KK reduction of Horndeski and the speed of gravity.

based on papers with M.Valencia-Villegas and A.Shtennikova

S. Mironov

INR RAS, ITMP, ITEP (NRCKI)

PMMP 25, JINR, 12 February 2025

I) Horndeski theory and generalizations

II) Kaluza-Klein reduction

III) Profit

IV) Final remarks

Horndeski theory

$$\begin{split} S &= \int \mathrm{d}^4 x \sqrt{-g} \left(\mathcal{L}_2 + \mathcal{L}_3 + \mathcal{L}_4 + \mathcal{L}_5 \right), \\ \mathcal{L}_2 &= F(\pi, X), \\ \mathcal{L}_3 &= K(\pi, X) \Box \pi, \\ \mathcal{L}_4 &= -G_4(\pi, X) R + 2G_{4X}(\pi, X) \left[(\Box \pi)^2 - \pi_{;\mu\nu} \pi^{;\mu\nu} \right], \\ \mathcal{L}_5 &= G_5(\pi, X) G^{\mu\nu} \pi_{;\mu\nu} + \frac{1}{3} G_{5X} \left[(\Box \pi)^3 - 3 \Box \pi \pi_{;\mu\nu} \pi^{;\mu\nu} + 2 \pi_{;\mu\nu} \pi^{;\mu\rho} \pi_{;\rho}^{\;\;\nu} \right], \end{split}$$

where π is the Galileon field, $X = g^{\mu\nu}\pi_{,\mu}\pi_{,\nu}$, $\pi_{,\mu} = \partial_{\mu}\pi$, $\pi_{;\mu\nu} = \nabla_{\nu}\nabla_{\mu}\pi$, $\Box \pi = g^{\mu\nu}\nabla_{\nu}\nabla_{\mu}\pi$, $G_{4X} = \partial G_4/\partial X$

- 1 Avoid the quantum gravity. Being able to construct everywhere-regular weak-gravity solutions.
- 2 Have sufficiently much freedom to modify gravity and scalar dynamics in different ways
- 3 Theory of a very general form under several assumptions

- 1 Avoid the quantum gravity. Being able to construct everywhere-regular weak-gravity solutions.
- for example, cosmology without singularities or wormholes
- 2 Have sufficiently much freedom to modify gravity and scalar dynamics in different ways
- 3 Theory of a very general form under several assumptions

- 1 Avoid the quantum gravity. Being able to construct everywhere-regular weak-gravity solutions.
- for example, cosmology without singularities or wormholes
- 2 Have sufficiently much freedom to modify gravity and scalar dynamics in different ways
 - for dark matter, dark energy, hairy blackholes, etc..
- 3 Theory of a very general form under several assumptions

- 1 Avoid the quantum gravity. Being able to construct everywhere-regular weak-gravity solutions.
 - for example, cosmology without singularities or wormholes
- 2 Have sufficiently much freedom to modify gravity and scalar dynamics in different ways
 - for dark matter, dark energy, hairy blackholes, etc..
- 3 Theory of a very general form under several assumptions general covariance, locality and 1 additional degree of freedom.

- 1 Avoid the quantum gravity. Being able to construct everywhere-regular weak-gravity solutions.
- for example, cosmology without singularities or wormholes
- 2 Have sufficiently much freedom to modify gravity and scalar dynamics in different ways
- for dark matter, dark energy, hairy blackholes, etc..
- 3 Theory of a very general form under several assumptions general covariance, locality and 1 additional degree of freedom.
 - (1) requires NEC violation.

History

$$ightarrow$$
 Generalized Galileons

(Deffayet et al 1103.3260)

 \parallel

Horndeski

(Horndeski 1974)

$$\begin{split} \mathcal{L} &= c_1 \phi + c_2 X - c_3 X \Box \phi + c_4 X \left[(\Box \phi)^2 - \partial_\mu \partial_\nu \phi \partial^\mu \partial^\nu \phi \right] \\ &- \frac{c_5}{3} X \left[(\Box \phi)^3 - 3 \Box \phi \partial_\mu \partial_\nu \phi \partial^\mu \partial^\nu \phi + 2 \partial_\mu \partial_\nu \phi \partial^\nu \partial^\lambda \phi \partial_\lambda \partial^\mu \phi \right] \end{split}$$

History

Galileons
$$\rightarrow$$
 (Nicolis et al 0811.2197)

Horndeski

(Horndeski 1974)

$$\mathcal{L} = c_1 \phi + c_2 X - c_3 X \Box \phi + \frac{c_4}{2} X^2 R + c_4 X \left[(\Box \phi)^2 - \phi^{\mu\nu} \phi_{\mu\nu} \right]$$
$$+ c_5 X^2 G^{\mu\nu} \phi_{\mu\nu} - \frac{c_5}{3} X \left[(\Box \phi)^3 - 3 \Box \phi \phi^{\mu\nu} \phi_{\mu\nu} + 2 \phi_{\mu\nu} \phi^{\nu\lambda} \phi_{\lambda}^{\mu} \right]$$

History

Generalized Galileons
 (Deffayet et al 1103.3260)

...

Horndeski

(Horndeski 1974)

$$\begin{split} \mathcal{L} &= \textit{G}_{2}(\phi, \textit{X}) - \textit{G}_{3}(\phi, \textit{X}) \Box \phi + \textit{G}_{4}(\phi, \textit{X})\textit{R} + \textit{G}_{4\textit{X}} \left[(\Box \phi)^{2} - \phi^{\mu\nu}\phi_{\mu\nu} \right] \\ &+ \textit{G}_{5}(\phi, \textit{X})\textit{G}^{\mu\nu}\phi_{\mu\nu} - \frac{\textit{G}_{5\textit{X}}}{6} \left[(\Box \phi)^{3} - 3\Box \phi\phi^{\mu\nu}\phi_{\mu\nu} + 2\phi_{\mu\nu}\phi^{\nu\lambda}\phi_{\lambda}^{\mu} \right] \end{split}$$

Horndeski theory

$$\begin{split} S &= \int \mathrm{d}^4 x \sqrt{-g} \left(\mathcal{L}_2 + \mathcal{L}_3 + \mathcal{L}_4 + \mathcal{L}_5 \right), \\ \mathcal{L}_2 &= F(\pi, X), \\ \mathcal{L}_3 &= K(\pi, X) \square \pi, \\ \mathcal{L}_4 &= -G_4(\pi, X) R + 2G_{4X}(\pi, X) \left[(\square \pi)^2 - \pi_{;\mu\nu} \pi^{;\mu\nu} \right], \\ \mathcal{L}_5 &= G_5(\pi, X) G^{\mu\nu} \pi_{;\mu\nu} + \frac{1}{3} G_{5X} \left[(\square \pi)^3 - 3 \square \pi \pi_{;\mu\nu} \pi^{;\mu\nu} + 2 \pi_{;\mu\nu} \pi^{;\mu\rho} \pi_{;\rho}^{\;\;\nu} \right], \end{split}$$

where π is the Galileon field, $X = g^{\mu\nu}\pi_{,\mu}\pi_{,\nu}$, $\pi_{,\mu} = \partial_{\mu}\pi$, $\pi_{;\mu\nu} = \nabla_{\nu}\nabla_{\mu}\pi$,

 $\Box \pi = g^{\mu\nu} \nabla_{\nu} \nabla_{\mu} \pi, \ G_{4X} = \partial G_4 / \partial X.$

General lagrangian with 2 tensor and 1 scalar DOF

General relativity, 1-field inflations, non-minimal coupling K-essence/k-inflation kinetic gravity braiding/G-inflation f(R)-gravity, Gauss-Bonnet term, f(G-B)

No Ostrogradski ghost

second order equations of motion in Horndeski, despite second derivatives is the Lagrangian

Can break NEC without linear instabilities

$$\pi=\pi_0+\chi, \qquad g_{\mu\nu}= ilde{g}_{\mu\nu}+h_{\mu
u} \ L_{\zeta}^{(2)}=rac{1}{2}U\dot{\zeta}^2-rac{1}{2}V(\partial_i\zeta)^2-rac{1}{2}W\zeta^2 \ U\omega^2=V\mathbf{p}^2+W \ ,$$

• stability requirement: U>0, V>0, $W\geq 0$.

beyond Horndeski

$$\begin{split} S &= \int \mathrm{d}^4 x \sqrt{-g} \left(\mathcal{L}_2 + \mathcal{L}_3 + \mathcal{L}_4 + \mathcal{L}_5 + \mathcal{L}_{\mathcal{BH}} \right), \\ \mathcal{L}_2 &= F(\pi, X), \\ \mathcal{L}_3 &= K(\pi, X) \square \pi, \\ \mathcal{L}_4 &= -G_4(\pi, X) R + 2G_{4X}(\pi, X) \left[(\square \pi)^2 - \pi_{;\mu\nu} \pi^{;\mu\nu} \right], \\ \mathcal{L}_5 &= G_5(\pi, X) G^{\mu\nu} \pi_{;\mu\nu} + \frac{1}{3} G_{5X} \left[(\square \pi)^3 - 3 \square \pi \pi_{;\mu\nu} \pi^{;\mu\nu} + 2 \pi_{;\mu\nu} \pi^{;\mu\rho} \pi_{;\rho}^{\;\nu} \right], \\ \mathcal{L}_{\mathcal{BH}} &= F_4(\pi, X) \epsilon^{\mu\nu\rho}_{\;\;\sigma} \epsilon^{\mu'\nu'\rho'\sigma'} \pi_{,\mu} \pi_{,\mu'} \pi_{;\nu\nu'} \pi_{;\rho\rho'} + \\ &\quad + F_5(\pi, X) \epsilon^{\mu\nu\rho\sigma} \epsilon^{\mu'\nu'\rho'\sigma'} \pi_{,\mu} \pi_{,\mu'} \pi_{;\nu\nu'} \pi_{;\rho\rho'} \pi_{;\sigma\sigma'} \end{split}$$

