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Motivation for Hotava gravity

Einstein GR

M]% d M]%' d iJ

Higher derivative gravity (Stelle 1977)
/(R+ R*+ R, R") = /(hijmhij + hi; PR + ) (2)

The theory is renormalizable and asymptotically free. However the theory is
not unitary due to presence of ghosts.
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|
Hotava gravity (2009)

The key is the anisotropic scaling of time and space coordinates,
t—b79%, 2t bt i=1,...,d
The theory contains only second time derivatives

/dt dd.’E (h”hlj — h”(—A)dh” +.. )

ocb—2d

Foliation preserving diffeomorphisms

tt'(t), 2" =2 (t,x)
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Metric decomposition

The metric in the action of HG is expanded into the lapse NNV, the shift N* and
the spatial metric 7;; like in the Arnowitt-Deser-Misner (ADM)
decomposition,

ds? = N?dt? — v;;(da’ + N'dt)(da? + Nidt). (6)
Fields are assigned the following dimensions under the anisotropic scaling:

[Nl =[] =0, [N]=d-1. (7)
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Projectable version

A.Barvinsky, D.Blas, M.Herrero-Valea, S.Sibiryakov, C.Steinwachs (2016)

We consider projectable version of Horava gravity. The lapse IV is restricted to
be a function of time only, N = N(t)

1 -
S = ﬁ /dtddl‘\/’?(K”K” —\K? — V) s (8)
where
1.
Kij = 5 (3 = VilNj = V;Ni) . (9)

The potential part V in d = 3 reads,
V =2A — nR+ i R* + paRi; RY
+ 1R + s RR;jRY + v3RERL R + 14V, RV'R + v5V; R V' RI* |
This expression includes all relevant and marginal terms. It contains 9

couplings A, n, 1, o and vy, a =1,...,5.
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Dispersion relations and Lorentz violation scale

The spectrum of perturbations contains a transverse-traceless graviton and a
scalar mode. Both modes have positive kinetic terms when G is positive and
A<1/3 or A>1. (11)

Their dispersion relations around a flat background are

wiy = nk® + pok® + vsk® (12a)
1-A
w? = o (= nk? + (8p1 + 3p2)k*) + vk® | (12b)

where k is the spatial momentum and we have defined
(1 —X)(8vq + 3v3)

e = 1—3X (13)
These dispersion relations are problematic at low energies where they are
dominated by the k2-terms.
We see that (12a) exhibits a transition between wy; oc k® at large k and
wyt x k at small momenta. The transition happens at the momentum
k=Mpyy ~uv; ", (14)
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Essential couplings

Background effective action I'eg depends on the choice of gauge fixing
Teg— e + E.A, (15)

where A is a linear combination of equations of motion.
The UV behavior of the theory is parameterized by seven couplings G, A, v,
a=1,...,5. The essential couplings can be chosen as follows,
G 1%
G=—— A us=2 =% a=123 (16)
Vs Vs Vs

The one-loop B-function of A depends only on the first three of these couplings
and reads,

27(1 — A)? + 3ug(11 — 3A)(1 — A) — 2u2(1 — 3))2

Pr=6 12072(1 — ) (1 + us)us

(17)

The gauge-dependent S-function of G (not G) was also computed.
A.Barvinsky, M.Herrero-Valea, S.Sibiryakov (2019)
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e —
Beta functions

Essential couplings

2 2 2
pr=gZ0=N +1321f);(21<11 733))((11;))%2%(1 W4 o), (19a)
B G2 LG 3
Bg = 26880m2(1 = N)2(1 — 3N2(1 1 ue)Pd 712:‘;“5 PN, v1,v2,v3] + O(G?), (19b)
g . >
Px = Ax 26880m2(1 — \)3(1 — 30)3(1 + us)3ub 2w PRI vyl + 06D, (190

n=0
where the prefactor coefficients A, = (A, , A, , Avy, Av,) equal
Ay, =us(1=2), Ay, =1, Ay, =A, =2. (20)

Example of a polynomial

Pis = —2(1 — X)?[241920007 (1 — X)? + 8v3 (4264517 — 86482 + 43837)

+ v3 (58698 — 106947\ + 482492%) + 4032v1 (462v2(1 — X)? + 201v3(1 — X)?

