\Lambda\right) = \mathcal{F}(-3\Lambda)\left(R-4\Lambda\right). \tag{23}$$

* 1. Cosmological solution for $a(t) = A\sqrt{t} e^{\frac{\Lambda}{4}t^2}$, k = 0

For this solution we have

$$\dot{a}(t) = a(t)\frac{1}{2}\left(\frac{1}{t} + \Lambda t\right), \qquad \ddot{a}(t) = a(t)\frac{1}{4}\left(\Lambda^2 t^2 + 4\Lambda - \frac{1}{t^2}\right),$$
(19)

and scalar curvature becomes

$$R(t) = 3\Lambda(\Lambda t^2 + 3). \tag{20}$$

The Hubble parameter

$$H(t) = \frac{1}{2} \left(\frac{1}{t} + \Lambda t \right).$$
 (21)

$$\Box(R-4\Lambda) = -3\Lambda(R-4\Lambda) \tag{22}$$

which implies

$$\mathcal{F}(\Box)\left(R-4\Lambda\right) = \mathcal{F}(-3\Lambda)\left(R-4\Lambda\right). \tag{23}$$

* 1. Cosmological solution for $a(t) = A\sqrt{t} e^{\frac{\Lambda}{4}t^2}$, k = 0

For this solution we have

$$\dot{a}(t) = a(t)\frac{1}{2}\left(\frac{1}{t} + \Lambda t\right), \qquad \ddot{a}(t) = a(t)\frac{1}{4}\left(\Lambda^2 t^2 + 4\Lambda - \frac{1}{t^2}\right),$$
(19)

and scalar curvature becomes

$$R(t) = 3\Lambda(\Lambda t^2 + 3). \tag{20}$$

The Hubble parameter

$$H(t) = \frac{1}{2} (\frac{1}{t} + \Lambda t).$$
(21)

The eigenvalue problem for operator □ gives

$$\Box(R-4\Lambda) = -3\Lambda(R-4\Lambda) \tag{22}$$

which implies

$$\mathcal{F}(\Box)\left(R-4\Lambda\right) = \mathcal{F}(-3\Lambda)\left(R-4\Lambda\right). \tag{23}$$

* 1. Cosmological solution for $a(t) = A\sqrt{t} e^{\frac{\Lambda}{4}t^2}$, k = 0

For this solution we have

$$\dot{a}(t) = a(t)\frac{1}{2}\left(\frac{1}{t} + \Lambda t\right), \qquad \ddot{a}(t) = a(t)\frac{1}{4}\left(\Lambda^2 t^2 + 4\Lambda - \frac{1}{t^2}\right),$$
(19)

and scalar curvature becomes

$$R(t) = 3\Lambda(\Lambda t^2 + 3). \tag{20}$$

• The Hubble parameter

$$H(t) = \frac{1}{2} \left(\frac{1}{t} + \Lambda t \right).$$
(21)

• The eigenvalue problem for operator \Box gives

$$\Box (R - 4\Lambda) = -3\Lambda (R - 4\Lambda) \tag{22}$$

which implies

$$\mathcal{F}(\Box)\left(R-4\Lambda\right) = \mathcal{F}(-3\Lambda)\left(R-4\Lambda\right). \tag{23}$$

* 1. Cosmological solution for $a(t) = A\sqrt{t} e^{\frac{\Lambda}{4}t^2}$, k = 0

For this solution we have

$$\dot{a}(t) = a(t)\frac{1}{2}\left(\frac{1}{t} + \Lambda t\right), \qquad \ddot{a}(t) = a(t)\frac{1}{4}\left(\Lambda^2 t^2 + 4\Lambda - \frac{1}{t^2}\right), \qquad (19)$$

and scalar curvature becomes

$$R(t) = 3\Lambda(\Lambda t^2 + 3). \tag{20}$$

• The Hubble parameter

$$H(t) = \frac{1}{2} \left(\frac{1}{t} + \Lambda t \right).$$
(21)

• The eigenvalue problem for operator \Box gives

$$\Box(R-4\Lambda) = -3\Lambda(R-4\Lambda) \tag{22}$$

which implies

$$\mathcal{F}(\Box)\left(R-4\Lambda\right)=\mathcal{F}\left(-3\Lambda\right)\left(R-4\Lambda\right).$$
(23)

< ロ > < 同 > < 回 > < 回 > .

Ъ.

$$R_{00} = \frac{3}{4} \left(\frac{1}{t^2} - 4\Lambda - \Lambda^2 t^2 \right), \qquad G_{00} = \frac{3}{4} \left(\frac{1}{t} + \Lambda t \right)^2.$$
(24)

EOM are satisfied under conditions

$$\mathcal{F}(-3\Lambda) = -\frac{1}{10\Lambda}, \qquad \mathcal{F}'(-3\Lambda) = 0, \quad \Lambda \neq 0, \tag{25}$$

which are satisfied by nonlocal operator

$$\mathcal{F}(\Box) = \frac{\Box}{30\Lambda^2} \exp\left(\frac{\Box}{3\Lambda} + 1\right).$$
(26)

Friedman equations imply

$$\bar{\rho}(t) = \frac{3t^{-2} + 3\Lambda^2 t^2 + 2\Lambda}{32\pi G}, \quad \bar{\rho}(t) = \frac{t^{-2} - 3\Lambda^2 t^2 - 6\Lambda}{32\pi G}$$
(27)

where $\bar{\rho}$ and \bar{p} are analogs of the energy density and pressure.

<ロ> <部> < 部> < き> < き> < き</p>

$$B_{00} = \frac{3}{4} \left(\frac{1}{t^2} - 4\Lambda - \Lambda^2 t^2 \right), \qquad G_{00} = \frac{3}{4} \left(\frac{1}{t} + \Lambda t \right)^2.$$
(24)

• EOM are satisfied under conditions

$$\mathcal{F}(-3\Lambda) = -\frac{1}{10\Lambda}, \qquad \mathcal{F}'(-3\Lambda) = 0, \quad \Lambda \neq 0, \tag{25}$$

which are satisfied by nonlocal operator

$$\mathcal{F}(\Box) = \frac{\Box}{30\Lambda^2} \exp\left(\frac{\Box}{3\Lambda} + 1\right).$$
(26)

• Friedman equations imply

$$\bar{\rho}(t) = \frac{3t^{-2} + 3\Lambda^2 t^2 + 2\Lambda}{32\pi G}, \quad \bar{\rho}(t) = \frac{t^{-2} - 3\Lambda^2 t^2 - 6\Lambda}{32\pi G}$$
(27)

where $\bar{\rho}$ and \bar{p} are analogs of the energy density and pressure.

$$R_{00} = \frac{3}{4} \left(\frac{1}{t^2} - 4\Lambda - \Lambda^2 t^2 \right), \qquad G_{00} = \frac{3}{4} \left(\frac{1}{t} + \Lambda t \right)^2.$$
(24)

EOM are satisfied under conditions

$$\mathcal{F}(-3\Lambda) = -\frac{1}{10\Lambda}, \qquad \mathcal{F}'(-3\Lambda) = 0, \quad \Lambda \neq 0, \tag{25}$$

which are satisfied by nonlocal operator

$$\mathcal{F}(\Box) = \frac{\Box}{30\Lambda^2} \exp\left(\frac{\Box}{3\Lambda} + 1\right).$$
(26)

• Friedman equations imply

$$\bar{\rho}(t) = \frac{3t^{-2} + 3\Lambda^2 t^2 + 2\Lambda}{32\pi G}, \quad \bar{\rho}(t) = \frac{t^{-2} - 3\Lambda^2 t^2 - 6\Lambda}{32\pi G}$$
(27)

where $\bar{\rho}$ and \bar{p} are analogs of the energy density and pressure.

$$R_{00} = \frac{3}{4} \left(\frac{1}{t^2} - 4\Lambda - \Lambda^2 t^2 \right), \qquad G_{00} = \frac{3}{4} \left(\frac{1}{t} + \Lambda t \right)^2.$$
(24)

EOM are satisfied under conditions

$$\mathcal{F}(-3\Lambda) = -\frac{1}{10\Lambda}, \qquad \mathcal{F}'(-3\Lambda) = 0, \quad \Lambda \neq 0, \tag{25}$$

which are satisfied by nonlocal operator

$$\mathcal{F}(\Box) = \frac{\Box}{30\Lambda^2} \exp\left(\frac{\Box}{3\Lambda} + 1\right).$$
(26)

• Friedman equations imply

$$\bar{\rho}(t) = \frac{3t^{-2} + 3\Lambda^2 t^2 + 2\Lambda}{32\pi G}, \quad \bar{p}(t) = \frac{t^{-2} - 3\Lambda^2 t^2 - 6\Lambda}{32\pi G}$$
(2)

where $\bar{\rho}$ and \bar{p} are analogs of the energy density and pressure.

$$R_{00} = \frac{3}{4} \left(\frac{1}{t^2} - 4\Lambda - \Lambda^2 t^2 \right), \qquad G_{00} = \frac{3}{4} \left(\frac{1}{t} + \Lambda t \right)^2.$$
(24)

EOM are satisfied under conditions

$$\mathcal{F}(-3\Lambda) = -\frac{1}{10\Lambda}, \qquad \mathcal{F}'(-3\Lambda) = 0, \quad \Lambda \neq 0, \tag{25}$$

which are satisfied by nonlocal operator

$$\mathcal{F}(\Box) = \frac{\Box}{30\Lambda^2} \exp\left(\frac{\Box}{3\Lambda} + 1\right).$$
 (26)

• Friedman equations imply

$$\bar{\rho}(t) = \frac{3t^{-2} + 3\Lambda^2 t^2 + 2\Lambda}{32\pi G}, \quad \bar{p}(t) = \frac{t^{-2} - 3\Lambda^2 t^2 - 6\Lambda}{32\pi G}$$

where $\bar{\rho}$ and \bar{p} are analogs of the energy density and pressure.

$$R_{00} = \frac{3}{4} \left(\frac{1}{t^2} - 4\Lambda - \Lambda^2 t^2 \right), \qquad G_{00} = \frac{3}{4} \left(\frac{1}{t} + \Lambda t \right)^2.$$
(24)

EOM are satisfied under conditions

$$\mathcal{F}(-3\Lambda) = -\frac{1}{10\Lambda}, \qquad \mathcal{F}'(-3\Lambda) = 0, \quad \Lambda \neq 0, \tag{25}$$

which are satisfied by nonlocal operator

$$\mathcal{F}(\Box) = \frac{\Box}{30\Lambda^2} \exp\left(\frac{\Box}{3\Lambda} + 1\right).$$
 (26)

Friedman equations imply

$$\bar{\rho}(t) = \frac{3t^{-2} + 3\Lambda^2 t^2 + 2\Lambda}{32\pi G}, \quad \bar{p}(t) = \frac{t^{-2} - 3\Lambda^2 t^2 - 6\Lambda}{32\pi G}$$
(27)

where $\bar{\rho}$ and $\bar{\rho}$ are analogs of the energy density and pressure.

< ロ > < 同 > < 三 > < 三 > -

• From the corresponding equation of state, $\bar{p}(t) = \bar{w}(t) \bar{\rho}(t)$, it follows

$$\bar{w} = \frac{t^{-2} - 3\Lambda^2 t^2 - 6\Lambda}{3t^{-2} + 3\Lambda^2 t^2 + 2\Lambda} \to \begin{cases} -1, & t \to \infty, \\ \frac{1}{3}, & t \to 0. \end{cases}$$

- The expressions (28) implies that w
 (t) → −1 when t → ∞, what corresponds to an analog of ∧ dark energy dominance in the standard cosmological model.
- and w
 w(t) → 1/3 when t → 0, what corresponds to early times as for the case of radiation.
- From expression for Hubble parameter, (21), follows:
- the first term (¹/_{2l}) is the same as for the radiation dominance in Einstein's gravity, while the second term (^Λ/₂) can be related to the dark energy generated by cosmological constant Λ.

• From the corresponding equation of state, $\bar{\rho}(t) = \bar{w}(t) \bar{\rho}(t)$, it follows

$$\bar{w} = \frac{t^{-2} - 3\Lambda^2 t^2 - 6\Lambda}{3t^{-2} + 3\Lambda^2 t^2 + 2\Lambda} \rightarrow \begin{cases} -1, & t \to \infty, \\ \frac{1}{3}, & t \to 0. \end{cases}$$

- The expressions (28) implies that w
 (t) → -1 when t → ∞, what corresponds to an analog of ∧ dark energy dominance in the standard cosmological model,
- and $\bar{w}(t) \rightarrow 1/3$ when $t \rightarrow 0$, what corresponds to early times as for the case of radiation.
- From expression for Hubble parameter, (21), follows:
- the first term (¹/_{2i}) is the same as for the radiation dominance in Einstein's gravity, while the second term (^Λ/₂) can be related to the dark energy generated by cosmological constant Λ.

• From the corresponding equation of state, $\bar{p}(t) = \bar{w}(t) \bar{\rho}(t)$, it follows

$$\bar{w} = \frac{t^{-2} - 3\Lambda^2 t^2 - 6\Lambda}{3t^{-2} + 3\Lambda^2 t^2 + 2\Lambda} \rightarrow \begin{cases} -1, & t \to \infty, \\ \frac{1}{3}, & t \to 0. \end{cases}$$

- The expressions (28) implies that w
 (t) → −1 when t → ∞, what corresponds to an analog of ∧ dark energy dominance in the standard cosmological model,
- and $\bar{w}(t) \rightarrow 1/3$ when $t \rightarrow 0$, what corresponds to early times as for the case of radiation.
- From expression for Hubble parameter, (21), follows:
- the first term (¹/_{2i}) is the same as for the radiation dominance in Einstein's gravity, while the second term (^Λ/₂) can be related to the dark energy generated by cosmological constant Λ.
• From the corresponding equation of state, $\bar{p}(t) = \bar{w}(t) \bar{\rho}(t)$, it follows

$$\bar{w} = \frac{t^{-2} - 3\Lambda^2 t^2 - 6\Lambda}{3t^{-2} + 3\Lambda^2 t^2 + 2\Lambda} \rightarrow \begin{cases} -1, & t \to \infty, \\ \frac{1}{3}, & t \to 0. \end{cases}$$

- The expressions (28) implies that w
 (t) → -1 when t → ∞, what corresponds to an analog of ∧ dark energy dominance in the standard cosmological model,
- and $\bar{w}(t) \rightarrow 1/3$ when $t \rightarrow 0$, what corresponds to early times as for the case of radiation.
- From expression for Hubble parameter, (21), follows:
- the first term (¹/_{2i}) is the same as for the radiation dominance in Einstein's gravity, while the second term (^Λ/₂) can be related to the dark energy generated by cosmological constant Λ.

・ロ・・ 日・ ・ 日・ ・ 日・

• From the corresponding equation of state, $\bar{p}(t) = \bar{w}(t) \bar{\rho}(t)$, it follows

$$\bar{w} = \frac{t^{-2} - 3\Lambda^2 t^2 - 6\Lambda}{3t^{-2} + 3\Lambda^2 t^2 + 2\Lambda} \rightarrow \begin{cases} -1, & t \to \infty, \\ \frac{1}{3}, & t \to 0. \end{cases}$$

- The expressions (28) implies that w
 (t) → -1 when t → ∞, what corresponds to an analog of ∧ dark energy dominance in the standard cosmological model,
- and $\bar{w}(t) \rightarrow 1/3$ when $t \rightarrow 0$, what corresponds to early times as for the case of radiation.
- From expression for Hubble parameter, (21), follows:
- the first term (¹/_{2i}) is the same as for the radiation dominance in Einstein's gravity, while the second term (^Λ/₂) can be related to the dark energy generated by cosmological constant Λ.

- コン (雪) (ヨ) (ヨ)

• From the corresponding equation of state, $\bar{p}(t) = \bar{w}(t) \bar{\rho}(t)$, it follows

$$\bar{w} = \frac{t^{-2} - 3\Lambda^2 t^2 - 6\Lambda}{3t^{-2} + 3\Lambda^2 t^2 + 2\Lambda} \rightarrow \begin{cases} -1, & t \to \infty, \\ \frac{1}{3}, & t \to 0. \end{cases}$$

- The expressions (28) implies that w
 (t) → -1 when t → ∞, what corresponds to an analog of ∧ dark energy dominance in the standard cosmological model,
- and $\bar{w}(t) \rightarrow 1/3$ when $t \rightarrow 0$, what corresponds to early times as for the case of radiation.
- From expression for Hubble parameter, (21), follows:
- the first term (¹/_{2i}) is the same as for the radiation dominance in Einstein's gravity, while the second term (^{Λt}/₂) can be related to the dark energy generated by cosmological constant Λ.

(a)

• From the corresponding equation of state, $\bar{\rho}(t) = \bar{w}(t) \bar{\rho}(t)$, it follows

$$\bar{w} = \frac{t^{-2} - 3\Lambda^2 t^2 - 6\Lambda}{3t^{-2} + 3\Lambda^2 t^2 + 2\Lambda} \rightarrow \begin{cases} -1, & t \to \infty, \\ \frac{1}{3}, & t \to 0. \end{cases}$$

- The expressions (28) implies that w
 (t) → -1 when t → ∞, what corresponds to an analog of ∧ dark energy dominance in the standard cosmological model,
- and $\bar{w}(t) \rightarrow 1/3$ when $t \rightarrow 0$, what corresponds to early times as for the case of radiation.
- From expression for Hubble parameter, (21), follows:
- the first term (¹/_{2l}) is the same as for the radiation dominance in Einstein's gravity, while the second term (^Λ/₂) can be related to the dark energy generated by cosmological constant Λ.

- At the present cosmic time t₀ = 13.801 · 10⁹ yr and Λ = 0.98 · 10⁻³⁵ s⁻², both terms in (21) are of the same order of magnitude.
- Since, the value for the Hubble parameter, and *H*(*t*₀) = 100.2 km/s/Mpc, is larger than current Planck mission result *H*₀ = 67.40 ± 0.50 km/s/Mpc, this cosmological solution may be of interest for the early universe with radiation dominance and for far-future accelerated expansion.

