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e Understanding quantum dynamics of strongly interacting objects



e Understanding quantum dynamics of strongly interacting objects

e In Holography - dynamics on the bdy and corresponding bulk
processes/reconstruction

@ Integrable or chaotic behavior?
- in flat & curved spaces (highly nontrivial)

e Minimal knowledge to (almost) completely describe a system
— paterns and codes , optimization

e Complexity of (quantum) integrable systems & strongly interacting
compact objects - an indicator for chaotic behavior
- example: for Krylov spaces

by, ~ n‘s, 6 > 1-chaotic, 0 < <1 - integrable
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Notion of Complexity

e Informally, Cr(X) quantifies the "information content”
Cr(X) = min{|p| : F(p) = X},

@ In our context: complexity of a state — min of the spread of the
wavefunction over all possible bases (Kolmogorov spirit).
- the naive notion of C(t): a correlator for operator A(t)
(autocorrelation function) C'(t) = ming Cp(t)

o Consider a basis B = {|B;)i =0,1,...} and def cost finction

Cp(t) = ch|<¢n|Bn>|2, ¢n, positive increasing, |Bo) = |1 (to))

|(4n|Bn)|? = pr(n,t): probabilities of being in each basis vector.
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Geometric Complexity

e The allowed transformations U(c) - as path ordered exponentials

dU —i [7V(s)ds
V=iZU'=TV* = U(o)=Pe Ly

T

e bi-invariant metric
dsp;_iny = Tr(VIV)dr? (1)

- The length of a path from s; to sy going through |¥(0))
sf
(@) = [ ds().

- Def. complexity C: the minimal length/geodesics between states driven
by generators G(s)

C(1¥(s:)), [W(sp))) = s (|19(0)))-



Geometric Complexity

e Nielsen's complexity: evolution operator <= path’ length w/ b.c. &
minimized length + penalty factors p, —

. 1/2
Cn(t) = H%/in/ dr <Z Tr(T,V)? + pa Tr(TaV)2> ,

0



Geometric Complexity

e Nielsen's complexity: evolution operator <= path’ length w/ b.c. &
minimized length + penalty factors p, —

. 1/2
Cn(t) = H%/in/o dr <Z Tr(ToV)? + pa Tr(TaV)2> ,

e Objective: geodesics connecting the identity to a target unitary

Utarget = exp{—iHt} at a chosen moment t, with # being the physical
Hamiltonian.

e accounting for penalties in the metric

ﬁj[Tr(TaW T e TE(TaV)?] = onGmtim

= Qum =Y a{nlTaln)(m|TIm), (2)



Volume - Momentum Complexity relations

e Momentum Constraint (MC) - defined for any Cauchy surface X, initial
data: hg and K, —

VoK., — VoK = —87GB,, P, = —NgTw/eZ, (3)

P, - pulled-back momentum flux through .
o If ¥ is extremal = K =0

@ Integrate the expression over ¥

1 1
Po=—— K, b—i—i/KabVa 4
n ¢ 871G Joxn o bC 817G Iy Cb, ( )

Po = P,C? - the momentum along the C-field.

@ The complexity current

1
Jo=———KauCP. 5
K, (5)



— complexity rate for VC: a bulk integral over extremal X:

AL ©

e The idea: construct reps of the unitary acting on the states

—/UdsH(s)
0

e Example: construction of unitary with (circuit) parameter o and complex
parameters (o, By, A, Yp) depending on it (but with the requirement to
be unitary)

H
U(o) = Pexp where (s ZY Oy, (7)

U(O’) =e' ia(o)-P z'yD (H ez)\/ume,) eiﬁ(o’).K. (8)

pn<v




Nielsen's approach: the optimal circuit with the minimized cost
1
D)) = [ ds FU(s), Y!(5)) ©)
0

F - cost function: 1) Smoothness, 2) Positivity, 3) Triangle inequality and
4) Positive homogeneity.

