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Horndeski theory

S= /d“xx/fg(ﬁz + L3+ L4+ Ls),

£2 = F(TF,X),
L3 = K(m, X)Om,

L4 = —Gy(m, X)R + 2Gax(, X) [(mf -

1 . .
Ls = Gs(m, X)GH' 7., + §G5X |:(D7T)3 — 307w, , " + 27r;m,7r'“”7r;p”} ,

where 7 is the Galileon field, X = g7 7., 7, = 0,7, Ty = V, VT,
Omr = g’“’vyvum G4X = 864/8)(
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(1) requires NEC violation.
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Horndeski theory

5= / d*xy/=8 (L2 + L3+ La+ Ls),

Ly = F(ﬂ',X),
L3 = K(m, X)Om,

L4 = —Gy(m, X)R + 2Gax(, X) [(mwf — ]
Ls = Gs(m, X)G*'m,p,, + %65)( |:(D7T)3 — 307m,,, T + 27T;HV7T;MP7T;:} ,

where 7 is the Galileon field, X = g7 7., 7, = 0,7, Ty = V,V,,
Or = g‘“’vyvlﬂr, Gyx = 864/8)(



General lagrangian with 2 tensor and 1 scalar DOF

General relativity, 1-field inflations, non-minimal coupling
K-essence/k-inflation

kinetic gravity braiding/G-inflation

f(R)-gravity, Gauss-Bonnet term, f(G-B)

No Ostrogradski ghost

second order equations of motion in Horndeski, despite second
derivatives is the Lagrangian

Can break NEC without linear instabilities
™ =To + X, guu:guu+huu

@ _ 1,0 1. .5 1. 5
LT = SU¢" = SV(8i€)" — 3 W¢

Uw? = Vp2 + W,
e stability requirement: U >0, V>0, W >0.
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DHOST theory

5
Louad = Y Ai(m, X)L,
i=1

B = (), L = ()P, L) = Or(mut ).

L(Q) 2

2
— (WIL,,W“)2, L(5 ) = (mpmHa”),

A2 = _A17

1 [
8(F2 — XA1)?
—(16X?Fax — 12XF2)AsA1 — X2 F2A3
—16F2x(3F2 + 4XFax)A1 + 8F2(XFax — F2)As + 48F2Fix]

Ay = —16XA3 + 4(3F2 + 16XF2x) A3

(4F2x — 2A1 + XA3) (72A§ — 3XA1A3 + 4Fx AL + 4F2A3)

As = 8(F2 — XA1)2
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DHOST theory
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»CCubic = Z BJ(ﬂ—7X) LJ(3)
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+ Relations between F3 and B;



DHOST theory

+ Relations

s- /d4x\/7—g (Lo + L3+ La+Ls),

Eg = F(ﬂ',)()7
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DHOST theory

5=/d4><v—g(£2+£3+£4+£5)7

Eg = F(ﬂ',)()7
L3 = K(m, X)Om,
L4 = Fa(r R+ZA (m, X) L?),
Ls = F3(m, X)G* 7THV+ZB X)L,
+ Relations
H — DHOST g — (7, X) g + T'(m, X)0, 70, 7.



Horndeski theory in bd

Sz/dsx\/gﬁﬂ,
Lr=L+L3+Ls+ L5+ L6

Ly = F(m, X),
L3 = K(m, X)On,

L4 = —Gy(m, X)R + 2Gax (7, X) [(E\7r)2 — W;MNW;MN] ,
1 . .
L5 = Gs(w,X)GMNW;MN + §G5X(7r, X) [(Dﬂ)3 - 3D7r7r;MN7r’MN + 27F;MN7T'MP7T;PN:| ,
3
Lo = Go(m. X) (R? — 4RAPRap + RABP Rypcp )
+ 3 Gex (m, X)*
2 ;AB AB C ABCD
<—R ((D7r) - W;AB) + 4R (D7r TAB — A W;CB) —2R ﬂ';Acﬂ';BD)