- コン (雪) (ヨ) (ヨ)

- At the present cosmic time $t_0 = 13.801 \cdot 10^9$ yr and $\Lambda = 0.98 \cdot 10^{-35}$ s⁻², both terms in (21) are of the same order of magnitude.
- Since, the value for the Hubble parameter, and $H(t_0) = 100.2 \text{ km/s/Mpc}$, is larger than current Planck mission result $H_0 = 67.40 \pm 0.50 \text{ km/s/}$ *Mpc*, this cosmological solution may be of interest for the early universe with radiation dominance and for far-future accelerated expansion.

吊下 イヨト イヨ

- At the present cosmic time $t_0 = 13.801 \cdot 10^9$ yr and $\Lambda = 0.98 \cdot 10^{-35} \text{ s}^{-2}$, both terms in (21) are of the same order of magnitude.
- Since, the value for the Hubble parameter, and $H(t_0) = 100.2 \text{ km/s/Mpc}$, is larger than current Planck mission result $H_0 = 67.40 \pm 0.50 \text{ km/s/}$ *Mpc*, this cosmological solution may be of interest for the early universe with radiation dominance and for far-future accelerated expansion.

- At the present cosmic time $t_0 = 13.801 \cdot 10^9$ yr and $\Lambda = 0.98 \cdot 10^{-35} \text{ s}^{-2}$, both terms in (21) are of the same order of magnitude.
- Since, the value for the Hubble parameter, and $H(t_0) = 100.2 \text{ km/s/Mpc}$, is larger than current Planck mission result $H_0 = 67.40 \pm 0.50 \text{ km/s/}$ Mpc, this cosmological solution may be of interest for the early universe with radiation dominance and for far-future accelerated expansion.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- \circledast 2. Cosmological solution for $a(t) = A e^{\Lambda \Gamma}$, k = 0
- For this solution we have

$$\dot{a}(t) = a(t) 2\Lambda t, \qquad \ddot{a}(t) = a(t) 2\Lambda (2\Lambda t^2 + 1)$$
 (28)

and scalar curvature becomes

$$R(t) = 12\Lambda(4\Lambda t^2 + 1). \tag{29}$$

The Hubble parameter

$$H(t) = 2\Lambda t. \tag{30}$$

There is useful equality

$$\Box(R-4\Lambda) = -12\Lambda(R-4\Lambda), \tag{31}$$

which implies

$$\mathcal{F}(\Box)(R-4\Lambda) = \mathcal{F}(-12\Lambda)(R-4\Lambda). \tag{32}$$

<ロ> <同> <同> < 回> < 回> < 三</p>

- 8 2. Cosmological solution for a(t) = A e^{At²}, k = 0
- For this solution we have

$$\dot{a}(t) = a(t) 2\Lambda t, \qquad \ddot{a}(t) = a(t) 2\Lambda (2\Lambda t^2 + 1)$$
(28)

and scalar curvature becomes

$$R(t) = 12\Lambda (4\Lambda t^2 + 1).$$
⁽²⁹⁾

• The Hubble parameter

$$H(t) = 2\Lambda t. \tag{30}$$

• There is useful equality

$$\Box(R-4\Lambda) = -12\Lambda(R-4\Lambda), \tag{31}$$

which implies

$$\mathcal{F}(\Box)(R-4\Lambda) = \mathcal{F}(-12\Lambda)(R-4\Lambda). \tag{32}$$

For this solution we have

 $\dot{a}(t) = a(t) 2\Lambda t, \qquad \ddot{a}(t) = a(t) 2\Lambda (2\Lambda t^2 + 1)$ (28)

and scalar curvature becomes

$$R(t) = 12\Lambda (4\Lambda t^2 + 1).$$
⁽²⁹⁾

• The Hubble parameter

$$H(t) = 2\Lambda t. \tag{30}$$

• There is useful equality

$$\Box(R-4\Lambda) = -12\Lambda(R-4\Lambda), \tag{31}$$

which implies

$$\mathcal{F}(\Box)(R-4\Lambda) = \mathcal{F}(-12\Lambda)(R-4\Lambda). \tag{32}$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

❀ 2. Cosmological solution for
$$a(t) = A e^{At^2}$$
, $k = 0$

For this solution we have

$$\dot{a}(t) = a(t) 2\Lambda t, \qquad \ddot{a}(t) = a(t) 2\Lambda (2\Lambda t^2 + 1)$$
(28)

and scalar curvature becomes

$$R(t) = 12\Lambda (4\Lambda t^2 + 1).$$
⁽²⁹⁾

• The Hubble parameter

$$H(t) = 2\Lambda t. \tag{30}$$

There is useful equality

$$\Box(R-4\Lambda) = -12\Lambda(R-4\Lambda), \tag{31}$$

• which implies

$$\mathcal{F}(\Box)(R-4\Lambda) = \mathcal{F}(-12\Lambda)(R-4\Lambda). \tag{32}$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

❀ 2. Cosmological solution for
$$a(t) = A e^{At^2}$$
, $k = 0$

For this solution we have

$$\dot{a}(t) = a(t) 2\Lambda t, \qquad \ddot{a}(t) = a(t) 2\Lambda (2\Lambda t^2 + 1)$$
 (28)

and scalar curvature becomes

$$R(t) = 12\Lambda(4\Lambda t^2 + 1).$$
 (29)

• The Hubble parameter

$$H(t) = 2\Lambda t. \tag{30}$$

• There is useful equality

$$\Box(R-4\Lambda) = -12\Lambda(R-4\Lambda), \tag{31}$$

• which implies

$$\mathcal{F}(\Box)(R-4\Lambda) = \mathcal{F}(-12\Lambda)(R-4\Lambda). \tag{32}$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

❀ 2. Cosmological solution for
$$a(t) = A e^{\Lambda t^2}$$
, $k = 0$

For this solution we have

$$\dot{a}(t) = a(t) 2\Lambda t, \qquad \ddot{a}(t) = a(t) 2\Lambda (2\Lambda t^2 + 1)$$
 (28)

and scalar curvature becomes

$$R(t) = 12\Lambda(4\Lambda t^2 + 1).$$
 (29)

• The Hubble parameter

$$H(t) = 2\Lambda t. \tag{30}$$

• There is useful equality

$$\Box(R-4\Lambda) = -12\Lambda(R-4\Lambda), \tag{31}$$

• which implies

$$\mathcal{F}(\Box)(R-4\Lambda) = \mathcal{F}(-12\Lambda)(R-4\Lambda). \tag{32}$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

❀ 2. Cosmological solution for
$$a(t) = A e^{\Lambda t^2}$$
, $k = 0$

For this solution we have

$$\dot{a}(t) = a(t) 2\Lambda t, \qquad \ddot{a}(t) = a(t) 2\Lambda (2\Lambda t^2 + 1)$$
 (28)

and scalar curvature becomes

$$R(t) = 12\Lambda(4\Lambda t^2 + 1).$$
 (29)

• The Hubble parameter

$$H(t) = 2\Lambda t. \tag{30}$$

There is useful equality

$$\Box(R-4\Lambda) = -12\Lambda(R-4\Lambda), \tag{31}$$

• which implies

$$\mathcal{F}(\Box)(R-4\Lambda) = \mathcal{F}(-12\Lambda)(R-4\Lambda). \tag{32}$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

❀ 2. Cosmological solution for
$$a(t) = A e^{At^2}$$
, $k = 0$

For this solution we have

$$\dot{a}(t) = a(t) 2\Lambda t, \qquad \ddot{a}(t) = a(t) 2\Lambda (2\Lambda t^2 + 1)$$
 (28)

and scalar curvature becomes

$$R(t) = 12\Lambda(4\Lambda t^2 + 1).$$
 (29)

• The Hubble parameter

$$H(t) = 2\Lambda t. \tag{30}$$

There is useful equality

$$\Box(R-4\Lambda) = -12\Lambda(R-4\Lambda), \tag{31}$$

which implies

$$\mathcal{F}(\Box)(R-4\Lambda) = \mathcal{F}(-12\Lambda)(R-4\Lambda). \tag{32}$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

• R₀₀ and G₀₀ are:

$$R_{00} = -6\Lambda(1+2\Lambda t^2), \qquad G_{00} = 12\Lambda^2 t^2.$$
 (33)

EOM are satisfied under conditions

$$\mathcal{F}(-12\Lambda) = -\frac{1}{64\Lambda}, \qquad \mathcal{F}'(-12\Lambda) = 0, \quad \Lambda \neq 0, \tag{34}$$

which are satisfied by nonlocal operator

$$\mathcal{F}(\Box) = \frac{\Box}{768\Lambda^2} \exp\left(\frac{\Box}{12\Lambda} + 1\right). \tag{35}$$

Friedman equations give

$$\bar{\rho}(t) = \frac{\Lambda(12\Lambda t^2 - 1)}{8\pi G}, \quad \bar{\rho}(t) = -\frac{3\Lambda(4\Lambda t^2 + 1)}{8\pi G}.$$
 (36)

It follows

<ロ> <同> <同> < 同> < 同> < 三> < 三> <

E

• *R*₀₀ and *G*₀₀ are:

$$R_{00} = -6\Lambda (1 + 2\Lambda t^2), \qquad G_{00} = 12\Lambda^2 t^2.$$
(33)

• EOM are satisfied under conditions

$$\mathcal{F}(-12\Lambda) = -\frac{1}{64\Lambda}, \qquad \mathcal{F}'(-12\Lambda) = 0, \quad \Lambda \neq 0, \tag{34}$$

which are satisfied by nonlocal operator

$$\mathcal{F}(\Box) = \frac{\Box}{768\Lambda^2} \exp\left(\frac{\Box}{12\Lambda} + 1\right). \tag{35}$$

• Friedman equations give

$$\bar{\rho}(t) = rac{\Lambda(12\Lambda t^2 - 1)}{8\pi G}, \quad \bar{\rho}(t) = -rac{3\Lambda(4\Lambda t^2 + 1)}{8\pi G}.$$
 (36)

It follows

$$\bar{w} = \frac{-12\Lambda t^2 - 3}{12\Lambda t^2 - 1} \rightarrow \begin{cases} -1, \ t \to \infty\\ 3, \ t \to 0. \end{cases}$$
(37)

・ロト ・四ト ・ヨト ・ヨト

• *R*₀₀ and *G*₀₀ are:

$$R_{00} = -6\Lambda (1 + 2\Lambda t^2), \qquad G_{00} = 12\Lambda^2 t^2.$$
(33)

20

• EOM are satisfied under conditions

$$\mathcal{F}(-12\Lambda) = -\frac{1}{64\Lambda}, \qquad \mathcal{F}'(-12\Lambda) = 0, \quad \Lambda \neq 0, \tag{34}$$

which are satisfied by nonlocal operator

$$\mathcal{F}(\Box) = \frac{\Box}{768\Lambda^2} \exp\left(\frac{\Box}{12\Lambda} + 1\right). \tag{35}$$

• Friedman equations give

$$\bar{\rho}(t) = rac{\Lambda(12\Lambda t^2 - 1)}{8\pi G}, \quad \bar{\rho}(t) = -rac{3\Lambda(4\Lambda t^2 + 1)}{8\pi G}.$$
 (36)

It follows

$$\bar{w} = \frac{-12\Lambda t^2 - 3}{12\Lambda t^2 - 1} \rightarrow \begin{cases} -1, \ t \to \infty\\ 3, \ t \to 0. \end{cases}$$
(37)

・ロ・・ (日・・ (日・・)

• *R*₀₀ and *G*₀₀ are:

$$R_{00} = -6\Lambda (1 + 2\Lambda t^2), \qquad G_{00} = 12\Lambda^2 t^2.$$
(33)

20

EOM are satisfied under conditions

$$\mathcal{F}(-12\Lambda) = -\frac{1}{64\Lambda}, \qquad \mathcal{F}'(-12\Lambda) = 0, \quad \Lambda \neq 0, \tag{34}$$

which are satisfied by nonlocal operator

$$\mathcal{F}(\Box) = \frac{\Box}{768\Lambda^2} \exp\left(\frac{\Box}{12\Lambda} + 1\right). \tag{35}$$

• Friedman equations give

$$\bar{\rho}(t) = rac{\Lambda(12\Lambda t^2 - 1)}{8\pi G}, \quad \bar{p}(t) = -rac{3\Lambda(4\Lambda t^2 + 1)}{8\pi G}.$$
 (36)

It follows

$$\bar{w} = \frac{-12\Lambda t^2 - 3}{12\Lambda t^2 - 1} \rightarrow \begin{cases} -1, \ t \to \infty\\ 3, \ t \to 0. \end{cases}$$
(37)

< ロ > < 同 > < 回 > < 回 > < 回 > <

• *R*₀₀ and *G*₀₀ are:

$$R_{00} = -6\Lambda (1 + 2\Lambda t^2), \qquad G_{00} = 12\Lambda^2 t^2.$$
(33)

20

EOM are satisfied under conditions

$$\mathcal{F}(-12\Lambda) = -\frac{1}{64\Lambda}, \qquad \mathcal{F}'(-12\Lambda) = 0, \quad \Lambda \neq 0, \tag{34}$$

which are satisfied by nonlocal operator

$$\mathcal{F}(\Box) = \frac{\Box}{768\Lambda^2} \exp\left(\frac{\Box}{12\Lambda} + 1\right). \tag{35}$$

• Friedman equations give

$$\bar{\rho}(t) = rac{\Lambda(12\Lambda t^2 - 1)}{8\pi G}, \quad \bar{p}(t) = -rac{3\Lambda(4\Lambda t^2 + 1)}{8\pi G}.$$
 (36)

It follows

$$\bar{w} = \frac{-12\Lambda t^2 - 3}{12\Lambda t^2 - 1} \to \begin{cases} -1, \ t \to \infty \\ 3, \ t \to 0. \end{cases}$$
(37)

< ロ > < 同 > < 回 > < 回 > < 回 > <

• *R*₀₀ and *G*₀₀ are:

$$R_{00} = -6\Lambda (1 + 2\Lambda t^2), \qquad G_{00} = 12\Lambda^2 t^2.$$
(33)

20

EOM are satisfied under conditions

$$\mathcal{F}(-12\Lambda) = -\frac{1}{64\Lambda}, \qquad \mathcal{F}'(-12\Lambda) = 0, \quad \Lambda \neq 0, \tag{34}$$

which are satisfied by nonlocal operator

$$\mathcal{F}(\Box) = \frac{\Box}{768\Lambda^2} \exp\left(\frac{\Box}{12\Lambda} + 1\right). \tag{35}$$

Friedman equations give

$$\bar{\rho}(t) = \frac{\Lambda(12\Lambda t^2 - 1)}{8\pi G}, \quad \bar{\rho}(t) = -\frac{3\Lambda(4\Lambda t^2 + 1)}{8\pi G}.$$
 (36)

It follows

$$\bar{w} = \frac{-12\Lambda t^2 - 3}{12\Lambda t^2 - 1} \to \begin{cases} -1, \ t \to \infty\\ 3, \ t \to 0. \end{cases}$$
(37)

< ロ > < 同 > < 三 > < 三 > -

• *R*₀₀ and *G*₀₀ are:

$$R_{00} = -6\Lambda (1 + 2\Lambda t^2), \qquad G_{00} = 12\Lambda^2 t^2.$$
(33)

20

EOM are satisfied under conditions

$$\mathcal{F}(-12\Lambda) = -\frac{1}{64\Lambda}, \qquad \mathcal{F}'(-12\Lambda) = 0, \quad \Lambda \neq 0, \tag{34}$$

which are satisfied by nonlocal operator

$$\mathcal{F}(\Box) = \frac{\Box}{768\Lambda^2} \exp\left(\frac{\Box}{12\Lambda} + 1\right). \tag{35}$$

Friedman equations give

$$\bar{\rho}(t) = \frac{\Lambda(12\Lambda t^2 - 1)}{8\pi G}, \quad \bar{\rho}(t) = -\frac{3\Lambda(4\Lambda t^2 + 1)}{8\pi G}.$$
 (36)

It follows

$$\bar{w} = \frac{-12\Lambda t^2 - 3}{12\Lambda t^2 - 1} \rightarrow \begin{cases} -1, \ t \to \infty\\ 3, \ t \to 0. \end{cases}$$
(37)

• □ ▶ • • □ ▶ • □ ▶ • • □ ▶ •

- The solutions $a_1(t) = A\sqrt{t}e^{\frac{\alpha}{2}t^{\alpha}}$ and $a_2(t) = Ae^{At^{\alpha}}$ are not contained in Einstein's gravity with cosmological constant Λ . The solution $a_1(t)$ minics interference between expansion with radiation $a_1(t)$ and a dark energy $a_2(t)$.
- The solution a₂(t) is a nonsingular bounce one and an even function of cosmic time. An exact cosmological solution of the type a(t) = Ae^{αΛt²}, where α ∈ ℝ, appears also at least in the following two models: (1) P(R) = Q(R) = R, and (2) P(R) = Q(R) = √R - 2Λ.
- The nonlocal analytic operator $\mathcal{F}(\Box)$ that takes into account both solutions $a_1(t)$ and $a_2(t)$ have the form $\mathcal{F}(\Box) = a_{\Lambda}^{u} \exp(bu^3 + cu^2 + du)$, where a, b, c, d, are constants and $u = \Box / \Lambda$ is dimensionless operator.
- According to our solutions a(t) = A√1e^{A/t} and a(t) = At⁸e^{A/t}, it follows that effects of the dark radiation (√1), the dark matter (t⁸) and the dark energy (e^{aAt²}) at the cosmic scale can be generated by suitable nonlocal gravity models.