beyond Horndeski

$$\begin{split} S &= \int \mathrm{d}^4 x \sqrt{-g} \left(\mathcal{L}_2 + \mathcal{L}_3 + \mathcal{L}_4 + \mathcal{L}_5 + \mathcal{L}_{\mathcal{BH}} \right), \\ \mathcal{L}_2 &= F(\pi, X), \\ \mathcal{L}_3 &= K(\pi, X) \Box \pi, \\ \mathcal{L}_4 &= -G_4(\pi, X) R + 2G_{4X}(\pi, X) \left[\left(\Box \pi \right)^2 - \pi_{;\mu\nu} \pi^{;\mu\nu} \right], \\ \mathcal{L}_5 &= G_5(\pi, X) G^{\mu\nu} \pi_{;\mu\nu} + \frac{1}{3} G_{5X} \left[\left(\Box \pi \right)^3 - 3 \Box \pi \pi_{;\mu\nu} \pi^{;\mu\nu} + 2 \pi_{;\mu\nu} \pi^{;\mu\rho} \pi_{;\rho}^{\;\;\nu} \right], \\ \mathcal{L}_{\mathcal{BH}} &= F_4(\pi, X) \epsilon^{\mu\nu\rho\sigma}_{\;\;\sigma} \epsilon^{\mu'\nu'\rho'\sigma'} \pi_{,\mu} \pi_{,\mu'} \pi_{;\nu\nu'} \pi_{;\rho\rho'} + \\ &\quad + F_5(\pi, X) \epsilon^{\mu\nu\rho\sigma} \epsilon^{\mu'\nu'\rho'\sigma'} \pi_{,\mu} \pi_{,\mu'} \pi_{;\nu\nu'} \pi_{;\rho\rho'} \pi_{;\sigma\sigma'} \end{split}$$

$$F_4 G_{5X}X = -3F_5 \left[G_4 - 2XG_{4X} + \frac{1}{2}G_{5\pi}X\right],$$

beyond Horndeski

$$\begin{split} S &= \int \mathrm{d}^4 x \sqrt{-g} \left(\mathcal{L}_2 + \mathcal{L}_3 + \mathcal{L}_4 + \mathcal{L}_5 + \mathcal{L}_{\mathcal{BH}} \right), \\ \mathcal{L}_2 &= F(\pi, X), \\ \mathcal{L}_3 &= K(\pi, X) \Box \pi, \\ \mathcal{L}_4 &= -G_4(\pi, X) R + 2G_{4X}(\pi, X) \left[\left(\Box \pi \right)^2 - \pi_{;\mu\nu} \pi^{;\mu\nu} \right], \\ \mathcal{L}_5 &= G_5(\pi, X) G^{\mu\nu} \pi_{;\mu\nu} + \frac{1}{3} G_{5X} \left[\left(\Box \pi \right)^3 - 3 \Box \pi \pi_{;\mu\nu} \pi^{;\mu\nu} + 2\pi_{;\mu\nu} \pi^{;\mu\rho} \pi_{;\rho}^{\;\;\nu} \right], \\ \mathcal{L}_{\mathcal{BH}} &= F_4(\pi, X) \epsilon^{\mu\nu\rho\sigma}_{\;\;\sigma} \epsilon^{\mu'\nu'\rho'\sigma'} \pi_{,\mu} \pi_{,\mu'} \pi_{;\nu\nu'} \pi_{;\rho\rho'} + \\ &\quad + F_5(\pi, X) \epsilon^{\mu\nu\rho\sigma} \epsilon^{\mu'\nu'\rho'\sigma'} \pi_{,\mu} \pi_{,\mu'} \pi_{;\nu\nu'} \pi_{;\rho\rho'} \pi_{;\sigma\sigma'} \end{split}$$

$$F_4 \; G_{5X} X = -3 F_5 \; \left[G_4 - 2 X G_{4X} + rac{1}{2} G_{5\pi} X
ight],$$
 $H o BH \qquad \qquad g_{\mu
u} o g_{\mu
u} + \Gamma(\pi, X) \partial_\mu \pi \partial_
u \pi.$

$$S = \int d^4x \sqrt{-g} \left(\mathcal{L}_2 + \mathcal{L}_3 + \mathcal{L}_4 + \mathcal{L}_5 \right),$$

$$\mathcal{L}_2 = F(\pi, X),$$

$$\mathcal{L}_3 = K(\pi, X) \square \pi,$$

$$\mathcal{L}_4 = F_2(\pi, X) R + \sum_{i=1}^5 A_i(\pi, X) L_i^{(2)},$$

$$\mathcal{L}_5 = F_3(\pi, X) G^{\mu\nu} \pi_{;\mu\nu} + \sum_{i=1}^{10} B_j(\pi, X) L_j^{(3)},$$

$$\mathcal{L}_{\mathsf{Quad}} = \sum_{i=1}^{5} \, A_i(\pi, X) \, L_i^{(2)} \, ,$$

$$\mathcal{L}_{\mathsf{Quad}} = \sum_{i=1}^{5} A_i(\pi, X) \, L_i^{(2)} \,,$$

$$L_1^{(2)} = (\pi_{\mu\nu})^2 \,, \quad L_2^{(2)} = (\Box \pi)^2 \,, \quad L_3^{(2)} = \Box \pi \, (\pi_{\mu\nu} \pi^{\mu} \pi^{\nu}) \,,$$

$$L_4^{(2)} = (\pi_{\mu\rho} \pi^{\mu})^2 \,, \quad L_5^{(2)} = (\pi_{\mu\nu} \pi^{\mu} \pi^{\nu})^2 \,,$$

$$\mathcal{L}_{\mathsf{Quad}} = \sum_{i=1}^{5} A_i(\pi, X) \, L_i^{(2)} \,,$$

$$L_1^{(2)} = (\pi_{\mu\nu})^2 \,, \quad L_2^{(2)} = (\Box \pi)^2 \,, \quad L_3^{(2)} = \Box \pi \, (\pi_{\mu\nu} \pi^{\mu} \pi^{\nu}) \,,$$

$$L_4^{(2)} = (\pi_{\mu\rho} \pi^{\mu})^2 \,, \quad L_5^{(2)} = (\pi_{\mu\nu} \pi^{\mu} \pi^{\nu})^2 \,,$$

$$A_2=-A_1,$$

$$\begin{split} A_4 &= \frac{1}{8(F_2 - XA_1)^2} \left[-16XA_1^3 + 4(3F_2 + 16XF_{2X})A_1^2 \right. \\ &\left. - (16X^2F_{2X} - 12XF_2)A_3A_1 - X^2F_2A_3^2 \right. \\ &\left. - 16F_{2X}(3F_2 + 4XF_{2X})A_1 + 8F_2(XF_{2X} - F_2)A_3 + 48F_2F_{2X}^2 \right], \end{split}$$

$$A_5 = \frac{\left(4F_{2X} - 2A_1 + XA_3\right)\left(-2A_1^2 - 3XA_1A_3 + 4F_{2X}A_1 + 4F_2A_3\right)}{8(F_2 - XA_1)^2}$$

$$\mathcal{L}_{\mathsf{Cubic}} = \sum_{j=1}^{10} \, \mathit{B}_{j}(\pi, \mathit{X}) \, \mathit{L}_{j}^{(3)}$$

$$\mathcal{L}_{\text{Cubic}} = \sum_{j=1}^{10} B_{j}(\pi, X) L_{j}^{(3)}$$

$$L_{1}^{(3)} = (\Box \pi)^{3}, \quad L_{2}^{(3)} = \Box \pi (\pi_{\mu\nu})^{2}, \quad L_{3}^{(3)} = (\pi_{\mu\nu})^{3},$$

$$L_{4}^{(3)} = (\Box \pi)^{2} (\pi_{\mu\nu} \pi^{\mu} \pi^{\nu}), \qquad L_{5}^{(3)} = \Box \pi (\pi_{\mu\nu} \pi^{\mu})^{2},$$

$$L_{6}^{(3)} = (\pi_{\rho\sigma})^{2} (\pi_{\mu\nu} \pi^{\mu} \pi^{\nu}), \qquad L_{7}^{(3)} = \pi^{\mu\nu} \pi_{\nu\rho} \pi^{\rho\sigma} \pi_{\mu} \pi_{\sigma},$$

$$L_{8}^{(3)} = (\pi^{\mu\nu} \pi_{\mu})^{2} (\pi^{\rho\sigma} \pi_{\rho} \pi_{\sigma}), \qquad L_{9}^{(3)} = \Box \pi (\pi^{\rho\sigma} \pi_{\rho} \pi_{\sigma})^{2},$$

$$L_{10}^{(3)} = (\pi^{\rho\sigma} \pi_{\rho} \pi_{\sigma})^{3}$$

$$\mathcal{L}_{\text{Cubic}} = \sum_{j=1}^{10} B_{j}(\pi, X) L_{j}^{(3)}$$

$$L_{1}^{(3)} = (\Box \pi)^{3}, \quad L_{2}^{(3)} = \Box \pi (\pi_{\mu\nu})^{2}, \quad L_{3}^{(3)} = (\pi_{\mu\nu})^{3},$$

$$L_{4}^{(3)} = (\Box \pi)^{2} (\pi_{\mu\nu} \pi^{\mu} \pi^{\nu}), \qquad L_{5}^{(3)} = \Box \pi (\pi_{\mu\nu} \pi^{\mu})^{2},$$

$$L_{6}^{(3)} = (\pi_{\rho\sigma})^{2} (\pi_{\mu\nu} \pi^{\mu} \pi^{\nu}), \qquad L_{7}^{(3)} = \pi^{\mu\nu} \pi_{\nu\rho} \pi^{\rho\sigma} \pi_{\mu} \pi_{\sigma},$$

$$L_{8}^{(3)} = (\pi^{\mu\nu} \pi_{\mu})^{2} (\pi^{\rho\sigma} \pi_{\rho} \pi_{\sigma}), \qquad L_{9}^{(3)} = \Box \pi (\pi^{\rho\sigma} \pi_{\rho} \pi_{\sigma})^{2},$$

$$L_{10}^{(3)} = (\pi^{\rho\sigma} \pi_{\rho} \pi_{\sigma})^{3}$$

+ Relations between F_3 and B_j

$$\begin{split} S &= \int \mathrm{d}^4 x \sqrt{-g} \left(\mathcal{L}_2 + \mathcal{L}_3 + \mathcal{L}_4 + \mathcal{L}_5 \right), \\ \mathcal{L}_2 &= F(\pi, X), \\ \mathcal{L}_3 &= K(\pi, X) \square \pi, \\ \mathcal{L}_4 &= F_2(\pi, X) R + \sum_{i=1}^5 A_i(\pi, X) \, L_i^{(2)}, \\ \mathcal{L}_5 &= F_3(\pi, X) G^{\mu\nu} \pi_{;\mu\nu} + \sum_{i=1}^{10} B_j(\pi, X) \, L_j^{(3)}, \end{split}$$