+ Gexx (m, X)*

. . 2 .
((Dﬂ')4 — 67T;AB7T;AB(D7T)2 +80n 7B Cﬂ';cA +3 (TI"ABTE‘;AB> —6r8rg Cﬂ-;c Dﬂ-;DA)
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KK reduction

R5 — R* x St REY -0

g — gpu_¢2AuAu ¢2A,u
m ¢2 Al/ _¢2

GR — GR + EM + dilaton,

Let us perform KK reduction for H, BH and DHOST theories
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KK compactification of Horndeski theory and generalizations

R® — R* x St
* Generalized Galileons — Generalized Galileons
2nd derivatives in the action — 2nd derivatives in the action

no higher derivatives in EOMs ﬂ) no higher derivatives in EOMs

degenerate kinetic matrix BH, DHOST degenerate kinetic matrix
ST

* Metric + scalar, —  Metric 4 vector + scalar, + scalary
[U(1) gauge]
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KK compactification of Horndeski theory and generalizations
RS — R* x St
H(guv+7m) — H (g + ) +
BH (guv +7) —  BH(gu+7m) +

DHOST (guy +7) — DHOST (g, + 7) +

- = Modified Maxwell theory + dilaton interactions



SZ/dSX\/EEﬂ—,
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L3 = K(m, X)On,

L4 = —Gy(m, X)R + 2Gax (7, X) [(Dw)z — W;MNW;MN] ,

1 . .
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+ Gexx (m, X)*

. . 2 .
((Dﬂ)4 — 67 map(Om)? + 807 74P mp Cmica+3 (”'AB”;AB> — 6748 O DTK‘;DA)

L — 2 AL LA, P2A
gas = ( 8u ¢2¢AVM ¢_¢2u )



£5d — KK
H, ‘CH == £H7r + EA + L‘/qﬁ



5d KK
‘CH.,(_>‘CH :£HW+EA+£¢,

L 5d
H, ™~ ‘CHW )



5d KK
‘CHW_>‘CH :£HW+EA+E¢7

L 5d
H, ™~ ‘CHW )

[:¢ = £K¢ +/:4¢ —|—£5¢ +E5¢,



5d KK
‘CHW_>‘CH :£HW+EA+E¢7

L 5d
H, ™~ ‘CHW )

[:¢ = £K¢ +/:4¢ —|—£5¢ +E5¢,

La=Laa~+ Lsa+ Loa,
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Let us similarly do the KK for the DHOST theory

S= /d4X\/—g(£2+E3+£4—|—£5),

£2 = F(?T,X),
L3 = K(m, X)Om,
5
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10
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we put ¢ = const
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5d KK
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5d
LoHosT, ~ LpHosT,



La

A(m,X)

fs(, X)

5d KK
LBhosT, — LoHosT, = LoHosT, + La,

5d
LoHosT, ~ LpHosT,

X
F,uuF’uV + 731(7; )

(4F,, V ,F*Prt + F,, F*Or — 4F," F"’r,,,)
b3(7T, X)

(Fwﬂr“)2

8
b2(7T,X)+b6(7T,X)

(Fw,ﬂ'“)2 + ————F, F ot n°

2 4



e Now, one can forget about 5 dimension and KK procedure.
It can be considered a trick to obtain the desired Lagrangian £a
e Alternatively one can find the desired combinations among all
general types of terms
Might be more general, but much harder.
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V2 in 5d action — V2 in 4d action
no V3 in 5d action — no V3 in 4d action
or degeneracy in 5d action —  degeneracy in 4d action
- (5d) — (4d) can be viewed as the change of variables
Profit 1) We obtained for the first time U(1) Gauge Vector Galileons
Scalar-Vector-Tensor theory with second derivatives in action

Profit 2) Phenomenologically favored by GW170817



Modifications of Maxwell theory that are obtained from KK are selftuned
in a way, so gravitons and photons propagate at the same speed for wide
class of Generalized Galileon theories.

