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Introduction

The statement

Polyvector unimodular generalized Yang–Baxter deformations of an integrable 2d σ-model
are (most probably∗) integrable.

∗Based on numerical analysis of KAM tori for particular ansätze.
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Introduction The set up

Gauge/gravity duality
A well understood example: weak/strong AdS/CFT correspondence [Maldacena (1997)]

N Dp-branes can be described equivalently by open or
closed strings

Closed gsN≫ 1: a supergravity background, AdS
near the brane

Open gsN≪ 1: a gauge theory on the brane

Fig: Picture taken from N. Beisert et al. [1012.3982]
Edvard Musaev (Phystech) Deformations, branes and integrability 3 / 30



Introduction The set up

AdS integrability

Scaling dimensions ofN = 4 d = 4 SYM: ΔO = f(λ)— functions determined by
some (integral) equations.

Tr[ΦI1 . . .ΦIL ]←→ states of SO(6) spin chain of length L (1-loop anomalous
dimensions)

[Minahan, Zarembo (2003)]

Type IIB string on AdS5 × S5 is integrable (as a classical 2d σ-model)
[Bena, Polchinski, Roiban (2003)]

psu(2, 2|4) & QYBE =⇒ S-matrix for the string on AdS5 × S5
[Staudacher, Beisert (’04,’05), Arutyunov, Frolov, Zamaklar (2007)]

Classical spinning string solutions in AdS5 × S5 correspond to solution of certain
integrable systems

[Gubser, Klebanov, Polyakov (2002), Frolov, Tseytlin (2003), Arutyunov, Frolov, Russo, Tseytlin (2003)]

Many other models: Gross–Neveu, AdSn × Sn, AdS4 × CP3 strings
some reviews: [2408.08414, 1310.4854, 1012.3982, 2301.06486]
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Introduction The set up

Families

Many of integrable string models belong to integrable families

Under gauge/gravity duality these generate new (integrable?) field theories:

AdS5 × S5 N = 4 SYM

A deformed bg

adding operators (Tr[Φ3]);

change RG behavior (AdS cut-off);

non-commutativity;

Deformation of a string sigma-model⇐⇒ a transformation of the background

S = T
∫
d2σ(Gμν + Bμν)∂+Xμ∂−Xν. (1)
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Introduction The set up

The plan

Describe the framework of bi-vector Yang–Baxter deformations (2d σ-model & 10D
SUGRA)

Generalize it to polyvector deformations (include U-dualities)

Generalization of the classical Yang–Baxter equation

Show pictures (KAM tori) suggesting a relation between classical integrability and
genCYBE
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Introduction Integrability

Classical integrability in mechanics

EoM’s of an integrable system can be recast in the form of Lax pair equations

d
dtL(z) = [L(z),M(z)] = L(z).M(z)−M(z).L(z);

L(z),M(z) ∈ Mat(N,C), z ∈ C,
(2)

Integrals of motion:

Hm(z) = Tr
[
L(z)m

]
. (3)

Reversely: given matrix r ∈ g ∧ g define Poisson bracket

{L1(u),L2(v)} = [r12(u, v),L1(u)] + [r12(u, v),L2(v)],
0 = [r12(u− v), r13(u)] + [r13(u), r23(v)] + [r12(u− v), r23(v)].

(4)

r-matrix generates integrable systems
[Lax (1968), Sklyanin, Kulish, Semenov-Tyan-Shanski (1980-1983)]

Edvard Musaev (Phystech) Deformations, branes and integrability 7 / 30



Introduction Integrability

Integrability in 2d field theory

Recasting EoM’s in the form of the flatness condition

dA+A ∧A = 0. (5)

allows to construct parallel transport operator U(u; σ1; σ0) = Pexp
[∫ t1,x1

t0,x0 A(u)
]
and to

define Lax pair:

T(u) = Pexp
[ ∮

A(u)
]
,

M(u) = A t(u)
∣∣∣
σ1=0

.

(6)

Lax equation and conserved currents:

Ṫ(u) = [T(u),M(u)], Fk(u) = TrT(u)k. (7)

[Zakharov, Shabat (1971)]
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Introduction Integrable deformations

Integrable deformations

Deformed SU(2) principal chiral model is integrable [Cherednik (1981)]

S = − 12

∫
dτdσTr

[
Ad(∂+gg−1).J.Ad(∂−gg−1)

]
,

J = diag[J1, J2, J3], deforms Killing form
(8)

Yang-Baxter σ-model for any compact G [Klimcik (2002)]