+ Relations

$$\begin{split} S &= \int \mathrm{d}^4 x \sqrt{-g} \left(\mathcal{L}_2 + \mathcal{L}_3 + \mathcal{L}_4 + \mathcal{L}_5 \right), \\ \mathcal{L}_2 &= F(\pi, X), \\ \mathcal{L}_3 &= K(\pi, X) \square \pi, \\ \mathcal{L}_4 &= F_2(\pi, X) R + \sum_{i=1}^5 \, A_i(\pi, X) \, L_i^{(2)}, \\ \mathcal{L}_5 &= F_3(\pi, X) G^{\mu\nu} \pi_{;\mu\nu} + \sum_{i=1}^{10} \, B_j(\pi, X) \, L_j^{(3)}, \end{split}$$

+ Relations

$$\mathsf{H} \to \mathsf{DHOST}$$
 $g_{\mu\nu} \to \Omega^2(\pi, X) \, g_{\mu\nu} + \Gamma(\pi, X) \partial_\mu \pi \partial_\nu \pi.$

Horndeski theory in 5d

$$\begin{split} S &= \int \mathrm{d}^5 x \sqrt{g} \, \mathcal{L}_\pi, \\ \mathcal{L}_\pi &= \mathcal{L}_2 + \mathcal{L}_3 + \mathcal{L}_4 + \mathcal{L}_5 + \mathcal{L}_6 \end{split}$$

$$\begin{split} \mathcal{L}_{2} &= F(\pi, X), \\ \mathcal{L}_{3} &= K(\pi, X) \Box \pi, \\ \mathcal{L}_{4} &= -G_{4}(\pi, X)R + 2G_{4X}(\pi, X) \left[(\Box \pi)^{2} - \pi_{;MN} \pi^{;MN} \right], \\ \mathcal{L}_{5} &= G_{5}(\pi, X)G^{MN} \pi_{;MN} + \frac{1}{3}G_{5X}(\pi, X) \left[(\Box \pi)^{3} - 3\Box \pi \pi_{;MN} \pi^{;MN} + 2\pi_{;MN} \pi^{;MP} \pi_{;P}^{\ N} \right], \\ \mathcal{L}_{6} &= \frac{3}{4}G_{6}(\pi, X) \left(R^{2} - 4R^{AB}R_{AB} + R^{ABCD}R_{ABCD} \right) \\ &+ 3G_{6X}(\pi, X) * \\ \left(-R\left((\Box \pi)^{2} - \pi^{;AB}\pi_{;AB} \right) + 4R^{AB} \left(\Box \pi \pi_{;AB} - \pi_{;A}^{\ C} \pi_{;CB} \right) - 2R^{ABCD}\pi_{;AC}\pi_{;BD} \right) \\ &+ G_{6XX}(\pi, X) * \\ \left((\Box \pi)^{4} - 6\pi^{;AB}\pi_{;AB}(\Box \pi)^{2} + 8\Box \pi \pi^{;AB}\pi_{;B}^{\ C} \pi_{;CA} + 3\left(\pi^{;AB}\pi_{;AB} \right)^{2} - 6\pi^{;AB}\pi_{;B}^{\ C} \pi_{;C}^{\ D} \pi_{;DA} \right) \end{split}$$

$$\mathbb{R}^5$$

 $\longrightarrow \qquad \mathbb{R}^4 imes \mathbb{S}^1 \qquad \qquad R^{(\mathbb{S}^1)} o 0$

$$\mathbb{R}^{5} \longrightarrow \mathbb{R}^{4} \times \mathbb{S}^{1} \qquad R^{(\mathbb{S}^{1})} \to 0$$

$$g_{mn} = \begin{pmatrix} g_{\mu\nu} - \phi^{2} A_{\mu} A_{\nu} & \phi^{2} A_{\mu} \\ \phi^{2} A_{\nu} & -\phi^{2} \end{pmatrix}$$

$$\mathbb{R}^5 \longrightarrow \mathbb{R}^4 imes \mathbb{S}^1 \qquad R^{(\mathbb{S}^1)} o 0$$

$$g_{mn} = \left(\begin{array}{ccc} g_{\mu\,\nu} - \phi^2\,A_{\mu}\,A_{\nu} & \phi^2\,A_{\mu} \\ \phi^2\,A_{\nu} & -\phi^2 \end{array} \right)$$
 GR \longrightarrow GR + EM + dilaton $_{\phi}$

$$\mathbb{R}^5 \longrightarrow \mathbb{R}^4 imes \mathbb{S}^1 \qquad R^{(\mathbb{S}^1)} o 0$$
 $g_{mn} = \left(egin{array}{ccc} g_{\mu\,
u} - \phi^2\,A_{\mu}\,A_{
u} & \phi^2\,A_{\mu} \ \phi^2\,A_{
u} & -\phi^2 \end{array}
ight)$ GR \longrightarrow GR + EM + dilaton $_{\phi}$

Let us perform KK reduction for H, BH and DHOST theories

$$R^5 \longrightarrow R^4 \times S^1$$

$$R^5 \longrightarrow R^4 \times S^1$$

* Generalized Galileons \longrightarrow Generalized Galileons

$$R^5 \longrightarrow R^4 \times S^1$$

* Generalized Galileons \longrightarrow Generalized Galileons

2nd derivatives in the action \longrightarrow 2nd derivatives in the action

$$R^5 \longrightarrow R^4 \times S^1$$

* Generalized Galileons \longrightarrow Generalized Galileons

2nd derivatives in the action $\longrightarrow\;$ 2nd derivatives in the action

no higher derivatives in EOMs \underline{H} , no higher derivatives in EOMs

$$R^5 \longrightarrow R^4 \times S^1$$

* Generalized Galileons \longrightarrow Generalized Galileons

2nd derivatives in the action \longrightarrow 2nd derivatives in the action

no higher derivatives in EOMs \xrightarrow{H} no higher derivatives in EOMs

degenerate kinetic matrix \xrightarrow{BH} , DHOST degenerate kinetic matrix

$$R^5 \longrightarrow R^4 \times S^1$$

* Generalized Galileons \longrightarrow Generalized Galileons

2nd derivatives in the action \longrightarrow 2nd derivatives in the action

no higher derivatives in EOMs $\xrightarrow{\text{H}}$ no higher derivatives in EOMs degenerate kinetic matrix

* $\mathsf{Metric} + \mathsf{scalar}_\pi \longrightarrow \mathsf{Metric} + \mathsf{vector} + \mathsf{scalar}_\pi + \mathsf{scalar}_\phi$ $[\mathsf{U}(1) \ \mathsf{gauge}]$

$$R^5 \longrightarrow R^4 imes S^1$$
 $oldsymbol{\mathsf{H}} \left(g_{MN} + \pi
ight) \longrightarrow oldsymbol{\mathsf{H}} \left(g_{\mu
u} + \pi
ight) + \cdots$

$$R^5 \longrightarrow R^4 imes S^1$$
 $extbf{H} \left(g_{MN} + \pi
ight) \longrightarrow extbf{H} \left(g_{\mu
u} + \pi
ight) + \cdots$
 $extbf{BH} \left(g_{MN} + \pi
ight) \longrightarrow extbf{BH} \left(g_{\mu
u} + \pi
ight) + \cdots$

$$R^5 \longrightarrow R^4 imes S^1$$
 $extbf{H} \left(g_{MN} + \pi
ight) \longrightarrow extbf{H} \left(g_{\mu\nu} + \pi
ight) + \cdots$
 $extbf{BH} \left(g_{MN} + \pi
ight) \longrightarrow extbf{BH} \left(g_{\mu\nu} + \pi
ight) + \cdots$
 $extbf{DHOST} \left(g_{MN} + \pi
ight) \longrightarrow extbf{DHOST} \left(g_{\mu\nu} + \pi
ight) + \cdots$

$$R^5 \longrightarrow R^4 imes S^1$$
 $extbf{H} \left(g_{MN} + \pi
ight) \longrightarrow extbf{H} \left(g_{\mu\nu} + \pi
ight) + \cdots$
 $extbf{BH} \left(g_{MN} + \pi
ight) \longrightarrow extbf{BH} \left(g_{\mu\nu} + \pi
ight) + \cdots$
 $extbf{DHOST} \left(g_{MN} + \pi
ight) \longrightarrow extbf{DHOST} \left(g_{\mu\nu} + \pi
ight) + \cdots$

 $\cdots = Modified Maxwell theory + dilaton interactions$

$$\begin{split} S &= \int \mathrm{d}^5 x \sqrt{g} \; \mathcal{L}_\pi, \\ \mathcal{L}_\pi &= \mathcal{L}_2 + \mathcal{L}_3 + \mathcal{L}_4 + \mathcal{L}_5 + \mathcal{L}_6 \end{split}$$

$$\mathcal{L}_2 = F(\pi, X),$$

 $\mathcal{L}_3 = K(\pi, X) \square \pi,$

$$\mathcal{L}_{4} = -G_{4}(\pi, X)R + 2G_{4X}(\pi, X) \left[(\Box \pi)^{2} - \pi_{;MN} \pi^{;MN} \right],$$

$$\mathcal{L}_{5} = G_{5}(\pi, X)G^{MN}\pi_{:MN} + \frac{1}{3}G_{5X}(\pi, X)\left[\left(\Box\pi\right)^{3} - 3\Box\pi\pi_{:MN}\pi^{:MN} + 2\pi_{:MN}\pi^{:MP}\pi_{:P}^{N}\right],$$

$$\mathcal{L}_{6} = \frac{3}{4}G_{6}(\pi, X)\left(R^{2} - 4R^{AB}R_{AB} + R^{ABCD}R_{ABCD}\right)$$

$$+3 G_{6X}(\pi,X)*$$

$$\left(-R\left((\Box\pi)^2-\pi^{;AB}\pi_{;AB}\right)+4R^{AB}\left(\Box\pi\,\pi_{;AB}-\pi_{;A}\,^C\pi_{;CB}\right)-2R^{ABCD}\pi_{;AC}\pi_{;BD}\right)$$