C(l¥r)) = Min D. (10)

The first law of volume complexity

Combining the first- and second-order variations one finds the first
law of complexity as

0= puda® + 20puda’,  pu= o
~—— e — oxe

oC’ oCc”
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Spread states and Operator growth

e Unitary evolution mixes the initial state [¢)) with other quantum states
as time evolves

o0 ~ (e o]

[¥(t)) = e”" 1% (0)

(11)

n=0

= understanding the states |¢,) = H"|¢).



Spread states and Operator growth

e Unitary evolution mixes the initial state [¢)) with other quantum states
as time evolves

> th >

[%(t)) = e~ 4(0) Z = (11)

n=0

= understanding the states |¢,,) = H"|¢).

e The Gram-Schmidt procedure applied to generate an ordered,
orthonormal basis K = {|Kjy), | K1), ... }.

- consider a basis B = {|B;)i =0,1,...} and def cost finction

£) = S el B2, e positive increasing, |Bo) = [i(to))

- def Complexity

C(t) = mgn Cp(t)




Spread states and Operator growth

e Operator growth

O(t) = e 0(0) et = i (gn Ohn, (12)
n=0 :
where
Ov=0, O1=[H0], Oy=[H[HO]... (13)

As time progresses, a simple operator O(t) "grows” in the space of
operators of the theory becoming more "complex”.
- the idea: use O,, to construct states of the basis {|0,,(0))}



Spread states and Operator growth

e Operator growth

O(t) = e 0(0) et = i (i) Ohn, (12)

n=0

where . } .
OCo=0, 01=[H,0], Oy=I[H,[H,O]... (13)

As time progresses, a simple operator O(t) "grows” in the space of
operators of the theory becoming more "complex”.

- the idea: use O,, to construct states of the basis {|0,,(0))}

e Notion of Liouvillian (superoperator)

L:=[H,+x = O,=L"O00) = O()=¢*00). (14)

o Subtlety: |0,(0)) = O,|0) may not be orthogonal (and {|0,(0))} may
not define a basis)



Constructing Krylov spaces



Constructing Krylov spaces

e The algorithm of orthogonalization (Arnoldi iteration)
Q@ setbp=0 and |O_1)=0
@ Define |0)g = ——~—0)

(0]0)

© Forn=1:

- [A1) = £|Oo)

- b1 = [|A4]|

- If by # 0 define|0y) = %\Al)
Q Forn >1:

- |An) - E|On_1) - bn—llon—Q)

- by, = ||An]| = v (An|An)

- If b, = 0 stop the procedure; if not, define |O,,) = é|An) and go to
step 4.



About Krylov basis



About Krylov basis

e Construct

Sp={Cc9,cP,c?,.. 3, cp=4

= @Cj(st)ltzo-

o If there is a k such that Cg?) = Cg;b) for m < k and C’gcl) < C’g? for

m =k then Cp, (t) < Cp,(t) in a domain 0 <t < 7 for some 7 < T .

. 0 0 1 1 2 2
Define Sp, /Sp, = {C5y) /CY),C)/CY), CF)/C), ...
|fSBiE k-jet, 1 =1,2 — 531/532:{1,...}.
If for (k+1)— jet 531/532 = {1, a< 1} then SBl(t) < 532(t)

= Krylov basis K = {|Kj;)} minimizes the cost function Cp!
" J/




e The Krylov space: spanned by {P,(£)|O)}

A

10p) = |Po(£)D), n=0,1,...

o If (O,,]£]|0,,) is a Hermitian matrix

0 b 0 O
by 0 b O
Enm = 0 bz 0 b3

0 0 b3 O

— a three-term recurrence relation
ﬁPn(ﬁ) = bn+1Pn+1(£) + ann_1(£)

= by Favard's theorem 3 measure wrw P, (L) are orthogonal.