S = − 12

∫
dτdσ Tr

[
∂+g g−1,

(1+ η2)2
(1+ ηR)∂−g g

−1
]
, (9)

is integrable if classical Yang-Baxter equations is satisfied

R(X) := r abTaκbcX c = Tr2
[
r(1⊗ X)

]
, r ∈ g ∧ g,

r[a1b1ra2b2 fb1b2a3] = 0,
(10)
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Introduction String on AdS5xS5

Integrable deformations

Superstring on AdS5 × S5 is integrable
[Bena, Polchinski, Roiban (2004)]

BOSONIC

(
PSU(2, 2|4)

SO(4, 1)× SO(5)

)
=

SO(4, 2)
SO(4, 1)

SO(6)
SO(5) = AdS5 × S5 (11)

g = g(0) ⊕ g(1) ⊕ g(2) ⊕ g(3),

A a = g−1∂ag = A a
(0) +A a

(1) +A a
(2) +A a

(3)
(12)

Its Yang-Baxter deformation is also integrable
[Vicedo, Delduc, Magro (2013)]

S = − (1+ η2)2
2(1− η2)

∫
dτdσ Pab− STr

[
A a .d ◦

1
1− ηRg ◦ d

(A b)

]
(13)

algebra
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Bi-vector integrable deformations Abelian deformations

U(1)×U(1) deformation: the gravity side
Class of solutions dual to marginal Leigh-Strassler deformations [Lunin, Maldacena (2005)]

The initialN = 4 d = 4 SYM is dual to AdS5 × S5

Take Killing vectors from the U(1)×U(1) subgroup of the SO(6) isometry of the 5-sphere

βmn = 1
2r

abkamkbn = γkϕ1
mkϕ2

n (14)

gmn
def−→ gmn + βmn new−→ Gmn + Bmn = (g−1 + β)−1

mn (15)

This is nothing but a TsT transformation (T-duality — Shift — T-duality)

Tϕ1 ⊕ ϕ2 → ϕ2 + γϕ1 ⊕ Tϕ1 (16)

Deformation is integrable as is any abelian deformation
[Orlando, Reffert, Sekiguchi, Yoshida (2019)]
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Bi-vector integrable deformations Abelian deformations

CFT side

Families of Leigh-StrasslerN = 1 marginal and relevant
deformations of D = 4N = 4 SYM [Leigh, Strassler (1995)]

W =

marginal︷ ︸︸ ︷
iκTr

[
e iγΦ1Φ2Φ3 − e−iγΦ1Φ3Φ2︸ ︷︷ ︸

β−deformation

]
+ ρTr

[
Φ3
1 + Φ3

2 + Φ3
3︸ ︷︷ ︸

ρ−deformation

]
+

relevant︷ ︸︸ ︷
m
2 TrΦ2

3 (17)

γ, ρ— exactly marginal, break SUSY toN = 1,

dual to non-commutative deformations of background string geometry
[Berenshtein, Jejjala, Leigh (2000), Lunin, Maldacena (2005), Kulaxizi (2006)]

m— triggers RG flow to a strongly coupled IRN = 1 SCFT (Leigh–Strassler flow)

dual to domain wall backgrounds
[Freedman, Gubser, Pilch, Warner (1999)]
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Bi-vector integrable deformations Abelian deformations

Why non-commutativity?

Dp

Θ

Bμν

open strings

TsT along (φ1,φ2) turns on B-field

B = γHdφ1 ∧ dφ2

Open strings’ ends on Dp-branes in external B-field
do not commute

⟨Xμ(τ),Xν(0)⟩ = −gμν log τ + iπΘμνε(τ)

open-closed string map:

g−1 + Θ = (G+ B)−1

A similar map exists for (mem)branes and coincides
with polyvector deformations of 11D bg’s
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Bi-vector integrable deformations Abelian deformations

Real β-deformation of AdS5 × S5

Poincare sections: intersection points of phase curves
and a given surface in the full phase space;

Lyapunov exponents show divergence between two
trajectories with evolution;

KAM tori: tori in the phase space of an integrable
system wrapped by trajectories.

Fig: Poincare sections and Lyapunov exponent
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Bi-vector integrable deformations Abelian deformations

Complex β-deformation of AdS5 × S5

Supplement TsT by an S-duality transformationO = S−1
σ TsγTSσ.