- The solutions $a_1(t) = A\sqrt{t}e^{\frac{3}{4}t}$ and $a_2(t) = Ae^{\Lambda t}$ are not contained in Einstein's gravity with cosmological constant Λ . The solution $a_1(t)$ mimics interference between expansion with radiation $a_1(t)$ and a dark energy $a_2(t)$.
- The solution a₂(t) is a nonsingular bounce one and an even function of cosmic time. An exact cosmological solution of the type a(t) = Ae^{αΛt²}, where α ∈ ℝ, appears also at least in the following two models: (1) P(R) = Q(R) = R, and (2) P(R) = Q(R) = √R - 2Λ.
- The nonlocal analytic operator $\mathcal{F}(\Box)$ that takes into account both solutions $a_1(t)$ and $a_2(t)$ have the form $\mathcal{F}(\Box) = a_{\Lambda}^{u} \exp(bu^3 + cu^2 + du)$, where a, b, c, d, are constants and $u = \Box / \Lambda$ is dimensionless operator.
- According to our solutions a(t) = A√te^A^t and a(t) = At⁸ e^{At⁶}, it follows that effects of the dark radiation (√t), the dark matter (t⁸) and the dark energy (e^{aAt⁶}) at the cosmic scale can be generated by suitable nonlocal gravity models.

- The solutions a₁(t) = A√te^Λ/₄t² and a₂(t) = Ae^{Λt²} are not contained in Einstein's gravity with cosmological constant Λ. The solution a₁(t) mi- mics interference between expansion with radiation a₁(t) and a dark e-nergy a₂(t).
- The solution a₂(t) is a nonsingular bounce one and an even function of cosmic time. An exact cosmological solution of the type a(t) = Ae^{αΛt²}, where α ∈ ℝ, appears also at least in the following two models:
 (1) P(R) = Q(R) = R, and (2) P(R) = Q(R) = √R 2Λ.
- The nonlocal analytic operator *F*(□) that takes into account both solutions *a*₁(*t*) and *a*₂(*t*) have the form *F*(□) = $a_{\overline{\Lambda}}^{u} \exp(bu^{3} + cu^{2} + du)$, where *a*, *b*, *c*, *d*, are constants and *u* = □/Λ is dimensionless operator.
- According to our solutions $a(t) = A\sqrt{t}e^{\frac{A}{4}t^2}$ and $a(t) = At^{\frac{2}{3}}e^{\frac{A}{4}t^2}$, it follows that effects of the dark radiation (\sqrt{t}), the dark matter ($t^{\frac{2}{3}}$) and the dark energy ($e^{\alpha \Lambda t^2}$) at the cosmic scale can be generated by suitable nonlocal gravity models.

- The solutions a₁(t) = A√te^Λt² and a₂(t) = Ae^{Λt²} are not contained in Einstein's gravity with cosmological constant Λ. The solution a₁(t) mi- mics interference between expansion with radiation a₁(t) and a dark e-nergy a₂(t).
- The solution a₂(t) is a nonsingular bounce one and an even function of cosmic time. An exact cosmological solution of the type a(t) = Ae^{αΛt²}, where α ∈ ℝ, appears also at least in the following two models:
 (1) P(R) = Q(R) = R, and (2) P(R) = Q(R) = √R 2Λ.
- The nonlocal analytic operator *F*(□) that takes into account both solutions *a*₁(*t*) and *a*₂(*t*) have the form *F*(□) = $a_{\overline{\Lambda}}^{u} \exp(bu^{3} + cu^{2} + du)$, where *a*, *b*, *c*, *d*, are constants and *u* = □/Λ is dimensionless operator.
- According to our solutions $a(t) = A\sqrt{t}e^{\frac{A}{4}t^2}$ and $a(t) = At^{\frac{2}{5}}e^{\frac{A}{44}t^2}$, it follows that effects of the dark radiation (\sqrt{t}) , the dark matter $(t^{\frac{2}{5}})$ and the dark energy $(e^{\alpha \Lambda t^2})$ at the cosmic scale can be generated by suitable nonlocal gravity models.

- The solutions a₁(t) = A√te^Λ/₄t² and a₂(t) = Ae^{Λt²} are not contained in Einstein's gravity with cosmological constant Λ. The solution a₁(t) mi- mics interference between expansion with radiation a₁(t) and a dark e-nergy a₂(t).
- The solution a₂(t) is a nonsingular bounce one and an even function of cosmic time. An exact cosmological solution of the type a(t) = Ae^{αΛt²}, where α ∈ ℝ, appears also at least in the following two models:
 (1) P(R) = Q(R) = R, and (2) P(R) = Q(R) = √R 2Λ.
- The nonlocal analytic operator *F*(□) that takes into account both solutions *a*₁(*t*) and *a*₂(*t*) have the form *F*(□) = $a_{\overline{\Lambda}}^{u} \exp(bu^{3} + cu^{2} + du)$, where *a*, *b*, *c*, *d*, are constants and *u* = □/Λ is dimensionless operator.
- According to our solutions $a(t) = A\sqrt{t}e^{\frac{A}{4}t^2}$ and $a(t) = At^{\frac{2}{3}}e^{\frac{A}{14}t^2}$, it follows that effects of the dark radiation (\sqrt{t}), the dark matter ($t^{\frac{2}{3}}$) and the dark energy ($e^{\alpha \Lambda t^2}$) at the cosmic scale can be generated by suitable nonlocal gravity models.

- The solutions a₁(t) = A√te^Λ/₄t² and a₂(t) = Ae^{Λt²} are not contained in Einstein's gravity with cosmological constant Λ. The solution a₁(t) mi- mics interference between expansion with radiation a₁(t) and a dark e-nergy a₂(t).
- The solution a₂(t) is a nonsingular bounce one and an even function of cosmic time. An exact cosmological solution of the type a(t) = Ae^{αΛt²}, where α ∈ ℝ, appears also at least in the following two models:
 (1) P(R) = Q(R) = R, and (2) P(R) = Q(R) = √R 2Λ.
- The nonlocal analytic operator *F*(□) that takes into account both solutions *a*₁(*t*) and *a*₂(*t*) have the form *F*(□) = $a_{\overline{\Lambda}}^{u} \exp(bu^{3} + cu^{2} + du)$, where *a*, *b*, *c*, *d*, are constants and *u* = □/Λ is dimensionless operator.
- According to our solutions $a(t) = A\sqrt{t}e^{\frac{A}{4}t^2}$ and $a(t) = At^{\frac{2}{3}}e^{\frac{A}{14}t^2}$, it follows that effects of the dark radiation (\sqrt{t}), the dark matter ($t^{\frac{2}{3}}$) and the dark energy ($e^{\alpha \Lambda t^2}$) at the cosmic scale can be generated by suitable nonlocal gravity models.

- The solutions a₁(t) = A√te^Λ/₄t² and a₂(t) = Ae^{Λt²} are not contained in Einstein's gravity with cosmological constant Λ. The solution a₁(t) mi- mics interference between expansion with radiation a₁(t) and a dark e-nergy a₂(t).
- The solution a₂(t) is a nonsingular bounce one and an even function of cosmic time. An exact cosmological solution of the type a(t) = Ae^{αΛt²}, where α ∈ ℝ, appears also at least in the following two models:
 (1) P(R) = Q(R) = R, and (2) P(R) = Q(R) = √R 2Λ.
- The nonlocal analytic operator *F*(□) that takes into account both solutions *a*₁(*t*) and *a*₂(*t*) have the form *F*(□) = $a_{\overline{\Lambda}}^{u} \exp(bu^{3} + cu^{2} + du)$, where *a*, *b*, *c*, *d*, are constants and *u* = □/Λ is dimensionless operator.
- * According to our solutions $a(t) = A\sqrt{t}e^{\frac{\Lambda}{4}t^2}$ and $a(t) = At^{\frac{2}{3}}e^{\frac{\Lambda}{4}t^2}$, it follows that effects of the dark radiation (\sqrt{t}) , the dark matter $(t^{\frac{2}{3}})$ and the dark energy $(e^{\alpha \Lambda t^2})$ at the cosmic scale can be generated by suitable nonlocal gravity models.

Let us consider the scale factor

$$a(t) = (\alpha e^{\lambda t} + \beta e^{-\lambda t})^{\gamma}, \tag{38}$$

22

and the corresponding eigenvalue problem

$$\Box(R-4\Lambda) = \rho(R-4\Lambda), \tag{39}$$

for some constant *p*.

Solving the eigenvalue problem (39) we found that it is satisfied in the following two cases:

①
$$\gamma = 1, p = 2\lambda^2, \Lambda = 3\lambda^2, k \in \{0, -1, 1\}$$

$$\bigcirc \ \gamma = \frac{1}{2}, \Lambda = \frac{3}{4}\lambda^2, k = 0$$

Let us consider the scale factor

$$\mathbf{a}(t) = (\alpha \cos \lambda t + \beta \sin \lambda t)^{\gamma}, \tag{40}$$

and same eigenvalue problem

$\Box(R-4\Lambda)=q(R-4\Lambda)$

イロト イロト イヨト イヨト 三日

Let us consider the scale factor

$$a(t) = (\alpha e^{\lambda t} + \beta e^{-\lambda t})^{\gamma}, \qquad (38)$$

In and the corresponding eigenvalue problem

$$\Box(R-4\Lambda) = \rho(R-4\Lambda), \tag{39}$$

for some constant *p*.

Solving the eigenvalue problem (39) we found that it is satisfied in the following two cases:

1
$$\gamma = 1, p = 2\lambda^2, \Lambda = 3\lambda^2, k \in \{0, -1, 1\}$$

2)
$$\gamma = \frac{1}{2}, \Lambda = \frac{3}{4}\lambda^2, k = 0$$

Let us consider the scale factor

$$a(t) = (\alpha \cos \lambda t + \beta \sin \lambda t)^{\gamma}, \qquad (40)$$

and same eigenvalue problem

$$\Box(R-4\Lambda) = q(R-4\Lambda). \tag{41}$$

Let us consider the scale factor

$$\boldsymbol{a}(t) = (\alpha \boldsymbol{e}^{\lambda t} + \beta \boldsymbol{e}^{-\lambda t})^{\gamma}, \tag{38}$$

In and the corresponding eigenvalue problem

$$\Box(R-4\Lambda) = p(R-4\Lambda), \tag{39}$$

for some constant *p*.

Solving the eigenvalue problem (39) we found that it is satisfied in the following two cases:

1
$$\gamma = 1, p = 2\lambda^2, \Lambda = 3\lambda^2, k \in \{0, -1, 1\}$$

2)
$$\gamma = \frac{1}{2}, \Lambda = \frac{3}{4}\lambda^2, k = 0$$

Let us consider the scale factor

$$a(t) = (\alpha \cos \lambda t + \beta \sin \lambda t)^{\gamma}, \tag{40}$$

and same eigenvalue problem

$$\Box(R-4\Lambda) = q(R-4\Lambda). \tag{41}$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Let us consider the scale factor

$$\boldsymbol{a}(t) = (\alpha \boldsymbol{e}^{\lambda t} + \beta \boldsymbol{e}^{-\lambda t})^{\gamma}, \qquad (38)$$

and the corresponding eigenvalue problem

$$\Box(R-4\Lambda) = \rho(R-4\Lambda), \tag{39}$$

for some constant *p*.

Solving the eigenvalue problem (39) we found that it is satisfied in the following two cases:

()
$$\gamma = 1, p = 2\lambda^2, \Lambda = 3\lambda^2, k \in \{0, -1, 1\}$$

2)
$$\gamma = \frac{1}{2}, \Lambda = \frac{3}{4}\lambda^2, k = 0$$

Let us consider the scale factor

$$a(t) = (\alpha \cos \lambda t + \beta \sin \lambda t)^{\gamma}, \qquad (40)$$

and same eigenvalue problem

$$\Box(R-4\Lambda) = q(R-4\Lambda). \tag{41}$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Let us consider the scale factor

$$\boldsymbol{a}(t) = (\alpha \boldsymbol{e}^{\lambda t} + \beta \boldsymbol{e}^{-\lambda t})^{\gamma}, \qquad (38)$$

22

and the corresponding eigenvalue problem

$$\Box(R-4\Lambda) = \rho(R-4\Lambda), \tag{39}$$

for some constant *p*.

Solving the eigenvalue problem (39) we found that it is satisfied in the following two cases:

1
$$\gamma = 1, p = 2\lambda^2, \Lambda = 3\lambda^2, k \in \{0, -1, 1\}$$

$$\mathbf{2} \ \gamma = \frac{1}{2}, \ \Lambda = \frac{3}{4}\lambda^2, \ k = 0$$

Let us consider the scale factor

$$a(t) = (\alpha \cos \lambda t + \beta \sin \lambda t)^{\gamma}, \tag{40}$$

and same eigenvalue problem

$$\Box(R-4\Lambda) = q(R-4\Lambda). \tag{41}$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Let us consider the scale factor

$$\boldsymbol{a}(t) = (\alpha \boldsymbol{e}^{\lambda t} + \beta \boldsymbol{e}^{-\lambda t})^{\gamma}, \qquad (38)$$

22

In and the corresponding eigenvalue problem

$$\Box(R-4\Lambda) = \rho(R-4\Lambda), \tag{39}$$

for some constant *p*.

Solving the eigenvalue problem (39) we found that it is satisfied in the following two cases:

1
$$\gamma = 1, p = 2\lambda^2, \Lambda = 3\lambda^2, k \in \{0, -1, 1\}$$

$$\mathbf{2} \ \gamma = \frac{1}{2}, \ \Lambda = \frac{3}{4}\lambda^2, \ k = \mathbf{0}$$

Let us consider the scale factor

$$a(t) = (\alpha \cos \lambda t + \beta \sin \lambda t)^{\gamma}, \qquad (40)$$

and same eigenvalue problem

$$\Box(R-4\Lambda)=q(R-4\Lambda). \tag{41}$$

< ロ > < 同 > < 回 > < 回 > < 回 > <
- It has solutions in the following two cases: $\gamma = 1, q = -2\lambda^2, \Lambda = -3\lambda^2, k \in \{0, -1, 1\}$ $\gamma = \frac{1}{2}, \Lambda = -\frac{3}{4}\lambda^2, k = 0.$
- We found that this nonlocal gravity model has the following new cosmological soulutions.
 - (1) for $\Lambda \ge 0$, and scaling factors of the form

Э

It has solutions in the following two cases:

()
$$\gamma = 1, q = -2\lambda^2, \Lambda = -3\lambda^2, k \in \{0, -1, 1\}$$

() $\gamma = \frac{1}{2}, \Lambda = -\frac{3}{4}\lambda^2, k = 0.$

We found that this nonlocal gravity model has the following new cosmological soulutions.

(ii) for $\Lambda \ge 0$, and scaling factors of the form

$$a_{i}(t) = \left(a_{i}(t)^{2} f^{i}(t) g_{i}(t)^{2} f^{i}(t) g_{i}(t)^{2} f^{i}(t) g_{i}(t)^{2} f^{i}(t)^{2} f^$$

(i2) for $\Lambda \leq 0$, and the trigonometric scaling factors of the form

< D > < P > < E > < E</p>

It has solutions in the following two cases:

• $\gamma = 1, q = -2\lambda^2, \Lambda = -3\lambda^2, k \in \{0, -1, 1\}$ • $\gamma = \frac{1}{2}, \Lambda = -\frac{3}{4}\lambda^2, k = 0.$

We found that this nonlocal gravity model has the following new cosmological soulutions.

(ii) for A ≥ 0, and scaling factors of the form.

12) for $\Lambda < 0$, and the trigonometric scaling factors of the form

< D > < P > < E > < E</p>

It has solutions in the following two cases:

We found that this nonlocal gravity model has the following new cosmological soulutions.

(i1) for $\Lambda \geq 0,$ and scaling factors of the form

$$a_{3}(t) = \alpha \, e^{\sqrt{\frac{1}{3}} \wedge t} + \beta e^{-\sqrt{\frac{1}{3}} \wedge t}, \qquad (42)$$

23

$$a_4(t) = \left(\alpha e^{\sqrt{\frac{2}{3}}\Lambda t} + \beta e^{-\sqrt{\frac{2}{3}}\Lambda t}\right)^{\frac{1}{2}},\tag{43}$$

(i2) for $\Lambda \leq 0$, and the trigonometric scaling factors of the form

$$_{5}(t) = \alpha \cos \sqrt{-\frac{1}{3}\Lambda} t + \beta \sin \sqrt{-\frac{1}{3}\Lambda},$$
 (44)

$$a_{6}(t) = A \left(\alpha \cos \sqrt{\frac{2}{3}} \wedge t + \beta \sin \sqrt{\frac{2}{3}} \wedge t \right)^{\frac{1}{2}}.$$
 (45)

A (1) > A (2) > A (2)

It has solutions in the following two cases:

We found that this nonlocal gravity model has the following new cosmological soulutions.