(15)

(16)



Moments and Hankel determinant

e A key quantity containing equivalent information is the moment matrix
M defined by

J2ldw  [zdw - [2"dw Lo 1 n
My = fmdw f:c2dw f:z:"*ldw N Mo “tr Mnl

Jzrdw [2"Tldw - [2?dw Ln  fng1r e fon



Moments and Hankel determinant

e A key quantity containing equivalent information is the moment matrix
M defined by

J2ldw  [zdw - [2"dw o p1 hn
My — fmdw f:c2dw f:z:"*ldw |l L2 41
0 - . . DY - . .
Jzrdw [2"Tldw - [2?dw Wn  Mnil 0 Hon
e Hankel determinant D,,
Ho M1 e Hn
_ oy — M1 M2 o Hagd
Dy, = 15521\1(“”]) . . . (17)

Hn Hn+1 - Hon



Orthogonal polynomials

e Moments, Hankel and orthogonal polynomial D, (x)

[2%w  [fzdw -+ [z"dw
[xdw  [x%dw --- [x"Hldw
Dn(z) = . . (18)
f2" ldw [z"dw --- [2? ldw



Orthogonal polynomials

e Moments, Hankel and orthogonal polynomial D, (x)

[2%w  [zdw - [2"dw
[xdw  [2%dw --- [z"Mldw
D, (z) = . . . (18)
f2" ldw [z"dw --- [2? ldw
1 x DR xn
e Using D,, and D(x) = define an orthogonal polynomial
D ()
P(z) = ———— 1
A = (19)

e Using recurent relations one finds the relations to Lanczos coefficients

Dn—an+1 an = In Dn

2 _
S

(20)

n—1




Krylov complexity

e Decomposition of O(t) in terms of the Krylov elements:

K-1
0(t) = D ¢u(t)|On). (21)
n=0
e The Liouvillian in Krylov basis
K-1
L= Z bnt1 HOn)(On-&-l‘ + |On+1)(on|] (22)

n=0
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Krylov complexity

e Decomposition of O(t) in terms of the Krylov elements:

K-1
0(t) = D ¢u(t)|On). (21)
n=0
e The Liouvillian in Krylov basis
K-1
L= bar1[10n)(On41] +[Ons1)(Onl] (22)
n=0

e The equation for ¢, (t)

K-1
_Z.d)n = Z an¢m(t) = bn+1¢n+1 (t) - bn¢n—1(t)a an(o) = 571,0-

m=1

e Krylov Complexity and K-entropy (Shannon)

K@) =) nlga®)?,  St) =) |a(t)]* log|en(t)|? (23)
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@ 3D TMG w/ a negative cosmological const & positive G: admits an
AdS3 for any value of the graviton mass u.
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e 3D TMG w/ a negative cosmological const & positive G: admits an
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@ The symmetry (for left/right movers ) under
ot 4t 2t o\t

+ unitarity, locality & a bounded below spectrum of the dilatation
operator - translations and dilatations are enhanced to an
infinite-dimensional symmetries.



Warped geometry and warped CFT

e 3D TMG w/ a negative cosmological const & positive G: admits an
AdS3 for any value of the graviton mass u.

@ The symmetry (for left/right movers ) under
ot 4t 2t o\t

+ unitarity, locality & a bounded below spectrum of the dilatation
operator - translations and dilatations are enhanced to an
infinite-dimensional symmetries.

o For every value of ul # 3: 3 other solutions - SL(2, R) x U(1)
W AdSs geometries. It is achieved by multiplying the fiber metric
with a constant warp factor.

— breaks SL(2,R)r x SL(2,R)g to SL(2,R) x U(1).



e AdSs deformation - a fibration over AdS; w/ squashing parameter

2
ds® = %[— cosh? odr? + do? + (du + sinh od7)?] —
ds® = i — cosh? odr? + do? + b7 (du + sinh odr)?
T 243 oer AT T N

(24)

{u, 7,0} € [~00,00|, v? > 1 - spacelike stretched AdSs; v? <1 -
spacelike squashed AdSs.
@ Detournay, Hartman and Hofman [1210.0539]: transl. inv. only +
chiral scaling symmetry = one Vir and a U(1) current algebra.
@ Holographically: a WCFT can be described as a SL(2,R) x U(1)
Chern-Simons theory in 3d [Castro, Hofman, Igbal] .