$$(-R(1\pi) - \pi^{-\pi}, \pi_{;AB}) + 4R(1\pi\pi;_{AB} - \pi_{;A}, \pi_{;CB}) - 2R(1\pi;_{AC}\pi;_{BD}) + G_{6XX}(\pi, X)*$$

$$\left((\Box \pi)^4 - 6 \, \pi^{;AB} \pi_{;AB} (\Box \pi)^2 + 8 \, \Box \pi \, \pi^{;AB} \pi_{;B} \, ^C \pi_{;CA} + 3 \left(\pi^{;AB} \pi_{;AB} \right)^2 - 6 \pi^{;AB} \pi_{;B} \, ^C \pi_{;C} \, ^D \pi_{;DA} \right)$$

$$g_{AB} = \left(\begin{array}{cc} g_{\mu\,\nu} - \phi^2\,A_{\mu}\,A_{\nu} & \phi^2\,A_{\mu} \\ \phi^2\,A_{\nu} & -\phi^2 \end{array} \right)$$

$$\mathcal{L}_{\mathsf{H}_{\pi}}^{\mathsf{5}d}
ightarrow \mathcal{L}_{H}^{\mathsf{KK}} = \mathcal{L}_{\mathsf{H}_{\pi}} + \mathcal{L}_{\mathsf{A}} + \mathcal{L}_{\phi} \, ,$$

$$\mathcal{L}_{\mathsf{H}_{\pi}}^{\mathsf{5}d}
ightarrow \mathcal{L}_{\mathsf{H}}^{\mathsf{K}\mathsf{K}} = \mathcal{L}_{\mathsf{H}_{\pi}} + \mathcal{L}_{\mathsf{A}} + \mathcal{L}_{\phi} \, ,$$

 $\mathcal{L}_{\mathsf{H}_{\pi}} \sim \mathcal{L}_{\mathsf{H}_{\pi}}^{5d} \; ,$

$$\mathcal{L}_{\mathsf{H}_{\pi}}^{\mathsf{5d}}
ightarrow \mathcal{L}_{H}^{\mathsf{KK}} = \mathcal{L}_{\mathsf{H}_{\pi}} + \mathcal{L}_{\mathsf{A}} + \mathcal{L}_{\phi} \,,$$

 $\mathcal{L}_{\mathsf{H}_{\pi}} \sim \mathcal{L}_{\mathsf{H}_{\pi}}^{5d}$,

 $\mathcal{L}_{\phi} = \mathcal{L}_{K\phi} + \mathcal{L}_{4\phi} + \mathcal{L}_{5\phi} + \mathcal{L}_{6\phi} \,,$

$$= \mathcal{L}_{\mathsf{H}_{\pi}} + \mathcal{L}_{\mathsf{A}} + \mathcal{L}_{\phi} \,,$$

$$_{\mathcal{A}}+\mathcal{L}_{\phi}\ ,$$

$$\mathcal{L}_{\mathsf{H}_\pi}^{\mathsf{5}d} o \mathcal{L}_{H}^{\mathsf{KK}} = \mathcal{L}_{\mathsf{H}_\pi} + \mathcal{L}_{\mathsf{A}} + \mathcal{L}_{\phi} \,,$$

 $\mathcal{L}_{\mathsf{H}_{\pi}} \sim \mathcal{L}_{\mathsf{H}_{\pi}}^{5d}$,

 $\mathcal{L}_{\phi} = \mathcal{L}_{\mathsf{K}\phi} + \mathcal{L}_{\mathsf{4}\phi} + \mathcal{L}_{\mathsf{5}\phi} + \mathcal{L}_{\mathsf{6}\phi} \,,$

$$\mathcal{L}_A = \mathcal{L}_{4A} + \mathcal{L}_{5A} + \mathcal{L}_{6A}$$
,

$$\mathcal{L}_{K\phi} = \frac{1}{\phi} K \phi^{;\alpha} \pi_{;\alpha} \,,$$

$$\mathcal{L}_{4\phi} = rac{2}{\phi} G_4 \left(\Box \phi \right) + rac{4}{\phi} G_{4X} \left(\Box \pi \right) \phi^{;lpha} \pi_{;lpha} \,,$$

$$egin{aligned} \mathcal{L}_{5\phi} &= rac{1}{\phi} extit{G}_{5} \left(\left(\Box \phi
ight) \left(\Box \pi
ight) - \phi^{;lphaeta}\pi_{;lphaeta}
ight) - rac{1}{2\phi} extit{G}_{5} extit{R} \phi^{;lpha}\pi_{;lpha} \ &+ rac{1}{\phi} extit{G}_{5X} \phi^{;lpha}\pi_{;lpha} \left(\left(\Box \pi
ight)^{2} - \pi_{;lphaeta}\pi^{;lphaeta}
ight) \,, \end{aligned}$$

$$\mathcal{L}_{6\phi} = \frac{6}{\phi} G_6 G^{\alpha\beta} \phi_{;\alpha\beta} + \frac{12}{\phi} G_{6X} G^{\alpha\beta} \pi_{;\alpha\beta} \phi^{;\gamma} \pi_{;\gamma} + \frac{12}{\phi} G_{6X} \phi^{;\alpha\beta} \pi_{;\beta\gamma} \pi^{;\gamma} \alpha_{\alpha\beta} + \frac{6}{\phi} G_{6X} \left((\Box \phi) (\Box \pi)^2 - (\Box \phi) \pi_{;\alpha\beta} \pi^{;\alpha\beta} - 2 (\Box \pi) \phi^{;\alpha\beta} \pi_{;\alpha\beta} \right) + \frac{4}{\phi} G_{6XX} \phi^{;\alpha} \pi_{;\alpha} \left((\Box \pi)^3 - (\Box \pi) \pi_{;\alpha\beta} \pi^{;\alpha\beta} + 2 \pi_{;\alpha\beta} \pi^{;\beta} \gamma^{;\alpha\beta} \right).$$

 $\mathcal{L}_{4A} = -\frac{\phi^2}{^4} G_4 F_{\alpha\beta} F^{\alpha\beta} + \phi^2 G_{4X} F_{\alpha\gamma} F^{\alpha}_{\ \beta} \pi^{;\beta} \pi^{;\gamma}$

 $+ G_5\phi^2\left(rac{3}{2\phi}F^{lphaeta}F_{lpha}^{\ \gamma}\phi_{;eta}\pi_{;\gamma} - rac{3}{8\phi}F^{lphaeta}F_{lphaeta}\phi^{;\gamma}\pi_{;\gamma}
ight)$

 $+ \quad G_{5X}\phi^2\left(\frac{1}{2}F^{\alpha\beta}F_{\alpha}^{\ \gamma}\left(\Box\pi\right)\pi_{;\beta}\pi_{;\gamma} - \frac{1}{2}F^{\alpha\beta}F^{\gamma\delta}\pi_{;\alpha\gamma}\pi_{;\beta}\pi_{;\delta}\right)$

$$\mathcal{L}_{4A} = -\frac{1}{4} G_4 F_{\alpha\beta} F^{\gamma} + \phi G_{4\chi} F_{\alpha\gamma} F^{\gamma}_{\beta} \pi^{\gamma} \pi^{\gamma}$$

$$\mathcal{L}_{5A} = G_5 \phi^2 \left(\frac{1}{2} F^{\alpha\beta} F_{\alpha}{}^{\gamma} \pi_{;\beta\gamma} - \frac{1}{8} F^{\alpha\beta} F_{\alpha\beta} \Box \pi + \frac{1}{2} F^{\alpha\beta} \nabla^{\gamma} F_{\alpha\gamma} \pi_{;\beta} \right)$$

 $-\frac{9}{2\phi}F_{\alpha\beta}F_{\gamma}{}^{\alpha}\phi^{;\gamma\beta} - \frac{9\phi^2}{32}F_{\alpha\beta}F_{\gamma}{}^{\alpha}F_{\delta}{}^{\beta}F^{\gamma\delta} - \frac{9}{\phi^2}F_{\alpha\beta}F_{\gamma}{}^{\alpha}\phi^{;\beta}\phi^{;\gamma} - \frac{9}{\phi}F_{\alpha}{}^{\beta}\nabla^{\gamma}F_{\beta\gamma}\phi^{;\alpha}$

 $\mathcal{L}_{6A} = G_6 \phi^2 \left(\frac{3}{8} F_{\alpha\beta} F^{\alpha\beta} R - \frac{9}{4\phi} F_{\alpha\beta} F^{\alpha\beta} \left(\Box \phi \right) + \frac{9\phi^2}{64} F_{\alpha\beta} F_{\gamma\delta} F^{\alpha\beta} F^{\gamma\delta} + 3F_{\alpha\beta} F_{\gamma}^{\alpha} R^{\gamma\beta} \right)$

 $+\,\frac{3}{2}\nabla^{\alpha}F_{\alpha\beta}\nabla^{\gamma}F_{\gamma}^{\ \beta}+\frac{9}{4}R^{\alpha\gamma\beta\delta}F_{\alpha\beta}F_{\gamma\delta}-\frac{3}{\sigma}F^{\alpha\beta}\nabla^{\gamma}F_{\alpha\beta}\phi_{;\gamma}+\frac{3}{\sigma}F_{\alpha}^{\ \beta}\nabla^{\alpha}F_{\beta\gamma}\phi^{;\gamma}$ $-\frac{9}{2 \cancel{\wedge} 2} F_{\alpha \beta} F^{\alpha \beta} \phi_{; \gamma} \phi^{; \gamma} -\frac{15}{16} \nabla^{\alpha} F_{\beta \gamma} \nabla_{\alpha} F^{\beta \gamma} +\frac{3}{8} \nabla^{\alpha} F_{\beta \gamma} \nabla^{\beta} F_{\alpha} {}^{\gamma} \Big)$ $+ G_{6X} \left(-\frac{3}{4} F_{\alpha\beta} F^{\alpha\beta} (\Box \pi)^2 - \frac{9}{2\phi} F_{\alpha\beta} F^{\alpha\beta} (\Box \pi) \phi^{;\gamma} \pi_{;\gamma} + \frac{3}{2} R F_{\alpha\beta} F_{\gamma}^{\ \alpha} \pi^{;\beta} \pi^{;\gamma} \right)$