(i1) for $\Lambda \geq 0,$ and scaling factors of the form

$$\mathbf{a}_{3}(t) = \alpha \, \mathbf{e}^{\sqrt{\frac{1}{3}} \wedge t} + \beta \, \mathbf{e}^{-\sqrt{\frac{1}{3}} \wedge t}, \tag{42}$$

23

$$a_4(t) = \left(\alpha e^{\sqrt{\frac{2}{3}}\Lambda t} + \beta e^{-\sqrt{\frac{2}{3}}\Lambda t}\right)^{\frac{1}{2}},$$
(43)

(i2) for $\Lambda \leq 0,$ and the trigonometric scaling factors of the form

$$a_5(t) = \alpha \cos \sqrt{-\frac{1}{3}\Lambda} t + \beta \sin \sqrt{-\frac{1}{3}\Lambda},$$
 (44)

$$a_{6}(t) = A\left(\alpha\cos\sqrt{\frac{2}{3}}\Lambda t + \beta\sin\sqrt{\frac{2}{3}}\Lambda t\right)^{\frac{1}{2}}.$$
(45)

< ロ > < 同 > < 三 > < 三 > -

- \circledast 3. Cosmological solution for $a(t) = \alpha e^{\sqrt{\frac{\alpha}{3}}t} + \beta e^{-\sqrt{\frac{\alpha}{3}}t}$
- For this solution we have

$$\dot{a}(t) = \sqrt{\frac{\Lambda}{3}} \left(\alpha e^{\sqrt{\frac{\Lambda}{3}} t} - \beta e^{-\sqrt{\frac{\Lambda}{3}} t} \right), \qquad \ddot{a}(t) = \frac{\Lambda}{3} a(t), \tag{46}$$

$$R(t) = 4\Lambda + (6k - 8\Lambda\alpha\beta) a(t)^{-2}, \qquad (47)$$

$$H(t) = \sqrt{\frac{\Lambda}{3}} \left(1 - 2\beta e^{-\sqrt{\frac{\Lambda}{3}}t} a(t)^{-1} \right), \tag{48}$$

$$R_{00} = -\Lambda, \quad G_{00} = \Lambda + (3k - 4\Lambda\alpha\beta) a(t)^{-2}.$$
 (49)

The corresponding eigenvalue problem has the solutions

$$\Box(R-4\Lambda) = \frac{2}{3}\Lambda(R-4\Lambda), \quad \mathcal{F}(\Box)(R-4\Lambda) = \mathcal{F}(\frac{2}{3}\Lambda)(R-4\Lambda).$$
(50)

<ロ> <同> <同> < 回> < 回> < 三</p>

- \circledast 3. Cosmological solution for $a(t) = \alpha e^{\sqrt{\frac{\Lambda}{3}}t} + \beta e^{-\sqrt{\frac{\Lambda}{3}}t}$
- For this solution we have

$$\dot{a}(t) = \sqrt{\frac{\Lambda}{3}} \left(\alpha e^{\sqrt{\frac{\Lambda}{3}}t} - \beta e^{-\sqrt{\frac{\Lambda}{3}}t} \right), \qquad \ddot{a}(t) = \frac{\Lambda}{3} a(t), \qquad (46)$$

24

$$R(t) = 4\Lambda + (6k - 8\Lambda\alpha\beta) a(t)^{-2}, \qquad (47)$$

$$H(t) = \sqrt{\frac{\Lambda}{3}} \left(1 - 2\beta e^{-\sqrt{\frac{\Lambda}{3}}t} a(t)^{-1} \right), \tag{48}$$

$$R_{00} = -\Lambda, \quad G_{00} = \Lambda + (3k - 4\Lambda\alpha\beta) a(t)^{-2}.$$
 (49)

• The corresponding eigenvalue problem has the solutions,

$$\Box(R-4\Lambda) = \frac{2}{3}\Lambda(R-4\Lambda), \quad \mathcal{F}(\Box)(R-4\Lambda) = \mathcal{F}(\frac{2}{3}\Lambda)(R-4\Lambda).$$
(50)

< ロ > < 同 > < 三 > < 三 >

- * 3. Cosmological solution for $a(t) = \alpha e^{\sqrt{\frac{\Lambda}{3}}t} + \beta e^{-\sqrt{\frac{\Lambda}{3}}t}$
- For this solution we have

$$\dot{a}(t) = \sqrt{\frac{\Lambda}{3}} \left(\alpha e^{\sqrt{\frac{\Lambda}{3}}t} - \beta e^{-\sqrt{\frac{\Lambda}{3}}t} \right), \qquad \ddot{a}(t) = \frac{\Lambda}{3} a(t), \qquad (46)$$

24

$$R(t) = 4\Lambda + (6k - 8\Lambda\alpha\beta) a(t)^{-2}, \qquad (47)$$

$$H(t) = \sqrt{\frac{\Lambda}{3}} \left(1 - 2\beta e^{-\sqrt{\frac{\Lambda}{3}}t} a(t)^{-1} \right), \tag{48}$$

$$R_{00} = -\Lambda, \quad G_{00} = \Lambda + (3k - 4\Lambda\alpha\beta) a(t)^{-2}.$$
 (49)

• The corresponding eigenvalue problem has the solutions,

$$\Box(R-4\Lambda) = \frac{2}{3}\Lambda(R-4\Lambda), \quad \mathcal{F}(\Box)(R-4\Lambda) = \mathcal{F}(\frac{2}{3}\Lambda)(R-4\Lambda).$$
(50)

< ロ > < 同 > < 回 > < 回 > < 回 > <

- * 3. Cosmological solution for $a(t) = \alpha e^{\sqrt{\frac{\Lambda}{3}}t} + \beta e^{-\sqrt{\frac{\Lambda}{3}}t}$
- For this solution we have

$$\dot{a}(t) = \sqrt{\frac{\Lambda}{3}} \left(\alpha e^{\sqrt{\frac{\Lambda}{3}} t} - \beta e^{-\sqrt{\frac{\Lambda}{3}} t} \right), \qquad \ddot{a}(t) = \frac{\Lambda}{3} a(t), \qquad (46)$$

$$R(t) = 4\Lambda + (6k - 8\Lambda\alpha\beta) a(t)^{-2}, \qquad (47)$$

$$H(t) = \sqrt{\frac{\Lambda}{3}} \left(1 - 2\beta e^{-\sqrt{\frac{\Lambda}{3}} t} a(t)^{-1} \right),$$
(48)

$$R_{00} = -\Lambda, \quad G_{00} = \Lambda + (3k - 4\Lambda\alpha\beta) a(t)^{-2}.$$
 (49)

• The corresponding eigenvalue problem has the solutions,

$$\Box(R-4\Lambda) = \frac{2}{3}\Lambda(R-4\Lambda), \quad \mathcal{F}(\Box)(R-4\Lambda) = \mathcal{F}(\frac{2}{3}\Lambda)(R-4\Lambda).$$
(50)

< ロ > < 同 > < 回 > < 回 > .

- * 3. Cosmological solution for $a(t) = \alpha e^{\sqrt{\frac{\Lambda}{3}}t} + \beta e^{-\sqrt{\frac{\Lambda}{3}}t}$
- For this solution we have

$$\dot{a}(t) = \sqrt{\frac{\Lambda}{3}} \left(\alpha e^{\sqrt{\frac{\Lambda}{3}} t} - \beta e^{-\sqrt{\frac{\Lambda}{3}} t} \right), \qquad \ddot{a}(t) = \frac{\Lambda}{3} a(t), \qquad (46)$$

$$R(t) = 4\Lambda + (6k - 8\Lambda\alpha\beta) a(t)^{-2}, \qquad (47)$$

$$H(t) = \sqrt{\frac{\Lambda}{3}} \left(1 - 2\beta e^{-\sqrt{\frac{\Lambda}{3}} t} a(t)^{-1} \right),$$
(48)

$$R_{00} = -\Lambda, \quad G_{00} = \Lambda + (3k - 4\Lambda\alpha\beta) a(t)^{-2}.$$
 (49)

The corresponding eigenvalue problem has the solutions,

$$\Box(R-4\Lambda) = \frac{2}{3}\Lambda(R-4\Lambda), \quad \mathcal{F}(\Box)(R-4\Lambda) = \mathcal{F}(\frac{2}{3}\Lambda)(R-4\Lambda). \quad (50)$$

< ロ > < 同 > < 三 > < 三 > -

Ъ.

Equations of motion are satisfied in the following 3 north 3.1 $\alpha\beta = \frac{3k}{4\Lambda}$, 3.2 $\alpha\beta = 0, \mathcal{F}(\frac{2}{3}\Lambda) = \frac{1}{12\Lambda}, \mathcal{F}'(\frac{2}{3}\Lambda) = \frac{1}{24\Lambda^2}, k \neq 0$, 3.3 $\alpha\beta = -\frac{k}{4\Lambda}, \mathcal{F}(\frac{2}{3}\Lambda) = \frac{1}{12\Lambda}, \mathcal{F}'(\frac{2}{3}\Lambda) = 0$.

Case 3.1 $\alpha\beta = 0$, $R(t) = 4\Lambda$.

3.1.1 For k = 0 we have $a(t) \sim e^{\pm \sqrt{\frac{3}{2}t}}$, 3.1.2 $\Lambda > 0, k = +1$, gives $a(t) = \sqrt{\frac{3}{\Lambda}} \cosh \sqrt{\frac{\Lambda}{3}t}$ 3.1.3 $\Lambda > 0, k = -1$, gives $a(t) = \sqrt{\frac{3}{\Lambda}} \sinh \sqrt{\frac{\Lambda}{3}t}$

Case 3.2 $\alpha = 0$ or $\beta = 0$ and $R(t) = 6ka(t)^{-2} + 4\Lambda$, 3.2.1 For $\alpha = 0$ we have $a(t) = \beta e^{-\sqrt{\frac{2}{3}}t}$, 3.2.2 For $\beta = 0$ we have $a(t) = \alpha e^{\sqrt{\frac{2}{3}}t}$. Case 3.3 $R(t) = 4\Lambda + 8ka(t)^{-2}$, 3.3.1 For k = 1 we have $a(t) = \frac{1}{\sqrt{\lambda}} \sinh(\varphi + \sqrt{\frac{2}{3}}t)$.

3.2.2 For k = -1 we have a(t) = -1

< ロ > < 同 > < 回 > < 国

3.1
$$\alpha\beta = \frac{3k}{4\Lambda}$$
,
3.2 $\alpha\beta = 0, \mathcal{F}(\frac{2}{3}\Lambda) = \frac{1}{12\Lambda}, \mathcal{F}'(\frac{2}{3}\Lambda) = \frac{1}{24\Lambda^2}, k \neq 0$,
3.3 $\alpha\beta = -\frac{k}{4\Lambda}, \mathcal{F}(\frac{2}{3}\Lambda) = \frac{1}{12\Lambda}, \mathcal{F}'(\frac{2}{3}\Lambda) = 0$.

Case 3.1 $\alpha\beta = 0$, $R(t) = 4\Lambda$.

3.1.1 For
$$k = 0$$
 we have $a(t) \sim e^{\pm \sqrt{\frac{\Lambda}{3}}t}$,
3.1.2 $\Lambda > 0, k = +1$, gives $a(t) = \sqrt{\frac{3}{\Lambda}} \cosh \sqrt{\frac{\Lambda}{3}}t$
3.1.3 $\Lambda > 0, k = -1$, gives $a(t) = \sqrt{\frac{3}{\Lambda}} \sinh \sqrt{\frac{\Lambda}{3}}t$

Case 3.2 $\alpha = 0$ or $\beta = 0$ and $R(t) = 6ka(t)^{-2} + 4A$ 3.2.1 For $\alpha = 0$ we have $a(t) = \beta e^{-\sqrt{\frac{\Lambda}{3}}t}$, 3.2.2 For $\beta = 0$ we have $a(t) = \alpha e^{\sqrt{\frac{\Lambda}{3}}t}$.

Case 3.3 $R(t) = 4\Lambda + 8ka(t)^{-2}$,

3.3.1 For k = 1 we have $a(t) = \frac{1}{\sqrt{\Lambda}} \sinh(\varphi + \sqrt{\frac{\Lambda}{3}}t)$,

3.2.2 For k = -1 we have $a(t) = \frac{1}{\sqrt{\Lambda}} \cosh(\varphi + \sqrt{\frac{\Lambda}{3}}t)$.

< D > < P > < E > < E</p>

Equations of motion are satisfied in the following 3 nontrivial cases:

3.1
$$\alpha\beta = \frac{3k}{4\Lambda}$$
,
3.2 $\alpha\beta = 0, \mathcal{F}(\frac{2}{3}\Lambda) = \frac{1}{12\Lambda}, \mathcal{F}'(\frac{2}{3}\Lambda) = \frac{1}{24\Lambda^2}, k \neq 0$,
3.3 $\alpha\beta = -\frac{k}{4\Lambda}, \mathcal{F}(\frac{2}{3}\Lambda) = \frac{1}{12\Lambda}, \mathcal{F}'(\frac{2}{3}\Lambda) = 0$.

Case 3.1 $\alpha\beta = 0, R(t) = 4\Lambda$.

3.1.1 For
$$k = 0$$
 we have $a(t) \sim e^{\pm \sqrt{\frac{\Lambda}{3}} t}$,
3.1.2 $\Lambda > 0, k = +1$, gives $a(t) = \sqrt{\frac{3}{\Lambda}} \cosh \sqrt{\frac{\Lambda}{3}} t$
3.1.3 $\Lambda > 0, k = -1$, gives $a(t) = \sqrt{\frac{3}{\Lambda}} \sinh \sqrt{\frac{\Lambda}{3}} t$

Case 3.2 $\alpha = 0$ or $\beta = 0$ and $R(t) = 6ka(t)^{-2} + 4/3$ 3.2.1 For $\alpha = 0$ we have $a(t) = \beta e^{-\sqrt{\frac{\Lambda}{3}}t}$, 3.2.2 For $\beta = 0$ we have $a(t) = \alpha e^{\sqrt{\frac{\Lambda}{3}}t}$.

Case 3.3 $R(t) = 4\Lambda + 8ka(t)^{-2}$,

3.3.1 For k = 1 we have $a(t) = \frac{1}{\sqrt{\Lambda}} \sinh(\varphi + \sqrt{\frac{\Lambda}{3}}t)$,

3.2.2 For k = -1 we have $a(t) = \frac{1}{\sqrt{\Lambda}} \cosh(\varphi + \sqrt{\frac{\Lambda}{3}}t)$.

< D > < P > < E > < E</p>

Equations of motion are satisfied in the following 3 nontrivial cases:

3.1
$$\alpha\beta = \frac{3k}{4\Lambda}$$
,
3.2 $\alpha\beta = 0, \mathcal{F}(\frac{2}{3}\Lambda) = \frac{1}{12\Lambda}, \mathcal{F}'(\frac{2}{3}\Lambda) = \frac{1}{24\Lambda^2}, k \neq 0$,
3.3 $\alpha\beta = -\frac{k}{4\Lambda}, \mathcal{F}(\frac{2}{3}\Lambda) = \frac{1}{12\Lambda}, \mathcal{F}'(\frac{2}{3}\Lambda) = 0$.

Case 3.1 $\alpha\beta = 0$, $R(t) = 4\Lambda$.

3.1.1 For
$$k = 0$$
 we have $a(t) \sim e^{\pm \sqrt{\frac{\Lambda}{3}} t}$,
3.1.2 $\Lambda > 0, k = +1$, gives $a(t) = \sqrt{\frac{3}{\Lambda}} \cosh \sqrt{\frac{\Lambda}{3}} t$
3.1.3 $\Lambda > 0, k = -1$, gives $a(t) = \sqrt{\frac{3}{\Lambda}} \sinh \sqrt{\frac{\Lambda}{3}} t$

Case 3.2 $\alpha = 0$ or $\beta = 0$ and $R(t) = 6ka(t)^{-2} + 4\Lambda$ 3.2.1 For $\alpha = 0$ we have $a(t) = \beta e^{-\sqrt{\frac{\Lambda}{3}}t}$, 3.2.2 For $\beta = 0$ we have $a(t) = \alpha e^{\sqrt{\frac{\Lambda}{3}}t}$.

Case 3.3 $R(t) = 4\Lambda + 8ka(t)^{-2}$,

3.3.1 For k = 1 we have $a(t) = \frac{1}{\sqrt{\Lambda}} \sinh(\varphi + \sqrt{\frac{\Lambda}{3}}t)$,

3.2.2 For k = -1 we have $a(t) = \frac{1}{\sqrt{\Lambda}} \cosh(\varphi + \sqrt{\frac{\Lambda}{3}}t)$.

Equations of motion are satisfied in the following 3 nontrivial cases:

3.1
$$\alpha\beta = \frac{3k}{4\Lambda}$$
,
3.2 $\alpha\beta = 0, \mathcal{F}(\frac{2}{3}\Lambda) = \frac{1}{12\Lambda}, \mathcal{F}'(\frac{2}{3}\Lambda) = \frac{1}{24\Lambda^2}, k \neq 0$,
3.3 $\alpha\beta = -\frac{k}{4\Lambda}, \mathcal{F}(\frac{2}{3}\Lambda) = \frac{1}{12\Lambda}, \mathcal{F}'(\frac{2}{3}\Lambda) = 0$.

Case 3.1 $\alpha\beta = 0$, $R(t) = 4\Lambda$.

3.1.1 For
$$k = 0$$
 we have $a(t) \sim e^{\pm \sqrt{\frac{\Lambda}{3}} t}$,
3.1.2 $\Lambda > 0, k = +1$, gives $a(t) = \sqrt{\frac{3}{\Lambda}} \cosh \sqrt{\frac{\Lambda}{3}} t$
3.1.3 $\Lambda > 0, k = -1$, gives $a(t) = \sqrt{\frac{3}{\Lambda}} \sinh \sqrt{\frac{\Lambda}{3}} t$

Case 3.2 $\alpha = 0$ or $\beta = 0$ and $R(t) = 6ka(t)^{-2} + 4\Lambda$, 3.2.1 For $\alpha = 0$ we have $a(t) = \beta e^{-\sqrt{\frac{\Lambda}{3}}t}$, 3.2.2 For $\beta = 0$ we have $a(t) = \alpha e^{\sqrt{\frac{\Lambda}{3}}t}$.

Case 3.3 $R(t) = 4\Lambda + 8ka(t)^{-2}$,

3.3.1 For k = 1 we have $a(t) = \frac{1}{\sqrt{\Lambda}} \sinh(\varphi + \sqrt{\frac{\Lambda}{3}}t)$,

3.2.2 For k = -1 we have $a(t) = \frac{1}{\sqrt{\Lambda}} \cosh(\varphi + \sqrt{\frac{\Lambda}{3}}t)$.

Equations of motion are satisfied in the following 3 nontrivial cases:

3.1
$$\alpha\beta = \frac{3k}{4\Lambda}$$
,
3.2 $\alpha\beta = 0, \mathcal{F}(\frac{2}{3}\Lambda) = \frac{1}{12\Lambda}, \mathcal{F}'(\frac{2}{3}\Lambda) = \frac{1}{24\Lambda^2}, k \neq 0$,
3.3 $\alpha\beta = -\frac{k}{4\Lambda}, \mathcal{F}(\frac{2}{3}\Lambda) = \frac{1}{12\Lambda}, \mathcal{F}'(\frac{2}{3}\Lambda) = 0$.