Comments: Recently: the Kerr BH background a hidden SL(2, R) x U(1)
("Love") symmetry in the near zone approximation.



Warped Conformal Symmetry

e The BH solutions, asymptotic to warped AdS3

ds* =dt? + s i —2(m"—i—1 ryr—(3 4+ v2))dtde
IR R I G V7T

n 2[3@2 —)r 4+ (B4 ) (g + ) + doySrar_ (3 + 12)|dg?




Warped Conformal Symmetry

e The BH solutions, asymptotic to warped AdS3

ds* =dt? + s i —2(m"+1\/7“ r_(3+ v?))dtd¢
- 3+ 12 (r—r_)(r—ry) o Vit

2

n 2[3@2 e+ (34 ) (ry + ) + doSrpr_ (3 + 12)]do

e The asymptotic algebra

c
[Lun, Ln] = (m — 1) Linsn + gm%ﬁmp
Wi Il = =g (25)
s
[Jm7 Jn] = ﬁmém—i—n,ﬂ = §m5m+n,07
502 +3 1 2431

= = - = . 2
v v(?2+3)G’ “J v G /6 (26)




Symmetries and operators

e Transformations of local operators under global scaling symmetry
x — Az and translational symmetry z — x4+ a, y — y + b,

;( Az + a,y +b) = A" ®;(z,y), (27)

e Infinitesumally

[Ln, O, y)] =[2" 10, + (n+ 1)2"R]O(, y), (28)
[Jn, O(z,y)] =iz"0,O(z,y) (29)
=—2"Q0(z,y), (30)

e The standard basis

O}y — pNipN MM (A, Q)



A new basis of operators

e U(1) Sugawara

Tsug(z):Z%v Ly® = ( Z ImIn—m + Z In—m m)a

m<—1 m>0
(31)
—
Su; 1
L35, LE2¥] = (n = m) L% + —5n(n® — Dbm
[L;ug’ Jm] = —mJnim (32)
& 1
[Ln, L528] = (n —m)L38, + —n(n® — 1)ntm.o- (33)



A new basis



A new basis

e Define spectral flow invariant Virasoro generators

Lo=Ln—L% =Li==( Y Jnducw+ ¥ Jucmdu) - (39)

k m<—1 m>0

The key point: £,, and J, generators provide a basis that factors the
algebra into separate Virasoro and U(1) sectors:

c—1
[Ena Em] = (n - m)ﬁn-&-m + ?N(TLQ

(L Jim] = 0. (35)

- 1>5n+m,0 y

—> states |¢) that are primary with respect to the L,,'s and J,,'s, with
weight h and charge g4, are primary under £,, as well, with weight
Q2
RO _p_ F¢ 36
o (36)



Primaries

e The primary state |A, @) under £, and 7,

LO|A5Q> = Ainv|A7Q>7 \70|Aa Q> = _Q|A7Q> ) (37)
LalA,Q) =0, JulA,Q)=0, ¥n>0, (38)

e The conformal weight



Primaries

e The primary state |A, @) under £, and 7,

L0|A5Q> = Ainv|A7Q>7 \70|Aa Q> = _Q|A7Q> ) (37)
LalA,Q) =0, JulA,Q)=0, ¥n>0, (38)

e The conformal weight

e Remark: The advantage of using {L,, J} basis:

- orthogonality of the corresponding descendant states

- factorization of the norm of mixed states including both, Vir & U(1)
descendants



e A descendant operators for |A, Q)

