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Classical chaos

Deterministic Hamiltonian evolution

q̇i = ∂H/∂pi, ṗj = −∂H/∂qj

Poincare sections

Ergodicity and mixing

lim
T→∞

1

2T

∫ T

−T
dt µ

[(
T tA

)
∩B

]
= µ(A)µ(B)

Lyapunov exponent (zI = (qi, pj))

lim
t→∞

lim
∥δz0∥→0

1

∥δz0∥
∥∥z(t; z0 + δz0)− z(t; z0)

∥∥ ∼ eλt, λ > 0
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Quantum Lyapunov exponent

Response matrix

ΦIJ(t; z0) :=
∂zI(t; z0)

∂zJ0
, tr(ΦTΦ) ∼ e2λt

In terms of canonical variables

ΦIJ =
∂zI(t; z0)

∂zJ0
=
{
zI(t, z0), z

K
0

}
z0
(π−1)KJ

Canonical quantization{
zI(t, z0), z

K
0

}
z0

7→ − i

ℏ
[
ẑI(t), ẑK(0)

]
OTOC

C(t) =
∑
I,J

tr (ρ̂ [ẑI (t) , ẑJ (0)] [ẑJ (0) , ẑI (t)])

�De�nition� of quantum chaos

C(t) ∼
{
e2λt � YES chaos

t � NO chaos
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Matrix models

Energy level statistics

H|ψk⟩ = ϵk|ψk⟩,
sk = ϵk+1 − ϵk

Distribution for complex (chaotic) systems [Wigner; Dyson]

p(s) = a sβ exp(−bs2)
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This can be obtained in large N limit of Gaussian matrix distribution

Zβ =

∫
dN

2
X e− trX2 ∝

∫
dN ϵ |∆(ϵ1, . . . ϵN )|β e−

∑
ϵ2k
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OPRL and Krylov space

Unitary evolution (L† = L)

|Ψ(t)⟩ = eitL|Ψ⟩ =
∞∑
n=0

(it)n

n!
Ln|Ψ⟩

Gram-Schmidt orthogonalization gives Krylov basis {|Ψn⟩}∞n=0.

L|Ψn⟩ = bn|Ψn+1⟩+ an|Ψn⟩+ bn−1|Ψn−1⟩, |Ψ(t)⟩ =
∞∑
n=0

ψn(t) |Ψn⟩,

Coe�cients ψn(t) satisfy Schroedinger-type equation

i∂tψn(t) = bnψn+1(t) + anψn(t) + bn−1ψn−1(t)
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Ergodic classi�cation

Krylov entropy S and complexity K

S(t) = −
∞∑
n=0

|ψn(t)|2 log |ψn(t)|2, K(t) =

∞∑
n=0

n |ψn(t)|2.

Typical asymptotic behavior [Rabinovici,Barbon,Sonner'21-22]

K(t), eS(t) ∼ Dγ , t > tE K(t), eS(t) ∼ eλt, t≪ tE

γ = 1, λ > 0 for chaotic systems
γ < 1 for integrable systems
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Distributions for tridiagonal form

Gaussian matrix distribution in tridiagonal form [Dumitriu,Edelman'99]

Zβ =

∫
dN

2
X e− trX2 ∝

∫
dNa dN−1b

[∏
k

b
β(k+1)−1
k

]
e−

1
4

∑
a2k−

1
2

∑
b2k

Distribution for tridiagonal form

Hβ ∼ 1√
2


N(0, 2) χ(n−1)β

χ(n−1)β N(0, 2) χ(n−2)β
. . .

. . .
. . .

χ2β N(0, 2) χβ

χβ N(0, 2)


Quantum chaotic systems exhibit such behavior!

[Balasubramian'22]
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First attempt: Szego polynomials

Try to orthogonalize {Un|Φ⟩}∞n=0, for U† = U−1,

Gram-Schmidt orthogonalization leads to [Szegö'67](
|Φn+1⟩
|Φ∗

n+1⟩

)
=

1

ρn

(
U −ᾱn

−αn U 1

)(
|Φn⟩
|Φ∗

n⟩

)
, ρn =

√
1− |αn|2

However, this is not 3-term relation

ᾱn−1ρn |Φn+1⟩ = (ᾱn + ᾱn−1U) |Φn⟩ − ᾱnρn−1U |Φn−1⟩

Hessenberg matrix

⟨Φi|U|Φj⟩ =


−αi−1ᾱj

∏j−1
l=i ρl i < j + 1

ρj−1 i = j + 1

0 i > j + 1
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Success: CMV polynomials

Try orthogonalize {|Φ⟩, U|Φ⟩, U−1|Φ⟩,U2|Φ⟩, U−2|Φ⟩, . . .},
|X2k⟩ = U−k|Φ∗

2k⟩, |X2k−1⟩ = U−k+1|Φ2k−1⟩,
It satis�es 5-term relation [Cantero,Moral,Velazquez'03]

Ckl = ⟨Xk|U|Xl⟩ =


ᾱ0 ᾱ1ρ0 ρ1ρ0 0 0 ...
ρ0 −ᾱ1α0 −ρ1α0 0 0 ...
0 ᾱ2ρ1 −ᾱ2α1 ᾱ3ρ2 ρ3ρ2 ...
0 ρ2ρ1 −ρ2α1 −ᾱ3α2 −ρ3α2 ...
0 0 0 ᾱ4ρ3 −ᾱ4α3 ...
... ... ... ... ... ...