Case 3.1 $\alpha\beta = 0$, $R(t) = 4\Lambda$.

3.1.1 For
$$k = 0$$
 we have $a(t) \sim e^{\pm \sqrt{\frac{\Lambda}{3}}t}$,
3.1.2 $\Lambda > 0, k = +1$, gives $a(t) = \sqrt{\frac{3}{\Lambda}} \cosh \sqrt{\frac{\Lambda}{3}}t$
3.1.3 $\Lambda > 0, k = -1$, gives $a(t) = \sqrt{\frac{3}{\Lambda}} \sinh \sqrt{\frac{\Lambda}{3}}t$

Case 3.2 $\alpha = 0$ or $\beta = 0$ and $R(t) = 6ka(t)^{-2} + 4\Lambda$, 3.2.1 For $\alpha = 0$ we have $a(t) = \beta e^{-\sqrt{\frac{\Lambda}{3}}t}$, 3.2.2 For $\beta = 0$ we have $a(t) = \alpha e^{\sqrt{\frac{\Lambda}{3}}t}$.

Case 3.3 $R(t) = 4\Lambda + 8ka(t)^{-2}$,

3.3.1 For k = 1 we have $a(t) = \frac{1}{\sqrt{\Lambda}} \sinh(\varphi + \sqrt{\frac{\Lambda}{3}}t)$, 3.2.2 For k = -1 we have $a(t) = \frac{1}{\sqrt{\Lambda}} \cosh(\varphi + \sqrt{\frac{\Lambda}{3}}t)$.

$$\bar{\rho} = \frac{3}{8\pi G} (k - \frac{4}{3} \Lambda \alpha \beta) a(t)^{-2}, \quad \bar{\rho} = -\frac{1}{8\pi G} (k - \frac{4}{3} \Lambda \alpha \beta) a(t)^{-2}.$$
(51)

- \circledast For $k
 eqrac{4}{3}\Lambdalphaeta$ the corresponding $ar{w}$ parameter is $ar{w}=-rac{1}{3}$
- 3 4. Cosmological solution for $a(t) = \left(\alpha e^{2\sqrt{\frac{5}{3}t}} + \beta e^{-2\sqrt{\frac{5}{3}t}}\right)^{\frac{3}{2}}$
- From the related eigenvalue problem follows: k = 0 and R = 4Λ.
- The EOM yield the condition

$$\alpha \beta = 0. \tag{52}$$

$$\bar{\rho} = \frac{3}{8\pi G} (k - \frac{4}{3} \Lambda \alpha \beta) a(t)^{-2}, \quad \bar{\rho} = -\frac{1}{8\pi G} (k - \frac{4}{3} \Lambda \alpha \beta) a(t)^{-2}.$$
 (51)

* For $k \neq \frac{4}{3}\Lambda\alpha\beta$ the corresponding \bar{w} parameter is $\bar{w} = -\frac{1}{3}$.

- * 4. Cosmological solution for $a(t) = \left(\alpha e^{2\sqrt{\frac{\Lambda}{3}}t} + \beta e^{-2\sqrt{\frac{\Lambda}{3}}t}\right)^{\frac{1}{2}}$,
- From the related eigenvalue problem follows: k = 0 and $R = 4\Lambda$.
- The EOM yield the condition

$$\alpha \beta = \mathbf{0}. \tag{52}$$

$$\bar{\rho} = \frac{3}{8\pi G} (k - \frac{4}{3} \Lambda \alpha \beta) a(t)^{-2}, \quad \bar{\rho} = -\frac{1}{8\pi G} (k - \frac{4}{3} \Lambda \alpha \beta) a(t)^{-2}.$$
(51)

* For $k \neq \frac{4}{3}\Lambda\alpha\beta$ the corresponding \bar{w} parameter is $\bar{w} = -\frac{1}{3}$.

- * 4. Cosmological solution for $a(t) = \left(\alpha e^{2\sqrt{\frac{\Lambda}{3}}t} + \beta e^{-2\sqrt{\frac{\Lambda}{3}}t}\right)^{\frac{1}{2}}$,
- From the related eigenvalue problem follows: k = 0 and $R = 4\Lambda$.
- The EOM yield the condition

$$\alpha \beta = \mathbf{0}. \tag{52}$$

$$\bar{\rho} = \frac{3}{8\pi G} (k - \frac{4}{3} \Lambda \alpha \beta) a(t)^{-2}, \quad \bar{\rho} = -\frac{1}{8\pi G} (k - \frac{4}{3} \Lambda \alpha \beta) a(t)^{-2}.$$
(51)

* For $k \neq \frac{4}{3} \Lambda \alpha \beta$ the corresponding \bar{w} parameter is $\bar{w} = -\frac{1}{3}$.

- * 4. Cosmological solution for $a(t) = \left(\alpha e^{2\sqrt{\frac{\Lambda}{3}}t} + \beta e^{-2\sqrt{\frac{\Lambda}{3}}t}\right)^{\frac{1}{2}}$,
- From the related eigenvalue problem follows: k = 0 and $R = 4\Lambda$.
- The EOM yield the condition

$$\alpha \beta = \mathbf{0}. \tag{52}$$

吊下 イヨト イヨ

$$\bar{\rho} = \frac{3}{8\pi G} (k - \frac{4}{3} \Lambda \alpha \beta) a(t)^{-2}, \quad \bar{\rho} = -\frac{1}{8\pi G} (k - \frac{4}{3} \Lambda \alpha \beta) a(t)^{-2}.$$
(51)

* For $k \neq \frac{4}{3} \Lambda \alpha \beta$ the corresponding \bar{w} parameter is $\bar{w} = -\frac{1}{3}$.

* 4. Cosmological solution for
$$a(t) = \left(\alpha e^{2\sqrt{\frac{\Lambda}{3}}t} + \beta e^{-2\sqrt{\frac{\Lambda}{3}}t}\right)^{\frac{1}{2}}$$
,

From the related eigenvalue problem follows: k = 0 and R = 4Λ.
The EOM yield the condition

$$\alpha \beta = \mathbf{0}. \tag{52}$$

イロト イポト イラト イラト

$$\bar{\rho} = \frac{3}{8\pi G} (k - \frac{4}{3} \Lambda \alpha \beta) a(t)^{-2}, \quad \bar{\rho} = -\frac{1}{8\pi G} (k - \frac{4}{3} \Lambda \alpha \beta) a(t)^{-2}.$$
(51)

* For $k \neq \frac{4}{3} \Lambda \alpha \beta$ the corresponding \bar{w} parameter is $\bar{w} = -\frac{1}{3}$.

- * 4. Cosmological solution for $a(t) = \left(\alpha e^{2\sqrt{\frac{\Lambda}{3}}t} + \beta e^{-2\sqrt{\frac{\Lambda}{3}}t}\right)^{\frac{1}{2}}$,
- From the related eigenvalue problem follows: k = 0 and R = 4Λ.
 The EOM yield the condition

$$\alpha \beta = \mathbf{0}. \tag{52}$$

$$\bar{\rho} = \frac{3}{8\pi G} (k - \frac{4}{3} \Lambda \alpha \beta) a(t)^{-2}, \quad \bar{\rho} = -\frac{1}{8\pi G} (k - \frac{4}{3} \Lambda \alpha \beta) a(t)^{-2}.$$
 (51)

* For $k \neq \frac{4}{3} \Lambda \alpha \beta$ the corresponding \bar{w} parameter is $\bar{w} = -\frac{1}{3}$.

- * 4. Cosmological solution for $a(t) = \left(\alpha e^{2\sqrt{\frac{\Lambda}{3}}t} + \beta e^{-2\sqrt{\frac{\Lambda}{3}}t}\right)^{\frac{1}{2}}$,
- From the related eigenvalue problem follows: k = 0 and $R = 4\Lambda$.
- The EOM yield the condition

$$\alpha \beta = \mathbf{0}. \tag{52}$$

イロト イポト イヨト イヨト

- S. Cosmological solution for $a(t) = \alpha \cos \sqrt{-\frac{h}{3}} t + \beta \sin \sqrt{-\frac{h}{3}} t$
- In this case we have

$$\dot{a}(t) = \sqrt{-\frac{\Lambda}{3}} \left(\beta \cos \sqrt{-\frac{\Lambda}{3}} t - \alpha \sin \sqrt{-\frac{\Lambda}{3}} t\right), \quad \ddot{a}(t) = \frac{\Lambda}{3} a(t), \quad (53)$$

$$R(t) = 4\Lambda + 6 \left(k - (\alpha^2 + \beta^2) \frac{\Lambda}{3} a(t)^{-2}\right), \quad (54)$$

$$H(t) = \sqrt{-\frac{\Lambda}{3}} \left(\beta \cos \sqrt{-\frac{\Lambda}{3}} t - \alpha \sin \sqrt{-\frac{\Lambda}{3}} t\right) a(t)^{-1}, \quad (55)$$

$$R_{00} = -\Lambda, \quad G_{00} = 3 \left(k - \frac{\Lambda}{2} \left(\beta \cos \sqrt{-\frac{\Lambda}{2}} t - \alpha \sin \sqrt{-\frac{\Lambda}{2}} t\right)^2\right) a(t)^{-2}.$$

 The corresponding eigenvalue problem has the same solution as in the previous case (50),

$$\Box(R-4\Lambda) = \frac{2}{3}\Lambda(R-4\Lambda), \quad \mathcal{F}(\Box)(R-4\Lambda) = \mathcal{F}(\frac{2}{3}\Lambda)(R-4\Lambda).$$
(56)

$$\circledast$$
 5. Cosmological solution for $a(t) = \alpha \cos \sqrt{-\frac{\Lambda}{3}} t + \beta \sin \sqrt{-\frac{\Lambda}{3}} t$

In this case we have

$$\dot{a}(t) = \sqrt{-\frac{\Lambda}{3}} \left(\beta \cos \sqrt{-\frac{\Lambda}{3}} t - \alpha \sin \sqrt{-\frac{\Lambda}{3}} t\right), \quad \ddot{a}(t) = \frac{\Lambda}{3} a(t), \quad (53)$$

$$R(t) = 4\Lambda + 6\left(k - \left(\alpha^2 + \beta^2\right)\frac{\Lambda}{3}a(t)^{-2}\right),\tag{54}$$

$$H(t) = \sqrt{-\frac{\Lambda}{3}} \left(\beta \cos \sqrt{-\frac{\Lambda}{3}} t - \alpha \sin \sqrt{-\frac{\Lambda}{3}} t\right) a(t)^{-1}, \tag{55}$$

$$R_{00} = -\Lambda, \ G_{00} = 3\left(k - \frac{\Lambda}{3}\left(\beta\cos\sqrt{-\frac{\Lambda}{3}}\ t - \alpha\sin\sqrt{-\frac{\Lambda}{3}}\ t\right)^2\right)a(t)^{-2}.$$

• The corresponding eigenvalue problem has the same solution as in the previous case (50),

$$\Box(R-4\Lambda) = \frac{2}{3}\Lambda(R-4\Lambda), \quad \mathcal{F}(\Box)(R-4\Lambda) = \mathcal{F}(\frac{2}{3}\Lambda)(R-4\Lambda).$$
(56)

* 5. Cosmological solution for
$$a(t) = \alpha \cos \sqrt{-\frac{\Lambda}{3}} t + \beta \sin \sqrt{-\frac{\Lambda}{3}} t$$

In this case we have

$$\dot{a}(t) = \sqrt{-\frac{\Lambda}{3}} \left(\beta \cos \sqrt{-\frac{\Lambda}{3}} t - \alpha \sin \sqrt{-\frac{\Lambda}{3}} t\right), \quad \ddot{a}(t) = \frac{\Lambda}{3} a(t), \quad (53)$$

$$R(t) = 4\Lambda + 6\left(k - \left(\alpha^2 + \beta^2\right)\frac{\Lambda}{3}a(t)^{-2}\right),\tag{54}$$

$$H(t) = \sqrt{-\frac{\Lambda}{3}} \left(\beta \cos \sqrt{-\frac{\Lambda}{3}} t - \alpha \sin \sqrt{-\frac{\Lambda}{3}} t\right) a(t)^{-1}, \tag{55}$$

$$R_{00} = -\Lambda, \ G_{00} = 3\left(k - \frac{\Lambda}{3}\left(\beta\cos\sqrt{-\frac{\Lambda}{3}}\ t - \alpha\sin\sqrt{-\frac{\Lambda}{3}}\ t\right)^2\right)a(t)^{-2}.$$

• The corresponding eigenvalue problem has the same solution as in the previous case (50),

$$\Box(R-4\Lambda) = \frac{2}{3}\Lambda(R-4\Lambda), \quad \mathcal{F}(\Box)(R-4\Lambda) = \mathcal{F}(\frac{2}{3}\Lambda)(R-4\Lambda).$$
(56)

< ロ > < 同 > < 回 > < 回 > < 回 > <

$$\circledast$$
 5. Cosmological solution for $a(t) = \alpha \cos \sqrt{-\frac{\Lambda}{3}} t + \beta \sin \sqrt{-\frac{\Lambda}{3}} t$

In this case we have

$$\dot{a}(t) = \sqrt{-\frac{\Lambda}{3}} \left(\beta \cos \sqrt{-\frac{\Lambda}{3}} t - \alpha \sin \sqrt{-\frac{\Lambda}{3}} t\right), \quad \ddot{a}(t) = \frac{\Lambda}{3} a(t), \quad (53)$$

$$R(t) = 4\Lambda + 6\left(k - \left(\alpha^2 + \beta^2\right)\frac{\Lambda}{3}a(t)^{-2}\right),\tag{54}$$

$$H(t) = \sqrt{-\frac{\Lambda}{3}} \left(\beta \cos \sqrt{-\frac{\Lambda}{3}} t - \alpha \sin \sqrt{-\frac{\Lambda}{3}} t\right) a(t)^{-1}, \tag{55}$$

$$\boldsymbol{R}_{00} = -\Lambda, \ \boldsymbol{G}_{00} = 3\left(\boldsymbol{k} - \frac{\Lambda}{3}\left(\beta\cos\sqrt{-\frac{\Lambda}{3}} \ \boldsymbol{t} - \alpha\sin\sqrt{-\frac{\Lambda}{3}} \ \boldsymbol{t}\right)^2\right)\boldsymbol{a}(\boldsymbol{t})^{-2}.$$

• The corresponding eigenvalue problem has the same solution as in the previous case (50),

$$\Box(R-4\Lambda) = \frac{2}{3}\Lambda(R-4\Lambda), \quad \mathcal{F}(\Box)(R-4\Lambda) = \mathcal{F}(\frac{2}{3}\Lambda)(R-4\Lambda).$$
(56)

< ロ > < 同 > < 回 > < 回 > < 回 > <

* 5. Cosmological solution for
$$a(t) = \alpha \cos \sqrt{-\frac{\Lambda}{3}} t + \beta \sin \sqrt{-\frac{\Lambda}{3}} t$$

In this case we have

$$\dot{a}(t) = \sqrt{-\frac{\Lambda}{3}} \left(\beta \cos \sqrt{-\frac{\Lambda}{3}} t - \alpha \sin \sqrt{-\frac{\Lambda}{3}} t\right), \quad \ddot{a}(t) = \frac{\Lambda}{3} a(t), \quad (53)$$

$$R(t) = 4\Lambda + 6\left(k - \left(\alpha^2 + \beta^2\right)\frac{\Lambda}{3}a(t)^{-2}\right),\tag{54}$$

$$H(t) = \sqrt{-\frac{\Lambda}{3}} \left(\beta \cos \sqrt{-\frac{\Lambda}{3}} t - \alpha \sin \sqrt{-\frac{\Lambda}{3}} t\right) a(t)^{-1}, \tag{55}$$

$$R_{00} = -\Lambda, \ G_{00} = 3\left(k - \frac{\Lambda}{3}\left(\beta\cos\sqrt{-\frac{\Lambda}{3}} t - \alpha\sin\sqrt{-\frac{\Lambda}{3}} t\right)^2\right)a(t)^{-2}.$$

 The corresponding eigenvalue problem has the same solution as in the previous case (50),

$$\Box(R-4\Lambda) = \frac{2}{3}\Lambda(R-4\Lambda), \quad \mathcal{F}(\Box)(R-4\Lambda) = \mathcal{F}(\frac{2}{3}\Lambda)(R-4\Lambda).$$
(56)

< ロ > < 同 > < 三 > < 三 > -

- Equations of motion are satisfied in the following two nontrivial cases
 5.1 α² + β² = ^{3k}/_Λ,
 5.2 F(²/₃Λ) = ¹/_{12Λ}, F '(²/₃Λ) = 0, α² + β² = -^k/_Λ.
- Case 5.1 In this case we have $R(t) = 4\Lambda$.
- Case 5.2 In this case, we have $R(t) = 8 k a(t)^{-2} + 4\Lambda$,
 - 5.2.1 For k = 1 we can transform scale factor $a(t) = \alpha \cos \sqrt{-\frac{\Lambda}{3}} t + \beta \sin \sqrt{-\frac{\Lambda}{3}} t$ into form:

$$a(t) = \frac{1}{\sqrt{-\Lambda}} \sin\left(\sqrt{-\frac{\Lambda}{3}}t - \varphi\right).$$

Effective density and pressure are given by:

$$\rho = \frac{3k - h(\alpha^2 + \beta^2)}{8\pi G a(t)^2}, \qquad \bar{\rho} = \frac{h(\alpha^2 + \beta^2) - 3k}{24\pi G a(t)^2}.$$
 (57)

 \circledast For $k \neq \frac{\Lambda}{3}(\alpha^2 + \beta^2)$ the corresponding \bar{w} parameter is $\bar{w} = -i$

- Equations of motion are satisfied in the following two nontrivial cases:
 $5.1 \ \alpha^2 + \beta^2 = \frac{3k}{\Lambda},$ $5.2 \ \mathcal{F}(\frac{2}{3}\Lambda) = \frac{1}{12\Lambda}, \ \mathcal{F}'(\frac{2}{3}\Lambda) = 0, \ \alpha^2 + \beta^2 = -\frac{k}{\Lambda}.$
- Case 5.1 In this case we have $R(t) = 4\Lambda$.
- Case 5.2 In this case, we have $R(t) = 8 k a(t)^{-2} + 4\Lambda$,
 - 5.2.1 For k = 1 we can transform scale factor $a(t) = \alpha \cos \sqrt{-\frac{\Lambda}{3}} t + \beta \sin \sqrt{-\frac{\Lambda}{3}} t$ into form:

$$a(t) = \frac{1}{\sqrt{-\Lambda}} \sin\left(\sqrt{-\frac{\Lambda}{3}}t - \varphi\right).$$

In Effective density and pressure are given by:

$$\rho = \frac{3k - \Lambda(\alpha^2 + \beta^2)}{8\pi G a(t)^2}, \qquad \bar{p} = \frac{\Lambda(\alpha^2 + \beta^2) - 3k}{24\pi G a(t)^2}.$$
 (57)

 \circledast For $k \neq \frac{\Lambda}{3}(\alpha^2 + \beta^2)$ the corresponding \bar{w} parameter is $\bar{w} = -\frac{1}{3}$

< D > < P > < E > < E</p>

- ❀ Equations of motion are satisfied in the following two nontrivial cases: $5.1 \ \alpha^2 + \beta^2 = \frac{3k}{\Lambda},$
 - 5.2 $\mathcal{F}(\frac{2}{3}\Lambda) = \frac{1}{12\Lambda}, \mathcal{F}'(\frac{2}{3}\Lambda) = 0, \alpha^2 + \beta^2 = -\frac{k}{\Lambda}.$
- Case 5.1 In this case we have $R(t) = 4\Lambda$.