Oy = (M g A Q), N=Ny--&M =M,
e The spectral invariant conformal weight and charge
Lo|OWM}y = <N"” +3 nNn> OV MYy, (40)
n>0
FoO) = —QOTA1)

e The conformal weight

Q2



SL(2, R) subsector of Virasoro

e The action of SL(2, R) on a Fock state

Lolh,n) = (h+n)|h,n), L_qlh,n) =+/(n+1)2h+n|h,n+1) (43)
Lilh,n) = \/n(2h +n —1)|h,n — 1) (44)
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SL(2, R) subsector of Virasoro

e The action of SL(2, R) on a Fock state

Lolh,n) = (h+n)lh,n), L_1lh,n) =+/(n+1)2h +nlh,n+1) (43)
Lilh,n) = \/n(2h +n —1)|h,n — 1) (44)

e Perelomov construction
N IT'(2h + n)
Loy = S 2 1n 1) ni h.n). 45
o = 30 I }: b} (45)

e The explicit form of a state

12, h) = Z M\h n). (46)




SL(2, R) subsector of Virasoro

e The state generated by Liouvillian £ =L_1 + 14

|0(t)) = e E1FLOt By — |2 = itanh(at); h = 1/2) (47)



SL(2, R) subsector of Virasoro

e The state generated by Liouvillian £ =L_1 + 14
|0(t)) = e E1FLOt By — |2 = itanh(at); h = 1/2) (47)
o |dentification between the Krylov basis and the basis vectors
0()) = [h),  |On) = [, n).
e The Lanczos coeffcients (from (44)):

by, = ay/n(2h +n —1). (48)

= the wavefunctions are just coefficients of the coherent state.
e Krylov Complexity for SL(2, R)

Ko = (O(t)|O(t)) = 2hsinh?(at). (49)



Other subsectors of Virasoro

e Virasoro algebra

[Ln, Lm] = (n = )Ln+m + En( 2 1)6m+n,0a (50)

- construct SL(2,R) from Ly and Ly = LT_k using

c
[Lk, L,k] =2kLg + ﬁk(lﬂQ = 1), [LOaLik] = FkLip. (51)
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e Virasoro algebra
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c
[Lk, L,k] =2kLg + ﬁk(lﬂQ = 1), [LOaLik] = FkLip. (51)

- redefine the genertors



Other subsectors of Virasoro

e Virasoro algebra
[Ly, L] = (n — m) Lpym + 1—2n( n* — 1)dm+n,0, (50)
- construct SL(2,R) from Ly and Ly = LT_k using
[Ly, L] = 2kLo + 1—62/{(1@2 ~1),  [Lo,Lix] = FkLep.  (51)

- redefine the genertors

- 1 = 1 c
Ly = EL:HC’ Lo = % <L0 + Ek(k‘z = 1)) o (52)
= Di¢) = egLfk*ng
_ ez(bta"h(kT)L ke—flog(cosh(lm‘))(Lo—s—10216(162 1)) L“h(kr)L (53)



Other subsectors of Virasoro

e Virasoro algebra

[Lny Lin] = (n — m) Ly + En( n? — 1)dm-+n,0, (50)
- construct SL(2,R) from Ly and Ly = LT_k using
[Lk, L,k] =2kLg + TCZk(kQ = 1), [LOaLik] = FkLip. (51)

- redefine the genertors

- 1 = 1 c
Lo = =k Lo==(Lo+ —=k(k>-1)). 2
+ = ks 0 k<0+12( )) (52)
= Di¢) = egLfk*ng
_ ez(bta"h(kT)L ke—flog(cosh(lm‘))(Lo—s—10216(162 1)) L“h(kr)L (53)

e Autocorrelation function for SL case

Ct) = (Ubo(t) = ——

cosh?(at)



e In oscillator basis o, = %%, a_p = —iv2nuy, n >0
n

(fILnlu) = (u|L—n|f) = lnf(u) = lnf(u). (54)

e A generic descendant state at level N =}, jm; is a sum of monomials

uy g Pug e ..

e Operators (c = 1+ 24p2, h = p? + \?)
= 0

lo=nh nao

0 +Znu B,

n=1

= Znun

2

(e

o k>0 (55)

Z 8un

aun+k Oug—p

> o = .
b= Z(n + k) Un+h g~ = Z n(k — n)upug—n + 2k(p — i\)ug, k>

n=1 w n=1



The action on descendants

e A generic descendant in oscillator basis is

= the orthogonal descendants are labeled by integer partitions of the
descendant level V.