 $+\frac{3}{4}\mathit{F}_{\alpha\beta}\mathit{F}^{\alpha\beta}\pi_{;\gamma\delta}\pi^{;\gamma\delta}+\frac{9\phi^{2}}{9}\mathit{F}_{\alpha\beta}\mathit{F}_{\gamma\delta}\mathit{F}_{\mathit{f}}^{\ \alpha}\mathit{F}^{\gamma\delta}\pi^{;\beta}\pi^{;\mathit{f}}-6\mathit{F}_{\alpha\beta}\mathit{F}_{\gamma}^{\ \alpha}\left(\Box\pi\right)\pi^{;\gamma\beta}$ $-\frac{9}{4} F_{\alpha\beta} F_{\gamma}{}^{\alpha} \pi^{;\gamma\beta} \phi^{;\delta} \pi_{;\delta} - \frac{18}{4} F_{\alpha\beta} F_{\gamma}{}^{\alpha} \left(\Box \pi\right) \phi^{;\gamma} \pi^{;\beta} - 6 F_{\alpha}{}^{\beta} \left(\Box \pi\right) \nabla^{\gamma} F_{\beta\gamma} \pi^{;\alpha}$ $+ \, 6 F_{\alpha\beta} F_{\gamma} \, {}^{\alpha} \nabla^{\gamma} \pi_{;\delta} \pi^{;\delta\delta} + 3 F_{\alpha\beta} F_{\gamma\delta} R^{\alpha\gamma} \pi^{;\delta} \pi^{;\delta} - \frac{9 \phi^2}{^{\textbf{A}}} F_{\alpha\beta} F_{\gamma} \, {}^{\alpha} F_{\delta} \, {}^{\beta} F_{f} \, {}^{\gamma} \pi^{;\delta} \pi^{;f}$

 $-\,\frac{18}{\phi}\textit{\textit{F}}_{\alpha\beta}\textit{\textit{F}}_{\gamma\delta}\pi^{;\alpha\gamma}\phi^{;\beta}\pi^{;\delta}+6\textit{\textit{F}}_{\alpha\beta}\nabla^{\gamma}\textit{\textit{F}}_{\gamma\delta}\pi^{;\alpha\delta}\pi^{;\beta}-\frac{9}{2}\textit{\textit{F}}_{\alpha\beta}\textit{\textit{F}}_{\gamma\delta}\pi^{;\alpha\gamma}\pi^{;\beta\delta}$

 $+6F_{\alpha}{}^{\beta}\nabla^{\gamma}F_{\beta\delta}\pi_{;\gamma}{}^{\delta}\pi^{;\alpha}+\frac{18}{4}F_{\alpha\beta}F_{\gamma}{}^{\alpha}\pi^{;\gamma\delta}\phi_{;\delta}\pi^{;\beta}$

 $-3\phi^2 G_{6XX} \left(F_{\alpha\beta} F_{\gamma}^{\ \alpha} \pi^{;\beta} \pi^{;\gamma} (\Box \pi)^2 + 2 F_{\alpha\beta} F_{\gamma\delta} \left(\Box \pi\right) \pi^{;\alpha\gamma} \pi^{;\beta} \pi^{;\delta} \right)$ $-F_{\alpha\beta}F_{\gamma}^{\ \alpha}\pi_{;\delta\kappa}\pi^{;\delta\kappa}\pi^{;\beta}\pi^{;\gamma} - 2F_{\alpha\beta}F_{\gamma\delta}\pi_{;\alpha}^{\ \kappa}\pi_{;\kappa}^{\ \gamma}\pi^{;\beta}\pi^{;\delta}\right)$

$$S = \int \mathrm{d}^4 x \sqrt{-g} \left(\mathcal{L}_2 + \mathcal{L}_3 + \mathcal{L}_4 + \mathcal{L}_5
ight),$$

 $\mathcal{L}_4 = f_2(\pi, X)R + \sum_{i=1}^5 a_i(\pi, X) L_i^{(2)},$

 $\mathcal{L}_{5} = f_{3}(\pi, X)G^{\mu\nu}\pi_{;\mu\nu} + \sum_{j=1}^{10} b_{j}(\pi, X)L_{j}^{(3)},$

 $\mathcal{L}_2 = F(\pi, X),$ $\mathcal{L}_3 = K(\pi, X) \square \pi.$

$$\begin{split} S &= \int \mathrm{d}^4 x \sqrt{-g} \left(\mathcal{L}_2 + \mathcal{L}_3 + \mathcal{L}_4 + \mathcal{L}_5 \right), \\ \mathcal{L}_2 &= F(\pi, X), \\ \mathcal{L}_3 &= K(\pi, X) \square \pi, \\ \mathcal{L}_4 &= f_2(\pi, X) R + \sum_i^5 a_i(\pi, X) \, L_i^{(2)}, \end{split}$$

$$\mathcal{L}_{5} = f_{3}(\pi, X)G^{\mu\nu}\pi_{;\mu\nu} + \sum_{i=1}^{10} b_{j}(\pi, X)L_{j}^{(3)},$$

$$g_{AB} = \left(\begin{array}{cc} g_{\mu\,\nu} - \phi^2\,A_{\mu}\,A_{\nu} & \phi^2\,A_{\mu} \\ \phi^2\,A_{\nu} & -\phi^2 \end{array} \right)$$

$$S = \int d^4x \sqrt{-g} \left(\mathcal{L}_2 + \mathcal{L}_3 + \mathcal{L}_4 + \mathcal{L}_5 \right),$$

$$\mathcal{L}_2 = F(\pi, X),$$

$$\mathcal{L}_3 = K(\pi, X) \square \pi,$$

$$\mathcal{L}_4 = f_2(\pi, X) R + \sum_{i=1}^5 a_i(\pi, X) L_i^{(2)},$$

$$\mathcal{L}_5 = f_3(\pi, X) G^{\mu\nu} \pi_{;\mu\nu} + \sum_{i=1}^{10} b_j(\pi, X) L_j^{(3)},$$

$$g_{AB}=\left(\begin{array}{cc}g_{\mu\,\nu}-\phi^2\,A_{\mu}\,A_{\nu}&\phi^2\,A_{\mu}\\\phi^2\,A_{\nu}&-\phi^2\end{array}\right)$$
 we put $\phi={\rm const}$

$$\begin{split} S &= \int \mathrm{d}^4 x \sqrt{-g} \left(\mathcal{L}_2 + \mathcal{L}_3 + \mathcal{L}_4 + \mathcal{L}_5 \right), \\ \mathcal{L}_2 &= F(\pi, X), \\ \mathcal{L}_3 &= K(\pi, X) \square \pi, \\ \mathcal{L}_4 &= f_2(\pi, X) R + \sum_{i=1}^5 a_i(\pi, X) \, \mathcal{L}_i^{(2)}, \\ \mathcal{L}_5 &= f_3(\pi, X) G^{\mu\nu} \pi_{;\mu\nu} + \sum_{i=1}^{10} b_j(\pi, X) \, \mathcal{L}_j^{(3)}, \end{split}$$

$$g_{AB}=\left(egin{array}{cc}g_{\mu\,
u}-A_{\mu}\,A_{
u}&A_{\mu}\A_{
u}&-1\end{array}
ight)$$
 we put $\phi={
m const}$

 $\mathcal{L}_{\mathsf{DHOST}_{\pi}}^{5d} \to \mathcal{L}_{\mathsf{DHOST}_{\pi}}^{\mathit{KK}} = \mathcal{L}_{\mathsf{DHOST}_{\pi}} + \mathcal{L}_{\mathit{A}} \,,$

$$\mathcal{L}_{\mathsf{DHOST}_{\pi}}^{5d} o \mathcal{L}_{\mathsf{DHOST}_{\pi}}^{\mathit{KK}} = \mathcal{L}_{\mathsf{DHOST}_{\pi}} + \mathcal{L}_{\mathit{A}} \,,$$

 $\mathcal{L}_{\mathsf{DHOST}_{\pi}} \sim \mathcal{L}_{\mathsf{DHOST}_{\pi}}^{5d} \, ,$

$$\mathcal{L}_{\mathsf{DHOST}_{\pi}}^{5d} o \mathcal{L}_{\mathsf{DHOST}_{\pi}}^{KK} = \mathcal{L}_{\mathsf{DHOST}_{\pi}} + \mathcal{L}_{A}$$

$$\mathcal{L}_{ extsf{DHOST}_-} \sim \mathcal{L}_{ extsf{DHOST}_-}^{5d}$$
 ,

$$\mathcal{L}_{A} = -\frac{f_{2}(\pi, X)}{4} F_{\mu\nu} F^{\mu\nu} + \frac{a_{1}(\pi, X)}{2} (F_{\mu\nu} \pi^{\mu})^{2}$$

$$+ \frac{f_{3}(\pi, X)}{8} (4F_{\mu\nu} \nabla_{\rho} F^{\nu\rho} \pi^{\mu} + F_{\mu\nu} F^{\mu\nu} \Box \pi - 4F_{\mu}{}^{\nu} F^{\mu\rho} \pi_{\nu\rho})$$

$$+ \frac{b_{2}(\pi, X) + b_{6}(\pi, X)}{2} (F_{\mu\nu} \pi^{\mu})^{2} + \frac{b_{3}(\pi, X)}{4} F_{\mu\nu} F_{\rho\sigma} \pi^{\mu\rho} \pi^{\nu} \pi^{\sigma}$$

• Now, one can forget about 5 dimension and KK procedure. It can be considered a trick to obtain the desired Lagrangian \mathcal{L}_A

Alternatively one can find the desired combinations among all

general types of terms

Might be more general, but much harder.