Case 5.2 In this case, we have $R(t) = 8 k a(t)^{-2} + 4\Lambda$,

5.2.1 For k = 1 we can transform scale factor $a(t) = \alpha \cos \sqrt{-\frac{\Lambda}{3}} t + \beta \sin \sqrt{-\frac{\Lambda}{3}} t$ into form:

$$a(t) = \frac{1}{\sqrt{-\Lambda}} \sin\left(\sqrt{-\frac{\Lambda}{3}}t - \varphi\right).$$

In Effective density and pressure are given by:

$$\rho = \frac{3k - \Lambda(\alpha^2 + \beta^2)}{8\pi G a(t)^2}, \qquad \bar{p} = \frac{\Lambda(\alpha^2 + \beta^2) - 3k}{24\pi G a(t)^2}.$$
 (57)

* For $k \neq \frac{\Lambda}{3}(\alpha^2 + \beta^2)$ the corresponding \bar{w} parameter is $\bar{w} = -\frac{1}{3}$

< ロ > < 同 > < 三 > < 三 > 、

Equations of motion are satisfied in the following two nontrivial cases:
 5.1 α² + β² = 3k/Λ,
 5.2 F(2/2Λ) = 1/12Λ, F'(2/2Λ) = 0, α² + β² = -k/Λ.

Case 5.1 In this case we have $R(t) = 4\Lambda$.

Case 5.2 In this case, we have $R(t) = 8 k a(t)^{-2} + 4\Lambda$,

5.2.1 For k = 1 we can transform scale factor $a(t) = \alpha \cos \sqrt{-\frac{\Lambda}{3}} t + \beta \sin \sqrt{-\frac{\Lambda}{3}} t$ into form:

$$a(t) = \frac{1}{\sqrt{-\Lambda}} \sin\left(\sqrt{-\frac{\Lambda}{3}}t - \varphi\right).$$

In Effective density and pressure are given by:

$$\rho = \frac{3k - \Lambda(\alpha^2 + \beta^2)}{8\pi G a(t)^2}, \qquad \bar{p} = \frac{\Lambda(\alpha^2 + \beta^2) - 3k}{24\pi G a(t)^2}.$$
 (57)

* For $k \neq \frac{\Lambda}{3}(\alpha^2 + \beta^2)$ the corresponding \bar{w} parameter is $\bar{w} = -\frac{1}{3}$

< ロ > < 同 > < 三 > < 三 > 、

- Beguations of motion are satisfied in the following two nontrivial cases:
 5.1 α² + β² = 3k/Λ,
 5.2 F(2/3Λ) = 1/2Λ, F'(2/3Λ) = 0, α² + β² = -k/Λ.
- Case 5.1 In this case we have $R(t) = 4\Lambda$.

Case 5.2 In this case, we have $R(t) = 8 k a(t)^{-2} + 4\Lambda$,

5.2.1 For k = 1 we can transform scale factor $a(t) = \alpha \cos \sqrt{-\frac{\Lambda}{3}} t + \beta \sin \sqrt{-\frac{\Lambda}{3}} t$ into form:

$$a(t) = \frac{1}{\sqrt{-\Lambda}} \sin\left(\sqrt{-\frac{\Lambda}{3}}t - \varphi\right).$$

In Effective density and pressure are given by:

$$\rho = \frac{3k - \Lambda(\alpha^2 + \beta^2)}{8\pi G a(t)^2}, \qquad \bar{p} = \frac{\Lambda(\alpha^2 + \beta^2) - 3k}{24\pi G a(t)^2}. \tag{57}$$

 \circledast For $k \neq \frac{\Lambda}{3}(\alpha^2 + \beta^2)$ the corresponding \bar{w} parameter is $\bar{w} = -\frac{1}{3}$

- コン (雪) (ヨ) (ヨ)

- Beguations of motion are satisfied in the following two nontrivial cases:
 5.1 α² + β² = 3k/Λ,
 5.2 F(2/3Λ) = 1/2Λ, F'(2/3Λ) = 0, α² + β² = -k/Λ.
- Case 5.1 In this case we have $R(t) = 4\Lambda$.

Case 5.2 In this case, we have $R(t) = 8 k a(t)^{-2} + 4\Lambda$,

5.2.1 For k = 1 we can transform scale factor $a(t) = \alpha \cos \sqrt{-\frac{\Lambda}{3}} t + \beta \sin \sqrt{-\frac{\Lambda}{3}} t$ into form:

$$a(t) = \frac{1}{\sqrt{-\Lambda}} \sin\left(\sqrt{-\frac{\Lambda}{3}}t - \varphi\right).$$

Effective density and pressure are given by:

$$\rho = \frac{3k - \Lambda(\alpha^2 + \beta^2)}{8\pi G a(t)^2}, \qquad \bar{\rho} = \frac{\Lambda(\alpha^2 + \beta^2) - 3k}{24\pi G a(t)^2}.$$
 (57)

* For $k \neq \frac{\Lambda}{3}(\alpha^2 + \beta^2)$ the corresponding \bar{w} parameter is $\bar{w} = -\frac{1}{3}$

- Beguations of motion are satisfied in the following two nontrivial cases:
 5.1 α² + β² = 3k/Λ,
 5.2 F(2/3Λ) = 1/2Λ, F'(2/3Λ) = 0, α² + β² = -k/Λ.
- Case 5.1 In this case we have $R(t) = 4\Lambda$.

Case 5.2 In this case, we have $R(t) = 8 k a(t)^{-2} + 4\Lambda$,

5.2.1 For k = 1 we can transform scale factor $a(t) = \alpha \cos \sqrt{-\frac{\Lambda}{3}} t + \beta \sin \sqrt{-\frac{\Lambda}{3}} t$ into form:

$$a(t) = rac{1}{\sqrt{-\Lambda}} \sin\left(\sqrt{-rac{\Lambda}{3}}t - \varphi
ight).$$

Effective density and pressure are given by:

$$\rho = \frac{3k - \Lambda(\alpha^2 + \beta^2)}{8\pi G a(t)^2}, \qquad \bar{p} = \frac{\Lambda(\alpha^2 + \beta^2) - 3k}{24\pi G a(t)^2}.$$
 (57)

* For $k \neq \frac{\Lambda}{3}(\alpha^2 + \beta^2)$ the corresponding \bar{w} parameter is $\bar{w} = -\frac{1}{3}$.

- Osmological solution for $a(t) = \left(\alpha \cos \sqrt{-\frac{\hbar}{3}} t + \beta \sin \sqrt{-\frac{\hbar}{3}} t\right)^2$
- In this case, k = 0 and $R = 4\Lambda$.
- From the EOM follows

$$\alpha^2 + \beta^2 = 0. \tag{58}$$

Hence, there are no nontrivial solutions of the form

$$a(t) = \left(\alpha \cos \sqrt{-\frac{\Lambda}{3}} t + \beta \sin \sqrt{-\frac{\Lambda}{3}} t\right)^{\frac{1}{2}}.$$

On new cosmological solutions. In the previous considerations, related to the finding of new cosmological solutions of nonlocal gravity model, in a class of possible scale factors of the form

$$\boldsymbol{a}(t) = (\alpha \boldsymbol{e}^{\lambda t} + \beta \boldsymbol{e}^{-\lambda t})^{\gamma}$$

we found four new solutions when $\gamma = 1$ and no nontrivial solutions if $\gamma \neq 1$. The new solutions are:

- コン (雪) (ヨ) (ヨ)

Э
- \circledast 6. Cosmological solution for $a(t) = \left(\alpha \cos \sqrt{-\frac{\Lambda}{3}} t + \beta \sin \sqrt{-\frac{\Lambda}{3}} t \right)^2$,
- In this case, k = 0 and $R = 4\Lambda$.
- From the EOM follows

$$\alpha^2 + \beta^2 = 0. \tag{58}$$

Hence, there are no nontrivial solutions of the form

$$a(t) = \left(\alpha \cos \sqrt{-\frac{\Lambda}{3}} t + \beta \sin \sqrt{-\frac{\Lambda}{3}} t\right)^{\frac{1}{2}}.$$

On new cosmological solutions. In the previous considerations, related to the finding of new cosmological solutions of nonlocal gravity model, in a class of possible scale factors of the form

$$\boldsymbol{a}(t) = (\alpha \boldsymbol{e}^{\lambda t} + \beta \boldsymbol{e}^{-\lambda t})^{\gamma}$$

we found four new solutions when $\gamma = 1$ and no nontrivial solutions if $\gamma \neq 1$. The new solutions are:

A = A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- * 6. Cosmological solution for $a(t) = \left(\alpha \cos \sqrt{-\frac{\Lambda}{3}} t + \beta \sin \sqrt{-\frac{\Lambda}{3}} t\right)^{\frac{1}{2}}$,
- In this case, k = 0 and $R = 4\Lambda$.
- From the EOM follows

$$\alpha^2 + \beta^2 = 0. \tag{58}$$

Hence, there are no nontrivial solutions of the form

$$a(t) = \left(\alpha \cos \sqrt{-\frac{\Lambda}{3}} t + \beta \sin \sqrt{-\frac{\Lambda}{3}} t\right)^{\frac{1}{2}}.$$

On new cosmological solutions. In the previous considerations, related to the finding of new cosmological solutions of nonlocal gravity model, in a class of possible scale factors of the form

$$\boldsymbol{a}(t) = (\alpha \boldsymbol{e}^{\lambda t} + \beta \boldsymbol{e}^{-\lambda t})^{\gamma}$$

we found four new solutions when $\gamma = 1$ and no nontrivial solutions if $\gamma \neq 1$. The new solutions are:

- * 6. Cosmological solution for $a(t) = \left(\alpha \cos \sqrt{-\frac{\Lambda}{3}} t + \beta \sin \sqrt{-\frac{\Lambda}{3}} t\right)^{\frac{1}{2}}$,
- In this case, k = 0 and $R = 4\Lambda$.
- From the EOM follows

$$\alpha^2 + \beta^2 = \mathbf{0}. \tag{58}$$

Hence, there are no nontrivial solutions of the form

$$a(t) = \left(\alpha \cos \sqrt{-\frac{\Lambda}{3}} t + \beta \sin \sqrt{-\frac{\Lambda}{3}} t\right)^{\frac{1}{2}}.$$

On new cosmological solutions. In the previous considerations, related to the finding of new cosmological solutions of nonlocal gravity model, in a class of possible scale factors of the form

$$\boldsymbol{a}(t) = (\alpha \boldsymbol{e}^{\lambda t} + \beta \boldsymbol{e}^{-\lambda t})^{\gamma}$$

we found four new solutions when $\gamma = 1$ and no nontrivial solutions if $\gamma \neq 1$. The new solutions are:

- * 6. Cosmological solution for $a(t) = \left(\alpha \cos \sqrt{-\frac{\Lambda}{3}} t + \beta \sin \sqrt{-\frac{\Lambda}{3}} t\right)^{\frac{1}{2}}$,
- In this case, k = 0 and $R = 4\Lambda$.
- From the EOM follows

$$\alpha^2 + \beta^2 = 0. \tag{58}$$

Hence, there are no nontrivial solutions of the form

$$a(t) = \left(\alpha \cos \sqrt{-\frac{\Lambda}{3}} t + \beta \sin \sqrt{-\frac{\Lambda}{3}} t\right)^{\frac{1}{2}}.$$

On new cosmological solutions. In the previous considerations, related to the finding of new cosmological solutions of nonlocal gravity model, in a class of possible scale factors of the form

$$\boldsymbol{a}(t) = (\alpha \boldsymbol{e}^{\lambda t} + \beta \boldsymbol{e}^{-\lambda t})^{\gamma}$$

we found four new solutions when $\gamma = 1$ and no nontrivial solutions if $\gamma \neq 1$. The new solutions are:

< ロ > < 同 > < 回 > < 回 > < 回 > <

- * 6. Cosmological solution for $a(t) = \left(\alpha \cos \sqrt{-\frac{\Lambda}{3}} t + \beta \sin \sqrt{-\frac{\Lambda}{3}} t\right)^{\frac{1}{2}}$,
- In this case, k = 0 and $R = 4\Lambda$.
- From the EOM follows

$$\alpha^2 + \beta^2 = 0. \tag{58}$$

Hence, there are no nontrivial solutions of the form

$$a(t) = \left(\alpha \cos \sqrt{-\frac{\Lambda}{3}} t + \beta \sin \sqrt{-\frac{\Lambda}{3}} t\right)^{\frac{1}{2}}.$$

On new cosmological solutions. In the previous considerations, related to the finding of new cosmological solutions of nonlocal gravity model, in a class of possible scale factors of the form

$$a(t) = (\alpha e^{\lambda t} + \beta e^{-\lambda t})^{\gamma}$$

we found four new solutions when $\gamma = 1$ and no nontrivial solutions if $\gamma \neq 1$. The new solutions are:

< ロ > < 同 > < 回 > < 回 > < 回 > <

Recall that in the de Sitter (anti-de Sitter) case, analogous solutions are:

<ロ> <同> <同> < 回> < 回> < 三</p>

Recall that in the de Sitter (anti-de Sitter) case, analogous solutions are:

Recall that in the de Sitter (anti-de Sitter) case, analogous solutions are:

< ロ > < 同 > < 回 > < 回 > < 回 > <

Recall that in the de Sitter (anti-de Sitter) case, analogous solutions are:

< ロ > < 同 > < 回 > < 回 > < 回 > <

Recall that in the de Sitter (anti-de Sitter) case, analogous solutions are:

< ロ > < 同 > < 三 > < 三 > -

Ъ.

$$\text{ (*) } = Ae^{\pm\sqrt{\frac{\Lambda}{3}}t}, \quad R(t) = \frac{6k}{A^2}e^{\pm 2\sqrt{\frac{\Lambda}{3}}t} + 4\Lambda, \quad k = -1, +1, \quad \Lambda > 0,$$

$$\text{ (*) } = \frac{1}{\sqrt{\Lambda}}\cosh(\sqrt{\frac{\Lambda}{3}}t), \quad R(t) = \frac{8k\Lambda}{\cosh^2\sqrt{\frac{\Lambda}{3}}t} + 4\Lambda, \quad k = -1, \quad \Lambda > 0,$$

$$\text{ (*) } = \frac{1}{\sqrt{\Lambda}}\sinh(\sqrt{\frac{\Lambda}{3}}t), \quad R(t) = \frac{8k\Lambda}{\sinh^2\sqrt{\frac{\Lambda}{3}}t} + 4\Lambda, \quad k = +1, \quad \Lambda > 0,$$

$$\text{ (*) } = \frac{1}{\sqrt{-\Lambda}}\sinh(\sqrt{\frac{\Lambda}{3}}t), \quad R(t) = \frac{-8k\Lambda}{\sin^2\sqrt{\frac{\Lambda}{3}}t} + 4\Lambda, \quad k = +1, \quad \Lambda > 0,$$

$$\text{ (*) } = \frac{1}{\sqrt{-\Lambda}}\sin(\sqrt{\frac{-\Lambda}{3}}t), \quad R(t) = \frac{-8k\Lambda}{\sin^2\sqrt{\frac{-\Lambda}{3}}t} + 4\Lambda, \quad k = +1, \quad \Lambda < 0.$$

Recall that in the de Sitter (anti-de Sitter) case, analogous solutions are:

< ロ > < 同 > < 回 > < 回 > .

$$\text{ (*) } = Ae^{\pm\sqrt{\frac{\Lambda}{3}}t}, \quad R(t) = \frac{6k}{A^2}e^{\pm 2\sqrt{\frac{\Lambda}{3}}t} + 4\Lambda, \quad k = -1, +1, \quad \Lambda > 0,$$

$$\text{ (*) } = \frac{1}{\sqrt{\Lambda}}\cosh(\sqrt{\frac{\Lambda}{3}}t), \quad R(t) = \frac{8k\Lambda}{\cosh^2\sqrt{\frac{\Lambda}{3}}t} + 4\Lambda, \quad k = -1, \quad \Lambda > 0,$$

$$\text{ (*) } = \frac{1}{\sqrt{\Lambda}}\sinh(\sqrt{\frac{\Lambda}{3}}t), \quad R(t) = \frac{8k\Lambda}{\sinh^2\sqrt{\frac{\Lambda}{3}}t} + 4\Lambda, \quad k = +1, \quad \Lambda > 0,$$

$$\text{ (*) } = \frac{1}{\sqrt{-\Lambda}}\sinh(\sqrt{\frac{\Lambda}{3}}t), \quad R(t) = \frac{-8k\Lambda}{\sin^2\sqrt{\frac{\Lambda}{3}}t} + 4\Lambda, \quad k = +1, \quad \Lambda > 0,$$

$$\text{ (*) } = \frac{1}{\sqrt{-\Lambda}}\sin(\sqrt{\frac{-\Lambda}{3}}t), \quad R(t) = \frac{-8k\Lambda}{\sin^2\sqrt{\frac{-\Lambda}{3}}t} + 4\Lambda, \quad k = +1, \quad \Lambda < 0.$$

Recall that in the de Sitter (anti-de Sitter) case, analogous solutions are:

< ロ > < 同 > < 三 > < 三 > -

Ъ.