CMV matrix C can be obtained as C = LM

L = 1⊕Θ1 ⊕Θ3 ⊕ · · ·
M = Θ0 ⊕Θ2 ⊕Θ4 · · ·

Θk =

(
ᾱk ρk
ρk −αk

)
Matrix distribution counterpart [Killip,Nenciu'04]

Zβ =

∫
[dUβ]Haar ∝

n−2∏
k=0

(
1− |αk|2

)β
2
(n−k−1)−1

d2α0 · · · d2αn−2dϕ
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Classi�cation suggestion

Conjecture for classi�cation based on [Killip,Nenciu'06]

(i) Degenerate case: ⟨|αn|2⟩ < A/(d− n)1+ϵ,
(ii) Chaotic case: ⟨|αn|2⟩ ∼ A/ [β(d− n)/2 + 1],
(iii) Integrable case: ⟨|αn|2⟩ > A/(d− n)1−ϵ,

Representative distributions

p(i)n (αn) ∼
(
1− |αn|2

)[(d−n)(1+ϵ)−1]
,

p(ii)n (αn) ∼
(
1− |αn|2

)[β(d−n)/2−1]
,

p(iii)n (αn) ∼
(
1− |αn|2

)[(d−n)(1−ϵ)−1]
.
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Numerical tests

(a) (b)
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Application: Kicked Top

Instructive example:

Utop = exp
(
−i κx

2J
J2
x

)
exp
(
−i κz

2J
J2
z

)
exp[−ib (n · J)]

Krylov entropy

101 102 103

2S + 1

101

102

103

〈e
S
〉

Chaotic
Integrable
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Statistics of Verblunsky coe�cients

Distribution of Verblunsky coe�cients for Kicked top
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Kicked Ising

Evolution operator

UKI = exp

(
−iJ

L−1∑
k=0

σzkσ
z
k+1

)
exp

[
−i

L−1∑
k=0

(b · σk)
]

(b)(a)
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CMV integrability: Ablowitz-Ladik system

Like OPRL, OPUC also admit integrable measure modi�cations.

Consider the following one

dν(z) 7→ dντ (z) = eτ(z+z−1) dν(z)

Then, Verblunsky coe�cients satisfy Ablowitz-Ladik equation

[Killip,Nenciu'05]

d

dτ
αn(τ) =

(
1− |αn(τ)|2

)
(αn+1(τ)− αn−1(τ))

which can be rewritten in Lax form Ċ = [A,C].

In terms of operators, this measure modi�cation corresponds to

O 7→ Oτ = eτ UO,

whose physical meaning and importance for spectrum investigation is

still not clear.
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Time evolution and small-time limit I

It would be interesting to examine the reduction of OPUC case to

OPRL one in the following sense. Consider Ut = eitL for some

time-independent Hermitian L
Knowing Lanczos coe�cients an, bn, constructed by L, can we

reconstruct Verblunsky coe�cients αn(t)?

This problem reduces to the following problem, namely, one should

reduce the exponential of Jacobi matrix

U(t) = eitJ , J =


b1 a1 0 . . .
a1 b2 a2 . . .
0 a2 b3 . . .
...

...
...

. . .


and reduce to the CMV form C = QUQ† by uniqely de�ned unitary

matrix Q. Then, recover Verblunsky coe�cients from C.
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Time evolution and small-time limit II

We can solve problem perturbatively in powers of t

ᾱn(t) = (−)n
(
1− it ᾱ(1)

n − 1

2
t2 ᾱ(2)

n + . . .
)

The result reads

ᾱ(1)
n =

n∑
k=0

ak, ᾱ(2)
n = b2n + (ᾱ(1)

n )2

The calculation of next coe�cients is technically extremely hard.

Such de�ned CMV matrix obey the equation

∂tC = [B,C] + t C logC

which is not of the Lax form.

For particular OPRL the problem can be solved explicitly, e.g. Hermite

OPRL lead to Szego-Rogers OPUC with q = e−t2/2.
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Conclusions and future directions

Done:

Probes of chaos for Floquet systems

Quantum entropy and complexity
Statistics of Verblunski coe�cients

Not done:

Application to mixed phase-space systems and time crystals
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