 \cdot We work with Generalized Galilean (or Horndeski) type of theories

- \cdot We work with Generalized Galilean (or Horndeski) type of theories
- \cdot ∇^2 in 5d action \longrightarrow ∇^2 in 4d action

- \cdot We work with Generalized Galilean (or Horndeski) type of theories
- $\cdot \qquad \nabla^2 \text{ in 5d action } \longrightarrow \quad \nabla^2 \text{ in 4d action}$
- no ∇^3 in 5d action \longrightarrow no ∇^3 in 4d action or degeneracy in 5d action \longrightarrow degeneracy in 4d action

- · We work with Generalized Galilean (or Horndeski) type of theories
- $\cdot \qquad \nabla^2 \text{ in 5d action } \longrightarrow \quad \nabla^2 \text{ in 4d action}$
- \cdot (5d) \longrightarrow (4d) can be viewed as the change of variables

- · We work with Generalized Galilean (or Horndeski) type of theories
- \cdot $abla^2$ in 5d action \longrightarrow $abla^2$ in 4d action
- no ∇^3 in 5d action \longrightarrow no ∇^3 in 4d action or degeneracy in 5d action \longrightarrow degeneracy in 4d action
- \cdot (5d) \longrightarrow (4d) can be viewed as the change of variables
- Profit 1) We obtained for the first time U(1) Gauge Vector Galileons Scalar-Vector-Tensor theory with second derivatives in action

 $\mathcal{L}_{4A} = -\frac{\phi^2}{4} G_4 F_{\alpha\beta} F^{\alpha\beta} + \phi^2 G_{4X} F_{\alpha\gamma} F^{\alpha}_{\ \beta} \pi^{;\beta} \pi^{;\gamma}$

 $\mathcal{L}_{5A} = G_5 \phi^2 \left(\frac{1}{2} F^{\alpha\beta} F_{\alpha}{}^{\gamma} \pi_{;\beta\gamma} - \frac{1}{8} F^{\alpha\beta} F_{\alpha\beta} \Box \pi + \frac{1}{2} F^{\alpha\beta} \nabla^{\gamma} F_{\alpha\gamma} \pi_{;\beta} \right)$

 $+ G_5\phi^2\left(\frac{3}{2\phi}F^{\alpha\beta}F_{\alpha}{}^{\gamma}\phi_{;\beta}\pi_{;\gamma} - \frac{3}{8\phi}F^{\alpha\beta}F_{\alpha\beta}\phi^{;\gamma}\pi_{;\gamma}\right)$

 $+ \quad G_{5X}\phi^{2}\left(\frac{1}{2}F^{\alpha\beta}F_{\alpha}^{\ \gamma}\left(\Box\pi\right)\pi_{;\beta}\pi_{;\gamma} - \frac{1}{2}F^{\alpha\beta}F^{\gamma\delta}\pi_{;\alpha\gamma}\pi_{;\beta}\pi_{;\delta}\right)$

$$\mathcal{L}_{6A} = G_6 \phi^2 \left(\frac{3}{8} F_{\alpha\beta} F^{\alpha\beta} R - \frac{9}{4\phi} F_{\alpha\beta} F^{\alpha\beta} \left(\Box \phi \right) + \frac{9\phi^2}{64} F_{\alpha\beta} F_{\gamma\delta} F^{\alpha\beta} F^{\gamma\delta} + 3F_{\alpha\beta} F_{\gamma}^{\ \alpha} R^{\gamma\beta} \right)$$

$$- \frac{9}{2\phi} F_{\alpha\beta} F_{\gamma}^{\ \alpha} \phi^{;\gamma\beta} - \frac{9\phi^2}{32} F_{\alpha\beta} F_{\gamma}^{\ \alpha} F_{\delta}^{\ \beta} F^{\gamma\delta} - \frac{9}{\phi^2} F_{\alpha\beta} F_{\gamma}^{\ \alpha} \phi^{;\beta} \phi^{;\gamma} - \frac{9}{\phi} F_{\alpha}^{\ \beta} \nabla^{\gamma} F_{\beta\gamma} \phi^{;\alpha}$$

$$+\frac{3}{2}\nabla^{\alpha}F_{\alpha\beta}\nabla^{\gamma}F_{\gamma}{}^{\beta}+\frac{9}{4}R^{\alpha\gamma\beta\delta}F_{\alpha\beta}F_{\gamma\delta}-\frac{3}{\phi}F^{\alpha\beta}\nabla^{\gamma}F_{\alpha\beta}\phi_{;\gamma}+\frac{3}{\phi}F_{\alpha}{}^{\beta}\nabla^{\alpha}F_{\beta\gamma}\phi^{;\gamma}\\ -\frac{9}{2\phi^{2}}F_{\alpha\beta}F^{\alpha\beta}\phi_{;\gamma}\phi^{;\gamma}-\frac{15}{16}\nabla^{\alpha}F_{\beta\gamma}\nabla_{\alpha}F^{\beta\gamma}+\frac{3}{8}\nabla^{\alpha}F_{\beta\gamma}\nabla^{\beta}F_{\alpha}{}^{\gamma}\right)$$

$$+ G_{6X} \left(-\frac{3}{4} F_{\alpha\beta} F^{\alpha\beta} (\Box \pi)^{2} - \frac{9}{2\phi} F_{\alpha\beta} F^{\alpha\beta} (\Box \pi) \phi^{;\gamma} \pi_{;\gamma} + \frac{3}{2} R F_{\alpha\beta} F_{\gamma}^{\ \alpha} \pi^{;\beta} \pi^{;\gamma} \right.$$

$$+ \frac{3}{4} F_{\alpha\beta} F^{\alpha\beta} \pi_{;\gamma\delta} \pi^{;\gamma\delta} + \frac{9\phi^{2}}{8} F_{\alpha\beta} F_{\gamma\delta} F_{f}^{\ \alpha} F^{\gamma\delta} \pi^{;\beta} \pi^{;f} - 6 F_{\alpha\beta} F_{\gamma}^{\ \alpha} (\Box \pi) \pi^{;\gamma\beta}$$

$$- \frac{9}{\phi} F_{\alpha\beta} F_{\gamma}^{\ \alpha} \pi^{;\gamma\beta} \phi^{;\delta} \pi_{;\delta} - \frac{18}{\phi} F_{\alpha\beta} F_{\gamma}^{\ \alpha} (\Box \pi) \phi^{;\gamma} \pi^{;\beta} - 6 F_{\alpha}^{\ \beta} (\Box \pi) \nabla^{\gamma} F_{\beta\gamma} \pi^{;\alpha}$$

$$-\frac{9}{\phi}F_{\alpha\beta}F_{\gamma}{}^{\alpha}\pi^{;\gamma\delta}\phi^{;\delta}\pi_{;\delta} - \frac{18}{\phi}F_{\alpha\beta}F_{\gamma}{}^{\alpha}\left(\Box\pi\right)\phi^{;\gamma}\pi^{;\beta} - 6F_{\alpha}{}^{\beta}\left(\Box\pi\right)\nabla^{\gamma}F_{\beta\gamma}\pi^{;\alpha}$$

$$+6F_{\alpha\beta}F_{\gamma}{}^{\alpha}\nabla^{\gamma}\pi_{;\delta}\pi^{;\delta\delta} + 3F_{\alpha\beta}F_{\gamma\delta}R^{\alpha\gamma}\pi^{;\beta}\pi^{;\delta} - \frac{9\phi^{2}}{4}F_{\alpha\beta}F_{\gamma}{}^{\alpha}F_{\delta}{}^{\beta}F_{f}{}^{\gamma}\pi^{;\delta}\pi^{;f}$$
18

$$\phi \qquad \qquad \phi \\ + 6F_{\alpha\beta}F_{\gamma}^{\ \alpha}\nabla^{\gamma}\pi_{;\delta}\pi^{;\beta\delta} + 3F_{\alpha\beta}F_{\gamma\delta}R^{\alpha\gamma}\pi^{;\beta}\pi^{;\delta} - \frac{9\phi^{2}}{4}F_{\alpha\beta}F_{\gamma}^{\ \alpha}F_{\delta}^{\ \beta}F_{f}^{\ \gamma}\pi^{;\delta}\pi^{;f} \\ - \frac{18}{\phi}F_{\alpha\beta}F_{\gamma\delta}\pi^{;\alpha\gamma}\phi^{;\beta}\pi^{;\delta} + 6F_{\alpha\beta}\nabla^{\gamma}F_{\gamma\delta}\pi^{;\alpha\delta}\pi^{;\beta} - \frac{9}{2}F_{\alpha\beta}F_{\gamma\delta}\pi^{;\alpha\gamma}\pi^{;\beta\delta}$$

$$-\frac{18}{\phi}F_{\alpha\beta}F_{\gamma\delta}\pi^{;\alpha\gamma}\phi^{;\beta}\pi^{;\delta} + 6F_{\alpha\beta}\nabla^{\gamma}F_{\gamma\delta}\pi^{;\alpha\delta}\pi^{;\beta} - \frac{9}{2}F_{\alpha\beta}F_{\gamma\delta}\pi^{;\alpha\gamma}\pi^{;\beta\delta} \\ + 6F_{\alpha}^{\beta}\nabla^{\gamma}F_{\beta\delta}\pi^{;\gamma}^{\delta}\pi^{;\alpha} + \frac{18}{4}F_{\alpha\beta}F_{\gamma}^{\alpha}\pi^{;\gamma\delta}\phi_{;\delta}\pi^{;\beta} \Big)$$

 $+6F_{\alpha}^{\beta}\nabla^{\gamma}F_{\beta\delta}\pi_{;\gamma}^{\delta}\pi^{;\alpha} + \frac{18}{4}F_{\alpha\beta}F_{\gamma}^{\alpha}\pi^{;\gamma\delta}\phi_{;\delta}\pi^{;\beta}$

 $-3\phi^2 G_{6XX} \left(F_{\alpha\beta} F_{\gamma}^{\ \alpha} \pi^{;\beta} \pi^{;\gamma} (\Box \pi)^2 + 2 F_{\alpha\beta} F_{\gamma\delta} \left(\Box \pi\right) \pi^{;\alpha\gamma} \pi^{;\beta} \pi^{;\delta} \right)$ $-F_{\alpha\beta}F_{\gamma}^{\ \alpha}\pi_{;\delta\kappa}\pi^{;\delta\kappa}\pi^{;\beta}\pi^{;\gamma} - 2F_{\alpha\beta}F_{\gamma\delta}\pi_{;\alpha}^{\ \kappa}\pi_{;\kappa}^{\ \gamma}\pi^{;\beta}\pi^{;\delta}\right)$

- · We work with Generalized Galilean (or Horndeski) type of theories
- \cdot ∇^2 in 5d action \longrightarrow ∇^2 in 4d action
- no $abla^3$ in 5d action \longrightarrow no $abla^3$ in 4d action or degeneracy in 5d action \longrightarrow degeneracy in 4d action
- \cdot (5d) \longrightarrow (4d) can be viewed as the change of variables
- Profit 1) We obtained for the first time U(1) Gauge Vector Galileons Scalar-Vector-Tensor theory with second derivatives in action

- · We work with Generalized Galilean (or Horndeski) type of theories
- \cdot ∇^2 in 5d action \longrightarrow ∇^2 in 4d action
- no ∇^3 in 5d action \longrightarrow no ∇^3 in 4d action or degeneracy in 5d action \longrightarrow degeneracy in 4d action
- \cdot (5d) \longrightarrow (4d) can be viewed as the change of variables
- Profit 1) We obtained for the first time U(1) Gauge Vector Galileons Scalar-Vector-Tensor theory with second derivatives in action

Profit 2) Phenomenologically favored by GW170817

Modifications of Maxwell theory that are obtained from **KK** are selftuned in a way, so gravitons and photons propagate at the same speed for wide class of Generalized Galileon theories.

$$c_{\varphi}^{2} = c^{2}$$

This is not very surprising, since both modes comes from 5-dimensional metric.