β = γ + iσ:
τ→ τ

1+ βτ τ = B12 + i
√
G (18)

Fig: Picture taken from Giataganas, Pando Zayas, Zoubos [1311.3241]

Non-Yang-Baxter part of the deformation breaks KAM tori — no integrability

γ = 1, σ = 0.001 γ = 1, σ = 2 γ = 1, σ = 10
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Bi-vector integrable deformations Non-abelian deformations

Non-abelian deformations

Type II supergravity fields: Gmn,Bmn,φ,C(p)

A general bi-vector Yang-Baxter deformation
[Araujo, Bakhmatov, Colgain, Sakamoto, Sheikh-Jabbari, Yavatanoo (2017)]

• (G+ B)−1 = g−1 + β no initial flux

• (G+ B)−1 = (g+ b)−1 + β with a flux of bmn
(19)

Sufficient conditions to have a solution

[ka, kb] = fabckc (Killing vector algebra)

βmn = kamkbnr ab (bi-Killing anzats);

r b1[a1r|b2|a2 fb1b2a3] = 0 (classical YB equation);

r b1b2 fb1b2akam = Im = 0 (unimodularity condition);

(20)
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Polyvector deformations Set up

Polyvector deformations

Extend to 11D backgrounds: need a T-duality covariant approach:

Bi-vector: (G+ B)−1 = (g+ b)−1 + β

Fields of the 11D SUGRA: Gmn,Cmnk

T-covariance =⇒ U-covariance (exceptional field theory)

Allows to construct generalized Yang-Baxter deformations;

These admit more solutions;

Relate deformations to certain coordinate transformations

Hints for integrability of the membrane.
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Polyvector deformations Set up

Deformations by U-duality

Bi-vector deformations sit in the T-duality O(d,d) group

Oβ =

[
1 0
β 1

]
∈ O(d,d) (21)

U-duality group of Type II string: is Ed(d)
[Cremmer, Julia (1979), (1981)]

E5(5) = SO(5, 5), E4(4) = SL(5), E3(3) = SL(3)× SL(2). (22)

Using these as generating transformations arrive at polyvector deformations
[Bakhmatov, Colgain, Deger, EtM, Sheikh-Jabbari, (2019)]

Ωm1m2m3 , Ωm1m2m3m4m5m6 , . . . (23)

Edvard Musaev (Phystech) Deformations, branes and integrability 18 / 30



Polyvector deformations Generalized Yang–Baxter

Generalized 3-vector Yang-Baxter equations
3-Killing ansatz

Ωmnk = ρabckamkbnkck. (24)

Sufficient conditions to generate solutions to SUGRA

Linear: unimodularity
ρa1a2a3 fa2a3 a4 = 0. (25)

Quadratic: the generalized Yang-Baxter equation

ρa1[a2|a6|ρa3a4|a5|fa5a6a7] − ρa2[a1|a6|ρa3a4|a5|fa5a6a7] = 0, . (26)

sf.
CYBE: r b1[a1r|b2|a2 fb1b2a3] = 0, Uni: r b1b2 fb1b2a = 0 (27)

[Sakatani, Blair, Malek, Thompson, Colgain, Deger, Sheikh-Jabbari, Bakhmatov, Gubarev, EtM ]
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Polyvector deformations Generalized Yang–Baxter

Explicit deformation rules

Consider a solution of the formM7 ×N4 with

ds2 = Δ(y)ds72 + ds24,

c = 1
3!cmnk(y)dy

m ∧ dy n ∧ dy k (28)

Tri-vector transformations in explicit form (Wm = εmnklΩnkl, vm = εmnklcmnk)

K−1 = 1+WmWm − 2Wmvm + (Wmvm)
2
,

Gμν = K− 1
3 gμν,

Gmn = K 2
3
(
gmn + (1+ v 2)WmWn − 2v(mWn)

)
,

Cmnk = K−1
(
cmnk + (1+ v 2)Ωmnk

)
.

(29)

Defs of AdS4 × S7 along the AdS isometries [Bakhmatov, Gubarev, EtM (2020)]
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Polyvector deformations Numerical results

Lunin-Maldacena U(1)3 deformation

Deformation of AdS4 × S7 with S7 reduced to CP3;
Action on τ = C123 + i

√
G as

τ→ τ
1+ γτ (30)

The same as 3-vector deformations withΩ = ∂ϕ1 ∧ ∂ϕ2 ∧ ∂ϕ3

Fig: Poincare sections of IIA string on deformed AdS4 × CP3. The expected result: KAM tori are
preserved.
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Polyvector deformations Numerical results

Non-abelian PPM deformation

(2 parameter) deformation of AdS4 × S7 with S7 reduced to CP3 by

Ω = ρabcdPa ∧ Pb ∧Mcd, a, b = 0, 1, 2; (31)

Does not reduce to a bi-vector deformationΩ ̸= β ∧ P!
Requires genCYBE to produce a SUGRA solution

KAM tori are preserved.
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Polyvector deformations Numerical results

Non-abelian non-YB deformation

(2 parameter) deformation of AdS4 × S7 with S7 reduced to CP3 by

Ω = D ∧ P ∧ P+ P ∧ P ∧M (32)

Does not reduce to a bi-vector deformationΩ ̸= β ∧ P
Does not satisfy genCYBE, satisfies unimodularity,
produces a solution to SUGRA eqns

KAM tori get broken.
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Summary I

Intermediate summary

Bi-vector Yang-Baxter deformation preserve integrability (abelian — proven,
non-abelian — many examples);

Include U-duality: generalize to polyvector deformations.