The action on descendants

e A generic descendant in oscillator basis is

= the orthogonal descendants are labeled by integer partitions of the
descendant level V.
e The action of £ on an arbitrary descendant

WL@pny) = €01 + 1)y = D bpmpor(r} o ()
> jry=N+1
2 bt @ (@) (58)
> jsj=N-1



Lanczos coefficients

e Elements of the Lanczos matrix

bimy—{r;} = (Pqmy (1), El-1@gp 3 (u))

N
> l_1<I>{mk} = Z \/n(n + 1)mn(mn+1 + 1)(1)...,mn—1,mn+1+1,...(u)

n=1

+ (= iA) 2(m1 + )Py +1,ms,...(u). (59)

= two types Lanczos coefficients (Caputa & Datta 2021")

Type 1: bV 3= a\/n(n + )mp(mpi1 +1)  (60)

{mk}%{"'vmn_l7mn+l+17'

Type 2: b0 iyt tmgy = (1 — iA)/2(ma + 1), (61)



e Dimensions

) Nesoo 627”/2N/3
dimygnezos [b{m}—>{7~j}] =p(N)xp(N+1) ~ N2
o0 s 2N/3
) N—oo €™V ] . —m\/2N/3
dimy;, N/ d ~~ ———— . suppression by ~ e
1M)inks i np(n) \/ﬁ pp Y



e Dimensions

dimrgncz0s [b{m}—»{r]}] = p(N) X p(N + 1) ~

= w : suppression by ~ e "V el
V2N

- An example: descendants resulting from the action of Ly; on [1!3!)

1‘4‘}5:\:\:‘ \2'3‘)53:‘ 23t n
“, f ]

o {1,01}-3{0,1,1}

113! \,Bj:l
/(r/
R

| K
{10 ”TM 1} ‘o

®rT “‘”’Hj

& N—
dimlinksN/O dnp(n) =~




Lanczos coefficients for typical descendants

* Lanczos coefficients for typical high-level descendants of a heavy primary
@ states with (¢, h) dependence, n < N
Dt {omn—tlmntl,.} = bn~ VN
e states without (c, h) dependence, n < N

bmis{mitlma, ) = bn~¥m



Expansion over normalized descendants

Vo (t) = (ule™ B+ 0(0)|0)
= g%0h 14+ Z Z QO{mi}(t)(I){mi}(u) , (62)
N=1Zimi:N

e ‘wavefunctions’, ¢y,,.1(t), of the primary operator are given by
M —iNEm™ Sy — N
, m; =N .
cosh2h(at) VILTim; ; I

with z = itanh(at), oy = —2hlogcosh(at), Tj., = (2j)"m;!
@ The probabilities

(63)

B o tanh®N(at) [4R)2™
Pim;}(8) = legm,y (O] = cosh®(at) TI;(2¢)™im;!




Vir contribution

e Krylov complexity (see also Caputa,Datta 21')

Ko(t) = i n Z |pm, |2 (t) = 2h sinh?(t) (64)
n=0 Zimi:n

= exponential growth of K(t) at late times

h
Ko(t — 00) ~ §e2o‘t.

e Normalized variance ((N2)) = 3, n2|¢,(t)[?)