(a) 1.
$$a(t) = Ae^{\pm \sqrt{\frac{5}{3}}t}$$
, $R(t) = 4\Lambda$, $k = 0$, $\Lambda > 0$,
(a) 2. $a(t) = \sqrt{\frac{3}{\Lambda}} \cosh(\sqrt{\frac{\Lambda}{3}}t)$, $R(t) = 4\Lambda$, $k = 1$, $\Lambda > 0$,
(a) 3. $a(t) = \sqrt{\frac{3}{\Lambda}} \sinh(\sqrt{\frac{\Lambda}{3}}t)$, $R(t) = 4\Lambda$, $k = -1$, $\Lambda > 0$,
(a) 4. $a(t) = \sqrt{\frac{-3}{\Lambda}} \sin(\sqrt{\frac{-\Lambda}{3}}t)$, $R(t) = 4\Lambda$, $k = -1$, $\Lambda < 0$.

- Change of topology. If we compare solutions of de Sitter (anti-de Sitter) and new nonlocal solutions, we can note that for the same cosmological constant Λ, there are analogous scale factors with the same time dependence, but with different curvature constant k.
- This fact can be interpreted as change in topology in de Sitter (anti-de Sitter) space by the inclusion of the nonlocal term of the form (R 4Λ)F(□)(R 4Λ)

Э

* 1.
$$a(t) = Ae^{\pm \sqrt{\frac{\Lambda}{3}}t}$$
, $R(t) = 4\Lambda$, $k = 0$, $\Lambda > 0$,
* 2. $a(t) = \sqrt{\frac{3}{\Lambda}} \cosh(\sqrt{\frac{\Lambda}{3}}t)$, $R(t) = 4\Lambda$, $k = 1$, $\Lambda > 0$,
* 3. $a(t) = \sqrt{\frac{3}{\Lambda}} \sinh(\sqrt{\frac{\Lambda}{3}}t)$, $R(t) = 4\Lambda$, $k = -1$, $\Lambda > 0$,
* 4. $a(t) = \sqrt{\frac{-3}{\Lambda}} \sin(\sqrt{\frac{-\Lambda}{3}}t)$, $R(t) = 4\Lambda$, $k = -1$, $\Lambda < 0$.

- Change of topology. If we compare solutions of de Sitter (anti-de Sitter) and new nonlocal solutions, we can note that for the same cosmological constant Λ, there are analogous scale factors with the same time dependence, but with different curvature constant *k*.
- This fact can be interpreted as change in topology in de Sitter (anti-de Sitter) space by the inclusion of the nonlocal term of the form (*R* − 4Λ)*F*(□)(*R* − 4Λ)

・ 同 ト ・ ヨ ト ・ ヨ

- Change of topology. If we compare solutions of de Sitter (anti-de Sitter) and new nonlocal solutions, we can note that for the same cosmological constant Λ, there are analogous scale factors with the same time dependence, but with different curvature constant *k*.
- This fact can be interpreted as change in topology in de Sitter (anti-de Sitter) space by the inclusion of the nonlocal term of the form (*R* − 4Λ)*F*(□)(*R* − 4Λ)

・ 同 ト ・ ヨ ト ・ ヨ

- Change of topology. If we compare solutions of de Sitter (anti-de Sitter) and new nonlocal solutions, we can note that for the same cosmological constant Λ, there are analogous scale factors with the same time dependence, but with different curvature constant *k*.
- This fact can be interpreted as change in topology in de Sitter (anti-de Sitter) space by the inclusion of the nonlocal term of the form (*R* − 4Λ)*F*(□)(*R* − 4Λ)

- Change of topology. If we compare solutions of de Sitter (anti-de Sitter) and new nonlocal solutions, we can note that for the same cosmological constant Λ, there are analogous scale factors with the same time dependence, but with different curvature constant *k*.
- This fact can be interpreted as change in topology in de Sitter (anti-de Sitter) space by the inclusion of the nonlocal term of the form (*R* − 4Λ)*F*(□)(*R* − 4Λ)

・ 同 ト ・ ヨ ト ・ ヨ

- Change of topology. If we compare solutions of de Sitter (anti-de Sitter) and new nonlocal solutions, we can note that for the same cosmological constant Λ, there are analogous scale factors with the same time dependence, but with different curvature constant *k*.
- This fact can be interpreted as change in topology in de Sitter (anti-de Sitter) space by the inclusion of the nonlocal term of the form $(R 4\Lambda)\mathcal{F}(\Box)(R 4\Lambda)$

・ 同 ト ・ ヨ ト ・ ヨ

Schange of topology. If we compare solutions of de Sitter (anti-de Sitter) and new nonlocal solutions, we can note that for the same cosmological constant Λ, there are analogous scale factors with the same time dependence, but with different curvature constant *k*.

This fact can be interpreted as change in topology in de Sitter (anti-de Sitter) space by the inclusion of the nonlocal term of the form
 $(R - 4\Lambda)\mathcal{F}(\Box)(R - 4\Lambda)$

- Schange of topology. If we compare solutions of de Sitter (anti-de Sitter) and new nonlocal solutions, we can note that for the same cosmological constant Λ, there are analogous scale factors with the same time dependence, but with different curvature constant *k*.
- This fact can be interpreted as change in topology in de Sitter (anti-de Sitter) space by the inclusion of the nonlocal term of the form (R 4Λ)F(□)(R 4Λ)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

32

Conclusions.

- Four new exact cosmological solutions are obtained,
- Effective energy density and effective pressure are computed for all new solutions,
- Change of space topology by nonlocal gravity is noted,
- A connection between nonlocal gravity models (M4) and (MS) is shown.

<ロ> <同> <同> < 同> < 同> < 三> < 三> <

- Four new exact cosmological solutions are obtained,
- In Effective energy density and effective pressure are computed for all new solutions,
- Change of space topology by nonlocal gravity is noted,
- A connection between nonlocal gravity models (M4) and (MS) is shown.

A (1) > A (2) > A (2)

32

Conclusions.

Four new exact cosmological solutions are obtained,

- In Effective energy density and effective pressure are computed for all new solutions,
- Change of space topology by nonlocal gravity is noted,
- A connection between nonlocal gravity models (M4) and (MS) is shown.

A (1) > A (2) > A (2)

- Four new exact cosmological solutions are obtained,
- Iffective energy density and effective pressure are computed for all new solutions,
- Change of space topology by nonlocal gravity is noted,
- A connection between nonlocal gravity models (M4) and (MS) is shown.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Four new exact cosmological solutions are obtained,
- Iffective energy density and effective pressure are computed for all new solutions,
- * Change of space topology by nonlocal gravity is noted,
- A connection between nonlocal gravity models (M4) and (MS) is shown.

< ロ > < 同 > < 回 > < 回 > < 回 > <

- Four new exact cosmological solutions are obtained,
- Iffective energy density and effective pressure are computed for all new solutions,
- Schange of space topology by nonlocal gravity is noted,

< ロ > < 同 > < 回 > < 回 > .

$$S = \frac{1}{16\pi G} \int \sqrt{-g} R d^4 x + \frac{1}{8\pi G} \int \sqrt{-g} (-\frac{1}{2} \nabla_\mu \varphi \nabla^\mu \varphi - V(\varphi)) d^4 x.$$
(59)

$$\frac{1}{16\pi G}G_{\mu\nu} + \frac{1}{8\pi G} \left(\frac{1}{4}g_{\mu\nu}\nabla^{\rho}\varphi\nabla_{\rho}\varphi + \frac{1}{2}g_{\mu\nu}V(\varphi) - \frac{1}{2}\nabla_{\mu}\varphi\nabla_{\nu}\varphi\right) = 0.$$
(60)

 \circledast Variation over arphi yields $\Box arphi = V'(\phi)$. The corresponding EOM are:

$$G_{\mu
u} = 8 \pi G T_{\mu
u}, \quad \Box \varphi = V'(\varphi).$$
 (61)

Now, we obtain

$$8\pi G\rho = \frac{1}{2}\dot{\varphi}^2 + V(\varphi), \qquad 8\pi G\rho = \frac{1}{2}\dot{\varphi}^2 - V(\varphi).$$
(62)

Therefore we have

$$8\pi G(\rho + \rho) = \dot{\varphi}^2 \qquad 4\pi G(\rho - \rho) = V(\varphi). \tag{63}$$

<ロ> <同> <同> < 同> < 同> < 三> < 三> <

Э

$$S = \frac{1}{16\pi G} \int \sqrt{-g} R d^4 x + \frac{1}{8\pi G} \int \sqrt{-g} (-\frac{1}{2} \nabla_\mu \varphi \nabla^\mu \varphi - V(\varphi)) d^4 x.$$
(59)

 \circledast By variation of the previous action with respect to metric $g^{\mu
u}$ we obtain

$$\frac{1}{16\pi G}G_{\mu\nu} + \frac{1}{8\pi G} \Big(\frac{1}{4}g_{\mu\nu}\nabla^{\rho}\varphi\nabla_{\rho}\varphi + \frac{1}{2}g_{\mu\nu}V(\varphi) - \frac{1}{2}\nabla_{\mu}\varphi\nabla_{\nu}\varphi\Big) = 0.$$
(60)

 \circledast Variation over φ yields $\Box \varphi = V'(\phi)$. The corresponding EOM are:

$$G_{\mu\nu} = 8 \pi G T_{\mu\nu}, \quad \Box \varphi = V'(\varphi). \tag{61}$$

Now, we obtain

$$8\pi G\rho = \frac{1}{2}\dot{\varphi}^2 + V(\varphi), \qquad 8\pi G\rho = \frac{1}{2}\dot{\varphi}^2 - V(\varphi).$$
(62)

Therefore we have

$$8\pi G(\rho + p) = \dot{\varphi}^2 \qquad 4\pi G(\rho - p) = V(\varphi). \tag{63}$$

Э

$$S = \frac{1}{16\pi G} \int \sqrt{-g} R d^4 x + \frac{1}{8\pi G} \int \sqrt{-g} (-\frac{1}{2} \nabla_\mu \varphi \nabla^\mu \varphi - V(\varphi)) d^4 x.$$
(59)

 ${}_{\circledast}$ By variation of the previous action with respect to metric $g^{\mu
u}$ we obtain

$$\frac{1}{16\pi G}G_{\mu\nu} + \frac{1}{8\pi G} \left(\frac{1}{4}g_{\mu\nu}\nabla^{\rho}\varphi\nabla_{\rho}\varphi + \frac{1}{2}g_{\mu\nu}V(\varphi) - \frac{1}{2}\nabla_{\mu}\varphi\nabla_{\nu}\varphi\right) = 0.$$
(60)

 ${}_{\circledast}$ Variation over arphi yields $\Box arphi = V'(\phi).$ The corresponding EOM are:

$$G_{\mu\nu} = 8 \pi G T_{\mu\nu}, \quad \Box \varphi = V'(\varphi).$$
 (61)

Now, we obtain

$$8\pi G\rho = \frac{1}{2}\dot{\varphi}^2 + V(\varphi), \qquad 8\pi G\rho = \frac{1}{2}\dot{\varphi}^2 - V(\varphi). \tag{62}$$

Therefore we have

$$8\pi G(\rho + p) = \dot{\varphi}^2 \qquad 4\pi G(\rho - p) = V(\varphi). \tag{63}$$

Ъ.

$$S = \frac{1}{16\pi G} \int \sqrt{-g} R d^4 x + \frac{1}{8\pi G} \int \sqrt{-g} (-\frac{1}{2} \nabla_\mu \varphi \nabla^\mu \varphi - V(\varphi)) d^4 x.$$
(59)

 \circledast By variation of the previous action with respect to metric $g^{\mu
u}$ we obtain

$$\frac{1}{16\pi G}G_{\mu\nu} + \frac{1}{8\pi G} \left(\frac{1}{4}g_{\mu\nu}\nabla^{\rho}\varphi\nabla_{\rho}\varphi + \frac{1}{2}g_{\mu\nu}V(\varphi) - \frac{1}{2}\nabla_{\mu}\varphi\nabla_{\nu}\varphi\right) = 0.$$
(60)

 \circledast Variation over φ yields $\Box \varphi = V'(\phi)$. The corresponding EOM are

$$G_{\mu\nu} = 8 \pi G T_{\mu\nu}, \quad \Box \varphi = V'(\varphi).$$
 (61)

Now, we obtain

$$8\pi G\rho = \frac{1}{2}\dot{\varphi}^2 + V(\varphi), \qquad 8\pi G\rho = \frac{1}{2}\dot{\varphi}^2 - V(\varphi). \tag{62}$$

Therefore we have

$$8\pi G(\rho + p) = \dot{\varphi}^2 \qquad 4\pi G(\rho - p) = V(\varphi). \tag{63}$$

< ロ > < 同 > < 回 > < 回 > .

$$S = \frac{1}{16\pi G} \int \sqrt{-g} R d^4 x + \frac{1}{8\pi G} \int \sqrt{-g} (-\frac{1}{2} \nabla_\mu \varphi \nabla^\mu \varphi - V(\varphi)) d^4 x.$$
(59)

 \circledast By variation of the previous action with respect to metric $g^{\mu
u}$ we obtain

$$\frac{1}{16\pi G}G_{\mu\nu} + \frac{1}{8\pi G} \left(\frac{1}{4}g_{\mu\nu}\nabla^{\rho}\varphi\nabla_{\rho}\varphi + \frac{1}{2}g_{\mu\nu}V(\varphi) - \frac{1}{2}\nabla_{\mu}\varphi\nabla_{\nu}\varphi\right) = 0.$$
(60)

𝔅 Variation over *φ* yields □*φ* = *V*'(*φ*). The corresponding EOM are:

$$G_{\mu\nu} = 8 \pi G T_{\mu\nu}, \quad \Box \varphi = V'(\varphi). \tag{61}$$

Now, we obtain

$$8\pi G\rho = \frac{1}{2}\dot{\varphi}^2 + V(\varphi), \qquad 8\pi G\rho = \frac{1}{2}\dot{\varphi}^2 - V(\varphi). \tag{62}$$

Therefore we have

$$8\pi G(\rho + p) = \dot{\varphi}^2 \qquad 4\pi G(\rho - p) = V(\varphi). \tag{63}$$

< ロ > < 同 > < 三 > < 三 > -

Ъ.

$$S = \frac{1}{16\pi G} \int \sqrt{-g} R d^4 x + \frac{1}{8\pi G} \int \sqrt{-g} (-\frac{1}{2} \nabla_\mu \varphi \nabla^\mu \varphi - V(\varphi)) d^4 x.$$
(59)

 \circledast By variation of the previous action with respect to metric $g^{\mu
u}$ we obtain

$$\frac{1}{16\pi G}G_{\mu\nu} + \frac{1}{8\pi G} \left(\frac{1}{4}g_{\mu\nu}\nabla^{\rho}\varphi\nabla_{\rho}\varphi + \frac{1}{2}g_{\mu\nu}V(\varphi) - \frac{1}{2}\nabla_{\mu}\varphi\nabla_{\nu}\varphi\right) = 0.$$
(60)

𝔅 Variation over *φ* yields □φ = V'(φ). The corresponding EOM are:

$$G_{\mu\nu} = 8 \pi G T_{\mu\nu}, \quad \Box \varphi = V'(\varphi). \tag{61}$$

Now, we obtain

$$8\pi G\rho = \frac{1}{2}\dot{\varphi}^2 + V(\varphi), \qquad 8\pi G\rho = \frac{1}{2}\dot{\varphi}^2 - V(\varphi). \tag{62}$$

Therefore we have

$$8\pi G(\rho + p) = \dot{\varphi}^2 \qquad 4\pi G(\rho - p) = V(\varphi). \tag{63}$$

Ъ.