2_ 2
Cg—C

This is not very surprising, since both modes comes from 5-dimensional
metric.
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Modern Universe cosmology

e For Horndeski theory (and beyond Horndeski and DHOST theories)

e There is an additional phenomenological restriction,
if we study modern Universe (models of dark energy and dark

matter)

e Speed of gravitational waves is very close to the speed of light

cr=CcC
|<T —1] <1071
e Since speeds are very close we assume ¢ = ¢ to be a natural
property of the theory

(without constrains on the background)
e For trivial Maxwell electrodynamics (¢ = 1) it means ¢ = 1 too.

e For KK modified Maxwell ¢ = c% # 1



e scalar-tensor theories have two dynamical sectors

Ay
5= / ata®a? [T ()"~ TT (o) + G52 - 7610

a2
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e We do not care about scalar sector now

s_ /dtd3xa3 [% (/'1,-2)2 3 g (6;h,5)2}

e Instead we consider additional U(1) vector field

i 2 F H 0 A; 2
5= / ded*xa® [%T (hE) = 55 (@h)" + GvA? - fv%}

The speeds of sound for tensor and vector modes are, respectively,

9
J

2 2 2
CT:E, CZCV:@



e Horndeski theory:

Gr = 2Gy—A4GuxX + Gs. X — 2HGsx X,
Fr = 2G4 — GsxX — 2Gsx X

e beyond Horndeski theory:

Gr = 2Gs—4GuxX + G5z X — 2HGsx X7t + 2F4X? + 6 HFs X%,
Fr = 2G4 — Gs: X — 2Gsx X7t

e DHOST theory:

G, 2f + 27X x — Xf3 5 — 2Xay
+  2X(37H + )by + 67 XHbs + 27 X?bg

2f, — 27Xtz x + X3 7,

Ny
I



conventional Maxwell ¢ = 1

e Horndeski:

o Gy = Gy(m)

° Gs = const

e Beyond Horndeski
° F, = ZGT‘X

° Gs = const

e DHOST

° ai



Modified Maxwell

e Horndeski:
G4 = G4(7T7X)
G5 = G5(7T)

e Beyond Horndeski

Gy = Gy(m, X)
Fy = Fa(m, X)
Gs = Gs(m)

e DHOST
f = fa(m, X)
ay = ay(m, X)

a3 = 83(7T,X)
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Final Remarks

e Some subclasses of luminal Horndeski with modified Maxwell were
known by disformal trick

BH with F4 = 2();2” disformal transformation, H + modified EM

andcr=c=1 with cr = c#1

e There are "no decay” constraints, calculated in BH

Gravitational waves are registered: g,,,—n7m

e The constraints totally close BH with ¢ = ¢ =1 and all
disformally related theories

e Our KK BH with ¢ = ¢ # 1 can obey the constraints non-trivially

4J4(7T) )
2Gy + XGs

1

Fo=oxz

(2G4 X(4Gax + Gs.x) +

I Dark Energy can be made with beyond Horndeski theory
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e Same speeds relation holds above spherically symmetrical dynamical
background

2 tensor modes 2 vector modes 2 scalars
N\ N\ U
odd even odd even 2 even
AN v

Odd sector of the theory (graviton+photon)

e Vainshtein mechanism works for modified Maxwell similarly to
modified gravity
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L= K(m, X)dr X=g"m,m,

0L = K, Ondrm + KxOnwd X + KOdrw =

= ...+ KxOné0,m0"m + K0,0"ém
= ...+ 2KxOnd,mo"om + 0,0" Kom
= ... = 2Kx0"Ond,mdm + 0, (Kz 0" 1 + 2Kx 0" 0, 0" m)om

. —2Kx0"0,0" 10, mom 4+ 2Kx0,,0" 0, 10" o™

= ...only second derivatives