1
— 5o(t—>OO)N7

53(t) = o



U(1) contribution

e Rescaling of J,,:

2
Jn — jn— \/;Jn

=—> the algebra

[jm jm] = n5n+m-
ePI-1
e States |kn> = WK))
e Autocorrelation function
1
cY(t)



Virasoro-Kac-Moody Character

@ Properties
- Modular invariance
- Vir-KM primaries with positive semidefinite norms
- the spectrum of primary states satisfy h > Q?/k with ¢ > 1,

@ Holographic WCFTs are characterized by a Virasoro-Kac-Moody
algebra with a positive central charge but a negative U (1) level. There
are negative norm descendants, however they can be resummed into a
Virasoro-Kac-Moody character whose contribution to the bootstrap
equations is positive =—> contains states with complex U(1) charge.

e Unitary WCFTs (differs from holographic case) have a positive U(1)
level and positive norm descendant states.



Virasoro-Kac-Moody Character

e Virasoro-Kac-Moody character - product of U(1) and Vir contributions



Virasoro-Kac-Moody Character

e Virasoro-Kac-Moody character - product of U(1) and Vir contributions
@ the contribution of the U(1) descendants

ﬁ o 1/24 n(7)
T+ 1 e
n=1

@ the contribution of the Vir descendants

s 1

1
1—6© =g/ ——(1-60y).
( q) n|:|1 4 77(T)( q)

@ the full Virasoro-Kac-Moody character

1
h+2/24—c/24 n (0) .
Xhn(T,K) =q —r"(1 - 90Wq); QeR

- This character is independent of the basis used for the Vir descendants!



e Consider Vir-KM primary w/ real charge Q

HP’"’IhQ

Mg, My

1 if > ,m;=even
-1 if > ,m; = odd

- The vacuum w/ real (or vanishing) charge: contains states w/ positive
and negative norms! — the character is given above

e Descendant states with imaginary charge due to the antihermicity of the
P, - make only positive contributions to the corresponding Vir-KM
character!

All of the U(1) descendant states carry positive norm

—> the unitary Vir-KM character:

1

Xhn(T,C) = th“/ﬂ_c/ﬂrn(l —60y¢); Qe€iR  (65)
n* (T

Conclusion: the characters of unitary Vir-KM representations with

positive central charge, positive level, and h > hy = 0 are independent of

the charge of the state.



The warped system

@ Autocorrelation functions

1 1

cY(t) ~
cosh?(at) cosh?? (B kt)

@ Krylov complexity
Ky (t) ~ 2hQ cosh?(at) cosh2(ﬁgt)

- Operator growth
KW(t) ~ e(2a+,3k)t

@ Normalized variance

St = 00) ~ —me

V2hQ

@ Information metric

Q QAP+ 2h(1 — |z?)
—— —dz1d
R G PR B

ds® =
1-— |22|

dzodzo




The rate of Complexity and Momentum

e The conjecture (K - Krylov complexity)

- = / x P

e For the dual part: consider vacuum solution ry =r_ =0
= ADM form

ds? = —N%(r)dt® + (2R%(r) (d¢ + Ny(r)dt)® + el e

AR2(r)N2(r) ’
32 -1) 402 (vu?® + 3) 8v
By =="7—r" N0 == aile 3% — 1)
e for small enough times
o )
E= mfr ~ (a + b)t.
Comparing with
Ky ~ 4hQ(a + ?)t

one can easily identify the corresponding coefficients @ and b .



Conclusions

* Considerations of the operator growth in 2d WCFT's show:
@ Lanczos coefficients essentially depend on the details of descendant
states

@ a subset of them does saturate the upper bound of linear growth (as
conjectured)

@ K-complexity: universal but is not sensitive enough to distinguish
WCFT from SL(2,R) x U(1) case

o K-complexity defined for subclasses of vertices (analogous to
Caputa,Datta’21)

@ We confirm the conjecture Ky ~ P, for the case of warped spaces.
* Future directions:
@ Lanczos coefficients for W3; do they still obey the maximal bound?

@ relations to dipole deformations? embedding in higher dimensional
cases?

study complexity of multi-gluonic compound states in QCD?



THANK YOU!
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