- $\circledast~$ In the case of cosmological solution for $a(t)=A\,\sqrt{t}\,e^{rac{2}{t}t}$, $\,k=0$
- Sorresponding effective density and pressure for this solution are:

$$\rho = \frac{\Lambda t^2 \left(3\Lambda t^2 + 2\right) + 3}{32\pi G t^2}, \qquad p = \frac{1 - 3\Lambda t^2 \left(\Lambda t^2 + 2\right)}{32\pi G t^2}.$$
 (64)

Substituting the previous expressions into (63) we obtain

$$\begin{split} \dot{\varphi}^2 &= \frac{1}{t^2} - \Lambda, \\ \varphi &= \pm l \sqrt{\frac{1}{t^2} - \Lambda} \pm \frac{l \sqrt{\frac{1}{t^2} - \Lambda} \arccos\left(\sqrt{\Lambda t^2 - 1}\right)}{\sqrt{\Lambda t^2 - 1}} + C, \quad (65) \\ V(\varphi) &= \Lambda + \frac{3\Lambda^2 t^2}{4} + \frac{1}{4t^2}. \end{split}$$

<ロ> <同> <同> < 回> < 回> < 三</p>

- In the case of cosmological solution for $a(t) = A\sqrt{t} e^{\frac{h}{4}t^2}$, k = 0
- ③ Corresponding effective density and pressure for this solution are:

$$\rho = \frac{\Lambda t^2 \left(3\Lambda t^2 + 2\right) + 3}{32\pi G t^2}, \qquad p = \frac{1 - 3\Lambda t^2 \left(\Lambda t^2 + 2\right)}{32\pi G t^2}.$$
 (64)

Substituting the previous expressions into (63) we obtain

$$\dot{\varphi}^{2} = \frac{1}{t^{2}} - \Lambda,$$

$$\varphi = \pm t \sqrt{\frac{1}{t^{2}} - \Lambda} \pm \frac{t \sqrt{\frac{1}{t^{2}} - \Lambda} \operatorname{arccot}\left(\sqrt{\Lambda t^{2} - 1}\right)}{\sqrt{\Lambda t^{2} - 1}} + C, \quad (65)$$

$$V(\varphi) = \Lambda + \frac{3\Lambda^{2} t^{2}}{4} + \frac{1}{4t^{2}}.$$

A (1) > A (2) > A (2)

 \circledast In the case of cosmological solution for $a(t) = A\sqrt{t} e^{\frac{\Lambda}{4}t^2}$, k = 0

Corresponding effective density and pressure for this solution are:

$$\rho = \frac{\Lambda t^2 \left(3\Lambda t^2 + 2\right) + 3}{32\pi G t^2}, \qquad p = \frac{1 - 3\Lambda t^2 \left(\Lambda t^2 + 2\right)}{32\pi G t^2}. \tag{64}$$

Substituting the previous expressions into (63) we obtain

$$\dot{\varphi}^{2} = \frac{1}{t^{2}} - \Lambda,$$

$$\varphi = \pm t \sqrt{\frac{1}{t^{2}} - \Lambda} \pm \frac{t \sqrt{\frac{1}{t^{2}} - \Lambda} \operatorname{arccot}\left(\sqrt{\Lambda t^{2} - 1}\right)}{\sqrt{\Lambda t^{2} - 1}} + C, \quad (65)$$

$$V(\varphi) = \Lambda + \frac{3\Lambda^{2} t^{2}}{4} + \frac{1}{4t^{2}}.$$

< 同 > < 回 > < 回 > <

- \circledast In the case of cosmological solution for $a(t) = A\sqrt{t} e^{\frac{\Lambda}{4}t^2}$, k = 0
- Sources of the solution of

$$\rho = \frac{\Lambda t^2 (3\Lambda t^2 + 2) + 3}{32\pi G t^2}, \qquad \rho = \frac{1 - 3\Lambda t^2 (\Lambda t^2 + 2)}{32\pi G t^2}. \tag{64}$$

Substituting the previous expressions into (63) we obtain

$$\dot{\varphi}^{2} = \frac{1}{t^{2}} - \Lambda,$$

$$\varphi = \pm t \sqrt{\frac{1}{t^{2}} - \Lambda} \pm \frac{t \sqrt{\frac{1}{t^{2}} - \Lambda} \operatorname{arccot}\left(\sqrt{\Lambda t^{2} - 1}\right)}{\sqrt{\Lambda t^{2} - 1}} + C, \quad (65)$$

$$V(\varphi) = \Lambda + \frac{3\Lambda^{2} t^{2}}{4} + \frac{1}{4t^{2}}.$$

・ロ・・ 日・ ・ 日・ ・ 日・
- \circledast In the case of cosmological solution for $a(t) = A\sqrt{t} e^{\frac{\Lambda}{4}t^2}$, k = 0
- Sorresponding effective density and pressure for this solution are:

$$\rho = \frac{\Lambda t^2 (3\Lambda t^2 + 2) + 3}{32\pi G t^2}, \qquad p = \frac{1 - 3\Lambda t^2 (\Lambda t^2 + 2)}{32\pi G t^2}.$$
 (64)

Substituting the previous expressions into (63) we obtain

$$\dot{\varphi}^{2} = \frac{1}{t^{2}} - \Lambda,$$

$$\varphi = \pm t \sqrt{\frac{1}{t^{2}} - \Lambda} \pm \frac{t \sqrt{\frac{1}{t^{2}} - \Lambda} \operatorname{arccot} \left(\sqrt{\Lambda t^{2} - 1}\right)}{\sqrt{\Lambda t^{2} - 1}} + C, \quad (65)$$

$$V(\varphi) = \Lambda + \frac{3\Lambda^{2} t^{2}}{4} + \frac{1}{4t^{2}}.$$

< ロ > < 同 > < 三 > < 三 > -

Ъ.

Some relevant references

- I. Dimitrijevic, B. Dragovich, A. S. Koshelev, Z. Rakic, J. Stankovic, Some cosmological solutions of a new nonlocal gravity model, Symmetry 12, 917 (2020), arXiv:2006.16041 [gr-qc].
- I.Dimitrijevic, B.Dragovich, Z.Rakic, and J.Stankovic, New Cosmological Solutions of a Nonlocal Gravity Model. Symmetry (2022) Volume 14 (1), 3.
- I. Dimitrijevic, B. Dragovich, Z. Rakic, J. Stankovic, Nonlocal de Sitter gravity and its exact cosmological solutions, Journal of High Energy Physics 2022 (12), 1-28.
- I. Dimitrijevic, B. Dragovich, A. S. Koshelev, Z. Rakic, J. Stankovic, Cosmological solutions of a nonlocal square root gravity, Phys. Lett. B 797 (2019) 134848, arXiv:1906.07560 [gr-qc].
- I. Dimitrijevic, B. Dragovich, Z. Rakic, J. Stankovic, *Nonlocal de Sitter* \sqrt{dS} gravity model and *its applications*, to appear in Russian Journal of Mathematical Physics, (2025).
- S. Nojiri, S.D. Odintsov, V. K. Oikonomou, Modified Gravity Theories on a Nutshell: inflation, bounce, and late-time evolution, Phys. Rep. 692 (2017), 1–104.
- A. S. Koshelev, S. Yu. Vernov, *On bouncing solutions in non-local gravity*, Phys. Part. Nuclei **43**, 666–668 (2012) [arXiv:1202.1289v1 [hep-th]].
- I. Dimitrijevic, B. Dragovich, Z. Rakic, J. Stankovic, On the Schwarzschild-de Sitter metric of nonlocal de Sitter gravity, Filomat, 2023, Vol. 37 (25), 8641-8650.
- I. Dimitrijevic, B. Dragovich, J. Grujic, A.S. Koshelev, Z. Rakic, *Cosmology of modified gravity with a nonlocal f(R),* Filomat 33 (2019) 1163–1178, arXiv:1509.04254[hep=th].
- T. Biswas, T. Koivisto, A. Mazumdar, *Towards a resolution of the cosmological singularity in non-local higher derivative theories of gravity*, JCAP **1011** (2010) 008 [arXiv:1005.0590v2 [hep-th]].

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

THANK YOU FOR

YOUR ATTENTION !!!

Zoran Rakić New Cosmological Solutions of a Nonlocal Gravity Model

◆ロ ▶ ◆屈 ▶ ◆ 臣 ▶ ◆ 臣 ● の Q ()

Non-trivial Christoffel symbols of Friedman – Robertson – Walker metric

$$\Gamma_{01}^{1} = \frac{\dot{a}}{a} \qquad \Gamma_{02}^{2} = \frac{\dot{a}}{a} \qquad \Gamma_{03}^{3} = \frac{\dot{a}}{a}$$

$$\Gamma_{11}^{0} = \frac{a\dot{a}}{1 - kr^{2}} \qquad \Gamma_{11}^{1} = \frac{kr}{1 - kr^{2}} \qquad \Gamma_{12}^{2} = \frac{1}{r}$$

$$\Gamma_{13}^{3} = \frac{1}{r}$$

$$\Gamma_{22}^{0} = r^{2}a\dot{a} \qquad \Gamma_{22}^{1} = r(kr^{2} - 1) \qquad \Gamma_{23}^{3} = \cot\theta$$

$$\Gamma_{33}^{0} = r^{2}a\dot{a}\sin^{2}\theta \qquad \Gamma_{33}^{1} = r(kr^{2} - 1)\sin^{2}\theta \qquad \Gamma_{33}^{2} = -\sin\theta\cos\theta$$

Э

Non-trivial Christoffel symbols of Friedman - Robertson - Walker metric

 $\Gamma_{01}^{1} = \frac{\dot{a}}{a} \qquad \Gamma_{02}^{2} = \frac{\dot{a}}{a} \qquad \Gamma_{03}^{3} = \frac{\dot{a}}{a}$ $\Gamma_{01}^{0} = \frac{a\dot{a}}{1 - kr^{2}} \qquad \Gamma_{11}^{1} = \frac{kr}{1 - kr^{2}} \qquad \Gamma_{12}^{2} = \frac{1}{r}$ $\Gamma_{13}^{3} = \frac{1}{r}$ $\Gamma_{22}^{0} = r^{2}a\dot{a} \qquad \Gamma_{22}^{1} = r(kr^{2} - 1) \qquad \Gamma_{23}^{3} = \cot\theta$ $\Gamma_{33}^{0} = r^{2}a\dot{a}\sin^{2}\theta \qquad \Gamma_{33}^{1} = r(kr^{2} - 1)\sin^{2}\theta \qquad \Gamma_{33}^{2} = -\sin\theta\cos\theta$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Non-trivial Christoffel symbols of Friedman-Robertson-Walker metric

$$\Gamma_{01}^{1} = \frac{\dot{a}}{a} \qquad \Gamma_{02}^{2} = \frac{\dot{a}}{a} \qquad \Gamma_{03}^{3} = \frac{\dot{a}}{a}$$

$$\Gamma_{11}^{0} = \frac{a\dot{a}}{1-kr^{2}} \qquad \Gamma_{11}^{1} = \frac{kr}{1-kr^{2}} \qquad \Gamma_{12}^{2} = \frac{1}{r}$$

$$\Gamma_{13}^{3} = \frac{1}{r}$$

$$\Gamma_{22}^{0} = r^{2}a\dot{a} \qquad \Gamma_{22}^{1} = r(kr^{2}-1) \qquad \Gamma_{23}^{3} = \cot\theta$$

$$\Gamma_{33}^{0} = r^{2}a\dot{a}\sin^{2}\theta \qquad \Gamma_{33}^{1} = r(kr^{2}-1)\sin^{2}\theta \qquad \Gamma_{33}^{2} = -\sin\theta\cos\theta$$

Ъ.

$$R_{0110} = \frac{a\ddot{a}}{1-kr^2} \qquad R_{1221} = -\frac{r^2a^2(\dot{a}^2+k)}{1-kr^2}$$
$$R_{0220} = r^2a\ddot{a} \qquad R_{1331} = -\frac{r^2a^2\sin^2\theta(\dot{a}^2+k)}{1-kr^2}$$
$$R_{0330} = r^2a\ddot{a}\sin^2\theta \qquad R_{2332} = -r^4a^2\sin^2\theta(\dot{a}^2+k)$$

Ricci tensor

$$R_{\mu\nu} = \begin{pmatrix} -\frac{3a}{a} & 0 & 0 & 0\\ 0 & u g_{11} & 0 & 0\\ 0 & 0 & u g_{22} & 0\\ 0 & 0 & 0 & u g_{33} \end{pmatrix}, \qquad u = \frac{a\ddot{a} + 2(\dot{a}^2 + k)}{a^2}$$

<ロ> <同> <同> < 同> < 回> < □> < □> <

æ

$$R_{0110} = \frac{\ddot{a}\ddot{a}}{1 - k r^2} \qquad R_{1221} = -\frac{r^2 a^2 (\ddot{a}^2 + k)}{1 - k r^2}$$
$$R_{0220} = r^2 \ddot{a}\ddot{a} \qquad R_{1331} = -\frac{r^2 a^2 \sin^2 \theta (\dot{a}^2 + k)}{1 - k r^2}$$
$$R_{0330} = r^2 \ddot{a}\ddot{a} \sin^2 \theta \qquad R_{2332} = -r^4 a^2 \sin^2 \theta (\dot{a}^2 + k)$$

Ricci tensor

$$R_{\mu\nu} = \begin{pmatrix} -\frac{3a}{a} & 0 & 0 & 0\\ 0 & u g_{11} & 0 & 0\\ 0 & 0 & u g_{22} & 0\\ 0 & 0 & 0 & u g_{33} \end{pmatrix}, \qquad u = \frac{a\ddot{a} + 2(\dot{a}^2 + k)}{a^2}$$

< ロ > < 団 > < 豆 > < 豆 > <</p>

Ξ.

$$R_{0110} = \frac{\ddot{a}\ddot{a}}{1 - k r^2} \qquad R_{1221} = -\frac{r^2 a^2 (\dot{a}^2 + k)}{1 - k r^2}$$
$$R_{0220} = r^2 \ddot{a}\ddot{a} \qquad R_{1331} = -\frac{r^2 a^2 \sin^2 \theta (\dot{a}^2 + k)}{1 - k r^2}$$
$$R_{0330} = r^2 \ddot{a}\ddot{a} \sin^2 \theta \qquad R_{2332} = -r^4 a^2 \sin^2 \theta (\dot{a}^2 + k)$$

Ricci tensor

$$R_{\mu\nu} = \begin{pmatrix} -\frac{3a}{a} & 0 & 0 & 0\\ 0 & u g_{11} & 0 & 0\\ 0 & 0 & u g_{22} & 0\\ 0 & 0 & 0 & u g_{33} \end{pmatrix}, \qquad u = \frac{a\ddot{a} + 2(\dot{a}^2 + k)}{a^2}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

.

$$R_{0110} = \frac{\ddot{a}\ddot{a}}{1 - k r^2} \qquad R_{1221} = -\frac{r^2 a^2 (\dot{a}^2 + k)}{1 - k r^2}$$
$$R_{0220} = r^2 \ddot{a}\ddot{a} \qquad R_{1331} = -\frac{r^2 a^2 \sin^2 \theta (\dot{a}^2 + k)}{1 - k r^2}$$
$$R_{0330} = r^2 \ddot{a}\ddot{a} \sin^2 \theta \qquad R_{2332} = -r^4 a^2 \sin^2 \theta (\dot{a}^2 + k)$$

Ricci tensor

$$R_{\mu\nu} = \begin{pmatrix} -\frac{3a}{a} & 0 & 0 & 0\\ 0 & u g_{11} & 0 & 0\\ 0 & 0 & u g_{22} & 0\\ 0 & 0 & 0 & u g_{33} \end{pmatrix}, \qquad u = \frac{a\ddot{a} + 2(\dot{a}^2 + k)}{a^2}$$

・ロ・・(型・・目・・(目・)

.

$$R_{0110} = \frac{\ddot{a}\ddot{a}}{1 - k r^2} \qquad R_{1221} = -\frac{r^2 a^2 (\dot{a}^2 + k)}{1 - k r^2}$$
$$R_{0220} = r^2 \ddot{a}\ddot{a} \qquad R_{1331} = -\frac{r^2 a^2 \sin^2 \theta (\dot{a}^2 + k)}{1 - k r^2}$$
$$R_{0330} = r^2 \ddot{a}\ddot{a} \sin^2 \theta \qquad R_{2332} = -r^4 a^2 \sin^2 \theta (\dot{a}^2 + k)$$

Ricci tensor

$$R_{\mu\nu} = \begin{pmatrix} -\frac{3a}{a} & 0 & 0 & 0\\ 0 & u g_{11} & 0 & 0\\ 0 & 0 & u g_{22} & 0\\ 0 & 0 & 0 & u g_{33} \end{pmatrix}, \qquad u = \frac{a\ddot{a} + 2(\dot{a}^2 + k)}{a^2}$$

< ロ > < 団 > < 豆 > < 豆 > <</p>

Ξ.

$$R = \frac{6\left(a\ddot{a} + \dot{a}^2 + k\right)}{a^2}$$

Einstein tensor

$$G_{\mu\nu} = \begin{pmatrix} \frac{3(\dot{a}^2 + k)}{a^2} & 0 & 0 & 0\\ 0 & -v g_{11} & 0 & 0\\ 0 & 0 & -v g_{22} & 0\\ 0 & 0 & 0 & -v g_{33} \end{pmatrix}, \qquad v = \frac{2 \, a \ddot{a} + \dot{a}^2 + k}{a^2}$$

<ロ> <部> < 部> < き> < き> < き</p>

$$R = \frac{6(a\ddot{a} + \dot{a}^2 + k)}{a^2}$$

Einstein tensor

$$G_{\mu\nu} = \begin{pmatrix} \frac{3(\dot{a}^2+k)}{a^2} & 0 & 0 & 0\\ 0 & -v g_{11} & 0 & 0\\ 0 & 0 & -v g_{22} & 0\\ 0 & 0 & 0 & -v g_{33} \end{pmatrix}, \qquad v = \frac{2 \, a \ddot{a} + \dot{a}^2 + k}{a^2}$$

<ロ> <部> < 部> < き> < き> < き</p>

$$R = \frac{6\left(a\ddot{a} + \dot{a}^2 + k\right)}{a^2}$$

Einstein tensor

$$G_{\mu\nu} = \begin{pmatrix} \frac{3(\dot{a}^2+k)}{a^2} & 0 & 0 & 0\\ 0 & -v g_{11} & 0 & 0\\ 0 & 0 & -v g_{22} & 0\\ 0 & 0 & 0 & -v g_{33} \end{pmatrix}, \qquad v = \frac{2 \, a \ddot{a} + \ddot{a}^2 + k}{a^2}$$

<ロ> <部> < 部> < き> < き> < き</p>

$$R = \frac{6\left(a\ddot{a} + \dot{a}^2 + k\right)}{a^2}$$

Einstein tensor

$$R = \frac{6\left(a\ddot{a} + \dot{a}^2 + k\right)}{a^2}$$

Einstein tensor