• For Horndeski theory (and beyond Horndeski and DHOST theories)

- For Horndeski theory (and beyond Horndeski and DHOST theories)
- There is an additional phenomenological restriction, if we study modern Universe (models of dark energy and dark matter)

- For Horndeski theory (and beyond Horndeski and DHOST theories)
- There is an additional phenomenological restriction, if we study modern Universe (models of dark energy and dark matter)

*GW*170817

- For Horndeski theory (and beyond Horndeski and DHOST theories)
- There is an additional phenomenological restriction, if we study modern Universe (models of dark energy and dark matter)

*GW*170817

Speed of gravitational waves is very close to the speed of light

$$c_{\mathcal{T}} \approx c$$

- For Horndeski theory (and beyond Horndeski and DHOST theories)
- There is an additional phenomenological restriction, <u>if we study modern Universe</u> (models of dark energy and dark matter)

*GW*170817

Speed of gravitational waves is very close to the speed of light

$$c_{\mathcal{T}} pprox c$$
 $\left| rac{c_{\mathcal{T}}}{c} - 1 \right| < 10^{-15}$

Modern Universe cosmology

- For Horndeski theory (and beyond Horndeski and DHOST theories)
- There is an additional phenomenological restriction, if we study modern Universe (models of dark energy and dark matter)

Speed of gravitational waves is very close to the speed of light

$$c_{\mathcal{T}} \approx c$$
 $\left|\frac{c_{\mathcal{T}}}{c} - 1\right| < 10^{-15}$

• Since speeds are very close we assume $c_{\mathcal{T}}=c$ to be a natural property of the theory

(without constrains on the background)

Modern Universe cosmology

- For Horndeski theory (and beyond Horndeski and DHOST theories)
- There is an additional phenomenological restriction, if we study modern Universe (models of dark energy and dark matter)

Speed of gravitational waves is very close to the speed of light

$$c_{\mathcal{T}} pprox c$$
 $\left| \frac{c_{\mathcal{T}}}{c} - 1 \right| < 10^{-15}$

• Since speeds are very close we assume $c_{\mathcal{T}}=c$ to be a natural property of the theory

(without constrains on the background)

- ullet For trivial Maxwell electrodynamics (c=1) it means $c_{\mathcal{T}}=1$ too.
- For **KK** modified Maxwell $c^2 = c_T^2 \neq 1$

• scalar-tensor theories have two dynamical sectors

$$S = \int \mathrm{d}t \mathrm{d}^{3}x a^{3} \left[\frac{\mathcal{G}_{\mathcal{T}}}{8} \left(\dot{h}_{ik}^{T} \right)^{2} - \frac{\mathcal{F}_{\mathcal{T}}}{8a^{2}} \left(\partial_{i} h_{kl}^{T} \right)^{2} + \mathcal{G}_{\mathcal{S}} \dot{\zeta}^{2} - \mathcal{F}_{\mathcal{S}} \frac{\left(\partial_{i} \zeta \right)^{2}}{a^{2}} \right]$$

• We do not care about scalar sector now

$$S = \int \mathrm{d}t \mathrm{d}^3 x a^3 \left[\frac{\mathcal{G}_T}{8} \left(\dot{h}_{ik}^T \right)^2 - \frac{\mathcal{F}_T}{8 a^2} \left(\partial_i h_{kl}^T \right)^2 + \underbrace{\mathcal{G}_S \dot{\zeta}^2}_{2} \underbrace{\mathcal{F}_S \left(\partial_i \zeta \right)^2}_{a^2} \right]$$

• We do not care about scalar sector now

$$S = \int \mathrm{d}t \mathrm{d}^3x a^3 \Big[\frac{\mathcal{G}_{\mathcal{T}}}{8} \left(\dot{h}_{ik}^{\mathsf{T}} \right)^2 - \frac{\mathcal{F}_{\mathcal{T}}}{8a^2} \left(\partial_i h_{kl}^{\mathsf{T}} \right)^2 \Big]$$

We do not care about scalar sector now

$$S = \int \mathrm{d}t \mathrm{d}^3 x a^3 \Big[\frac{\mathcal{G}_{\mathcal{T}}}{8} \left(\dot{h}_{ik}^T \right)^2 - \frac{\mathcal{F}_{\mathcal{T}}}{8 a^2} \left(\partial_i h_{kl}^T \right)^2 \Big]$$

• Instead we consider additional U(1) vector field

$$S = \int \mathrm{d}t \mathrm{d}^3 x a^3 \left[\frac{\mathcal{G}_{\mathcal{T}}}{8} \left(\dot{h}_{ik}^T \right)^2 - \frac{\mathcal{F}_{\mathcal{T}}}{8a^2} \left(\partial_i h_{kl}^T \right)^2 + \mathcal{G}_{\mathcal{V}} \dot{A}_i^2 - \mathcal{F}_{\mathcal{V}} \frac{(\partial_j A_i)^2}{a^2} \right]$$

The speeds of sound for tensor and vector modes are, respectively,

$$c_{\mathcal{T}}^2 = rac{\mathcal{F}_{\mathcal{T}}}{\mathcal{G}_{\mathcal{T}}}, \qquad c^2 = c_{\mathcal{V}}^2 = rac{\mathcal{F}_{\mathcal{V}}}{\mathcal{G}_{\mathcal{V}}}$$

Horndeski theory:

$$\begin{split} \mathcal{G}_{\mathcal{T}} &= 2G_4 - 4G_{4X}X + G_{5\pi}X - 2HG_{5X}X\dot{\pi}, \\ \mathcal{F}_{\mathcal{T}} &= 2G_4 - G_{5\pi}X - 2G_{5X}X\ddot{\pi}. \end{split}$$

beyond Horndeski theory:

$$\begin{split} \mathcal{G}_{\mathcal{T}} &= 2G_4 - 4G_{4X}X + G_{5\pi}X - 2HG_{5X}X\dot{\pi} + 2F_4X^2 + 6HF_5X^2\dot{\pi}, \\ \mathcal{F}_{\mathcal{T}} &= 2G_4 - G_{5\pi}X - 2G_{5X}X\ddot{\pi}. \end{split}$$

DHOST theory:

$$\begin{array}{rcl} \mathcal{G}_{\tau} & = & 2f_2 + 2\ddot{\pi}Xf_{3,X} - Xf_{3,\pi} - 2Xa_1 \\ & + & 2X\big(3\dot{\pi}H + \ddot{\pi}\big)b_2 + 6\dot{\pi}XHb_3 + 2\ddot{\pi}X^2b_6 \,, \\ \mathcal{F}_{\tau} & = & 2f_2 - 2\ddot{\pi}Xf_{3,X} + Xf_{3,\pi} \,, \end{array}$$

conventional Maxwell c=1

- Horndeski:
- $\bullet \qquad G_4 = G_4(\pi)$
- $G_5 = const$
- Beyond Horndeski
- $F_4 = \frac{2G_{4X}}{X}$
- $G_5 = const$
- DHOST
- $a_1 = 0$
- $f_3 = 0, b_i = 0$

Modified Maxwell

• Horndeski:

$$G_4 = G_4(\pi, X)$$

 $G_5 = G_5(\pi)$

 Beyond Horndeski $G_4 = G_4(\pi, X)$

$$F_4 = F_4(\pi, X)$$

 $G_5 = G_5(\pi)$

$$G_5 = G_5(\pi)$$

DHOST

$$f_2 = f_2(\pi, X)$$

 $a_1 = a_1(\pi, X)$

$$a_1 = a_1(\pi, X)$$

 $a_3 = a_3(\pi, X)$

 Some subclasses of luminal Horndeski with modified Maxwell were known by disformal trick

BH with
$$F_4 = \frac{2G_{4X}}{X}$$
 disformal transformation H + modified EM and $c_T = c = 1$ with $c_T = c \neq 1$

 Some subclasses of luminal Horndeski with modified Maxwell were known by disformal trick

BH with
$$F_4=rac{2G_{4X}}{X}$$
 disformal transformation H + modified EM and $c_{\mathcal{T}}=c=1$ with $c_{\mathcal{T}}=c
eq 1$

• There are "no decay" constraints, calculated in BH Gravitational waves are registered: $g_{\mu\nu} \rightarrow \pi\pi$

 Some subclasses of luminal Horndeski with modified Maxwell were known by disformal trick

BH with
$$F_4=rac{2G_{4X}}{X}$$
 disformal transformation, H + modified EM and $c_{\mathcal{T}}=c=1$ with $c_{\mathcal{T}}=c
eq 1$

- There are "no decay" constraints, calculated in BH Gravitational waves are registered: $g_{\mu\nu} \rightarrow \pi\pi$
- The constraints totally close **BH** with $c_{\mathcal{T}}=c=1$ and all disformally related theories

 Some subclasses of luminal Horndeski with modified Maxwell were known by disformal trick

BH with
$$F_4=rac{2G_{4X}}{X}$$
 disformal transformation H + modified EM and $c_{\mathcal{T}}=c=1$ with $c_{\mathcal{T}}=c
eq 1$