These are governed by generalized Yang–Baxter equation on ρabc.

Numerical analysis suggests that genCYBE has smth to do with integrability (KAM tori)

Why do we expect integrability here on principle?

Edvard Musaev (Phystech) Deformations, branes and integrability 24 / 30



More observations Integrability

3-brackets
The membrane dynamics can be formulated in terms of 3-brackets
[Bagger,Lambert (2007); Gustavsson (2009)]

[X,Y,Z] ∈ g, ∀X,Y,Z ∈ g, (33)

On a manifold one defines Nambu-Lie structure as a generalisation of the Poisson-Lie
structure

{f, g,h} = Ωmnk ∂mf ∂ng ∂kh,
{xm, xn, {xk, x l, xp}}+ cyclic = 0.

(34)

It is then natural to require smth of the type

d
dtL = [L,M],

{L1,L2,L3} = [r123,L1] + [r123,L2] + [r123,L3].
(35)

Self-consistency of such defined Nambu-Lie bracket requires r to satisfy generalised YB
equation!
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More observations Integrability

Quantum integrability

Quantum R-matrix:
R ∈ End(V⊗ V) (36)

Factorised S-matrix for scattering of particles in 2d

T

=

3

1

2

3

1

2

R23(v)R13(u)R12(u− v) = R12(u− v)R13(u)R23(v).
R12(u) = id+ ℏr12(u).
[r12(u− v), r13(u)] + [r13(u), r23(v)] + [r12(u− v), r23(v)] = 0.

(37)
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More observations Integrability

Tetrahedron equation

Quantum simplex equation - factorised S-matrix for string scattering

T

R234R134R124R123 = R123R124R134R234,

[r123, r124] + [r123, r134] + [r124, r134] + [r123, r234] + [r134, r234] + [r124, r234] = 0.
(38)

[Zamolodchikov (1981); Frenkel,Moore (1991)]

Not clear how to do classical limit;

Not clear whether this has anything to do with generalised YB equation.
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More observations Non-commutativity

Non-commutativity of open strings
Open string in background fields Gμν,Bμν (closed string fields)

SOS =
∫
Σ
dτdσ

(
Gμν ∂αXμ∂αXν + Bμν ∂0Xμ∂1Xν

)
(39)

Correlator for open string ends

⟨Xμ(τ),Xν(0)⟩ = −gμνOS log τ + iπΘμνε(τ) (40)

closed: G0
μν

open: gμν

(Gμν,Bμν)

(gOSμν ,Θμν)

+b-field

=

electric/magnetic
deformation

bi-v
ecto

r de
form

atio
n

SW-map: (g−1
OS + Θ)−1 = G+ B

[Seiberg, Witten (1999)]

[Sundell (2000), Berman, Campos, Cederwall, Gran, Larsson, Nielsen, Nilsson, Sundell (2000)]
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More observations Non-commutativity

Non-commutativity of open (mem)branes?

closed: G0
μν

open: gμν

(Gμν,Cμνρ)

(gOSμν ,Θμνρ)

+C-field
=

electric/magnetic
deformation

poly
-vec

tor
def.

open-closed membrane map

loop non-commutativity

deformation of Dirac bracket (only in the flat 3D)

[Xμ(σ),Xν(σ′)]D = ΘμνρXρ(σ)δ(σ − σ′) (41)

other deformations of the algebra of functions

[Sundell (2000), Berman, Campos, Cederwall, Gran, Larsson, Nielsen, Nilsson, Sundell (2001),

Bergshoeff, Berman, van der Schaar, Sundell (2001)]
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Conclusions

Summary

We observe hints that polyvector deformations of the Type II string preserve
integrability;

Some indications that genCYB is related to integrable systems (2d and/or 3d):
1 fundamental identity of Nambu bracket;
2 exceptional Drinfeld algebra generalized classical Drinfeld double;
3 natural connection to loop non-commutativity of the membrane
4 KAM tori

Further analysis includes:
1 Explicit construction of Lax connection for a polyvector deformed string;
2 Construction of string solitonic solution and mapping them to a known integrable system;
3 Generalization of qt Hopf algebras (ternary, non-associative etc.)
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Thank you!
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