- The constraints totally close **BH** with $c_T = c = 1$ and all disformally related theories
- Our **KK BH** with $c_{\mathcal{T}}=c \neq 1$ can obey the constraints non-trivially

$$F_4 = \frac{1}{2X^2} \left(2G_4 - X(4G_{4,X} + G_{5,\pi}) + \frac{4J_4(\pi)}{2G_4 + XG_{5,\pi}} \right)$$

 Some subclasses of luminal Horndeski with modified Maxwell were known by disformal trick

BH with
$$F_4=rac{2G_{4X}}{X}$$
 disformal transformation H + modified EM and $c_{\mathcal{T}}=c=1$ with $c_{\mathcal{T}}=c
eq 1$

- There are "no decay" constraints, calculated in BH Gravitational waves are registered: $g_{\mu\nu}\rightarrow\pi\pi$
- The constraints totally close **BH** with $c_T = c = 1$ and all disformally related theories
- Our **KK BH** with $c_{\mathcal{T}}=c \neq 1$ can obey the constraints non-trivially

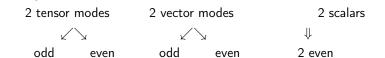
$$F_4 = \frac{1}{2X^2} \Big(2G_4 - X(4G_{4,X} + G_{5,\pi}) + \frac{4J_4(\pi)}{2G_4 + XG_{5,\pi}} \Big)$$

Dark Energy can be made with beyond Horndeski theory

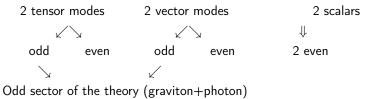
• Same speeds relation holds above spherically symmetrical dynamical

background

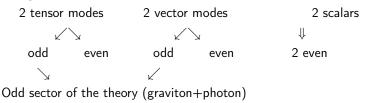
 Same speeds relation holds above spherically symmetrical dynamical background



Same speeds relation holds above spherically symmetrical dynamical background



• Same speeds relation holds above spherically symmetrical dynamical background



 Vainshtein mechanism works for modified Maxwell similarly to modified gravity

beyond Horndeski theory is OK for modern Universe

- beyond Horndeski theory is OK for modern Universe
 - ► There are gauge vector galileons

- beyond Horndeski theory is OK for modern Universe
 - ► There are gauge vector galileons

We observe, that Kaluza-Klein inspired modifications are phenomenologically favored

Yet another, now experimental indication, that Kaluza's idea is correct

- beyond Horndeski theory is OK for modern Universe
 - ► There are gauge vector galileons

We observe, that Kaluza-Klein inspired modifications are phenomenologically favored

- Yet another, now experimental indication, that Kaluza's idea is correct
 - To do:

- General couplings
- No decay for DHOST
- No decay for photons
- Explicit Vainshtein calculation
- ► Different compactifications

- beyond Horndeski theory is OK for modern Universe
 - ► There are gauge vector galileons

We observe, that Kaluza-Klein inspired modifications are phenomenologically favored

- Yet another, now experimental indication, that Kaluza's idea is correct
 - ► To do:

- General couplings
- No decay for DHOST
- No decay for photons
- ► Explicit Vainshtein calculation
- ► Different compactifications

- beyond Horndeski theory is OK for modern Universe
 - ► There are gauge vector galileons

We observe, that Kaluza-Klein inspired modifications are phenomenologically favored

- Yet another, now experimental indication, that Kaluza's idea is correct
 - ► To do:

- General couplings
- No decay for DHOST
- No decay for photons
- ► Explicit Vainshtein calculation
- ► Different compactifications

- beyond Horndeski theory is OK for modern Universe
 - ► There are gauge vector galileons

We observe, that Kaluza-Klein inspired modifications are phenomenologically favored

- Yet another, now experimental indication, that Kaluza's idea is correct
 - ► To do:

- General couplings
- No decay for DHOST
- No decay for photons
- ► Explicit Vainshtein calculation
- ► Different compactifications

- beyond Horndeski theory is OK for modern Universe
 - ► There are gauge vector galileons

We observe, that Kaluza-Klein inspired modifications are phenomenologically favored

- Yet another, now experimental indication, that Kaluza's idea is correct
 - ► To do:

- General couplings
- No decay for DHOST
- No decay for photons
- ► Explicit Vainshtein calculation
- ► Different compactifications

- beyond Horndeski theory is OK for modern Universe
 - ► There are gauge vector galileons

We observe, that Kaluza-Klein inspired modifications are phenomenologically favored

- Yet another, now experimental indication, that Kaluza's idea is correct
 - ► To do:

- General couplings
- No decay for DHOST
- No decay for photons
- ► Explicit Vainshtein calculation
- ► Different compactifications

$$\mathcal{L} = K(\pi, X) \Box \pi$$
 $X = g^{\mu\nu} \pi_{,\mu} \pi_{,\nu}$

$$\mathcal{L} = K(\pi, X) \square \pi$$
 $X = g^{\mu\nu} \pi_{,\mu} \pi_{,\nu}$

$$\delta \mathcal{L} = K_{\pi} \Box \pi \delta \pi + K_{X} \Box \pi \delta X + K \Box \delta \pi =$$

$$\mathcal{L} = \mathsf{K}(\pi, \mathsf{X}) \square \pi$$
 $\mathsf{X} = \mathsf{g}^{\mu \nu} \pi_{, \mu} \pi_{, \nu}$

$$\delta \mathcal{L} = K_{\pi} \Box \pi \delta \pi + \underline{K_{X} \Box \pi \delta X + K \Box \delta \pi} =$$

$$= \dots + K_X \Box \pi \delta \partial_\mu \pi \partial^\mu \pi + K \partial_\mu \partial^\mu \delta \pi$$

 $\mathcal{L} = K(\pi, X) \square \pi$ $X = g^{\mu\nu} \pi_{,\mu} \pi_{,\nu}$

 $= ... + K_X \square \pi \delta \partial_\mu \pi \partial^\mu \pi + K \partial_\mu \partial^\mu \delta \pi$

 $= \dots + 2K_X \square \pi \partial_\mu \pi \partial^\mu \delta \pi + \partial_\mu \partial^\mu K \delta \pi$

$$\delta \mathcal{L} = K_{\pi} \Box \pi \delta \pi + \underline{K_{X} \Box \pi \delta X + K \Box \delta \pi} =$$

$$\delta \mathcal{L} = K_{\pi} \cup \pi \delta \pi + K_{X} \cup \pi \delta X + K \cup \delta \pi =$$

$$\mathcal{L} = \mathcal{K}(\pi, X) \Box \pi$$
 $X = g^{\mu \nu} \pi_{, \mu} \pi_{, \nu}$

$$\delta \mathcal{L} = K_{\pi} \Box \pi \delta \pi + \underline{K_{X}} \Box \pi \delta X + K \Box \delta \pi =$$

$$= \dots + K_X \Box \pi \delta \partial_\mu \pi \partial^\mu \pi + K \partial_\mu \partial^\mu \delta \pi$$

$$= \dots + 2K_{X} \Box \pi \partial_{\mu} \pi \partial^{\mu} \delta \pi + \partial_{\mu} \partial^{\mu} K \delta \pi$$

$$= \dots + 2K_{X} \Box \pi \partial_{\mu} \pi \partial^{\mu} \delta \pi + \partial_{\mu} \partial^{\mu} K \delta \pi$$

$$= \dots - \frac{2K_X \partial^{\mu} \Box \pi \partial_{\mu} \pi \delta \pi}{2} + \partial_{\mu} (K_{\pi} \partial^{\mu} \pi + \frac{2K_X \partial^{\mu} \partial_{\nu} \pi \partial^{\nu} \pi}{2}) \delta \pi$$

$$\mathcal{L} = K(\pi, X) \square \pi$$
 $X = g^{\mu\nu}\pi_{,\mu}\pi_{,\nu}$

$$\delta \mathcal{L} = K_{\pi} \Box \pi \delta \pi + \underline{K_{X} \Box \pi \delta X + K \Box \delta \pi} =$$

$$= \dots + K_X \Box \pi \delta \partial_\mu \pi \partial^\mu \pi + K \partial_\mu \partial^\mu \delta \pi$$
$$= \dots + 2K_X \Box \pi \partial_\mu \pi \partial^\mu \delta \pi + \partial_\mu \partial^\mu K \delta \pi$$

$$= ... - 2K_X \partial^{\mu} \Box \pi \partial_{\mu} \pi \delta \pi + \partial_{\mu} (K_{\pi} \partial^{\mu} \pi + 2K_X \partial^{\mu} \partial_{\nu} \pi \partial^{\nu} \pi) \delta \pi$$

$$... - 2 \textit{K}_{\textit{X}} \partial^{\mu} \partial_{\nu} \partial^{\nu} \pi \partial_{\mu} \pi \delta \pi + 2 \textit{K}_{\textit{X}} \partial_{\mu} \partial^{\mu} \partial_{\nu} \pi \partial^{\nu} \pi \delta \pi$$

$$\dots - 2K_X \partial^\mu \partial_\nu \partial^\nu \pi \partial_\mu \pi \delta \pi + 2K_X \partial_\mu \partial^\mu \partial_\nu \pi \partial^\nu \pi \delta \pi$$

$$\mathcal{L} = K(\pi, X) \square \pi$$
 $X = g^{\mu \nu} \pi_{,\mu} \pi_{,\nu}$

$$\delta \mathcal{L} = K_{\pi} \Box \pi \delta \pi + \underline{K_{X} \Box \pi \delta X + K \Box \delta \pi} =$$

$$= \dots + K_X \Box \pi \delta \partial_\mu \pi \partial^\mu \pi + K \partial_\mu \partial^\mu \delta \pi$$

$$= \dots + 2K_X \Box \pi \partial_\mu \pi \partial^\mu \delta \pi + \partial_\mu \partial^\mu K \delta \pi$$

$$= \dots - \underbrace{2K_X \partial^{\mu} \Box \pi \partial_{\mu} \pi \delta \pi}_{} + \partial_{\mu} (K_{\pi} \partial^{\mu} \pi + \underbrace{2K_X \partial^{\mu} \partial_{\nu} \pi \partial^{\nu} \pi}_{}) \delta \pi$$

$$... - 2K_{X}\partial^{\mu}\partial_{\nu}\partial^{\nu}\pi\partial_{\mu}\pi\delta\pi + 2K_{X}\partial_{\mu}\partial^{\mu}\partial_{\nu}\pi\partial^{\nu}\pi\delta\pi$$