+ 3027 — 44X — 10) + 8v2(62522% — 9188\ — 1468) + 8v2v3(34335A% — 71196

+ 36861) + v3(20556A7 — 30792) — 3696) + 4533A% — 3881\ + 1448].

Alexander Kurov RG flow of 4d pHG 12 February, Dubna 8 /26




|
Fixed points of RG flow

There are 5 solutions for the system of equations

Bg;/G =0, i = \, Us, V1, V2, V3 . (21)
They written down in the table
A Us ‘ U1 v2 ‘ V3 ‘ Bg/G? ‘ AF? ‘
0.1787 60.57 -928.4 -6.206 -1.711 -0.1416 yes
0.2773 390.6 -19.88 -12.45 2.341 -0.2180 yes
0.3288 54533 3.798x 10% -48.66 4.736 -0.8484 yes
0.3289 57317 -4.125x10% -49.17 4.734 -0.8784 yes
0.333332 | 3.528x10™ | -6.595x10% | -1.950x10% | 4.667 | -3.989x10° | yes

Invariance of GR under 4d diffeomorphisms sets the value of A to 1. That’s
why one expects that A — 17 in the IR limit. However, all the solutions lie on
the left side of the unitary domain

A<1/3 or A>1

and there are no RG trajectories with A — 17,

Alexander Kurov
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A — 0o limit

A.Glimriikgiioglu and S.Mukohyama, Rev. D 83 (2011) 124033

The beta function B, diverges in the limit A — co. For the new variable p, the limit A = co
corresponds to the finite o = 1. It’s beta function reads

2u? + us0(4 — 50) — 302 1—2A
Bo=301-0)9 sz::)ngii(uri)s)g = e=315y (23)
Solutions of the system
Bx/9|amoo =05 X = us,v1,v2,03 . (24)
(e=1)
are written down in the table
Ne Us vy v2 v3 Bg/G? | AF? Ou?a;fl go:vvl?
1 0.0195 0.4994 -2.498 2.999 -0.2004 yes no
2 0.0418 | -0.01237 | -0.4204 1.321 -1.144 yes no
3 0.0553 | -0.2266 0.4136 | 0.7177 | -1.079 yes no
4 12.28 -215.1 -6.007 | -2.210 | -0.1267 yes yes
5 (A) 21.60 -17.22 -11.43 1.855 -0.1936 yes yes
6 (B) | 440.4 | -13566 | -2.467 | 2.967 | 0.05822 | mno yes
7 571.9 -9.401 13.50 -18.25 | -0.0745 yes yes
8 950.6 -61.35 11.86 3.064 0.4237 no yes
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Stability matrix

In the vicinity of a fixed point, the linearized RG flow can be analyzed with

the help of the stability matrix B,”,

_ , 9B,
5 . [ B J _ g BiJ = gi
TR 2
are fixed point values of the coupling constants.

91 ‘ 92 ‘ 03 94
-0.06495 | 0.002639 | 0.1902 + 0.1760 ¢
0.2647 ‘ 0.2751

’ 5911 = ﬁgi/g7 (25)

9i=g;

where g;
05

| |

|

|

’ Ne ‘ A
1 | 0.1787 || -0.3416
2 | 0.2773 || -0.06504 | 0.001944 | 0.02859

Table: Eigenvalues 67 of the stability matrix for the first two fixed points with

finite .
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RG equation

We choose as an initial condition of the RG equation a point slightly shifted
from the fixed point ¢g* in the repulsive direction

= ) i = V1,02,V 7“57)‘0r ’
dr g9 9i = (v1,02,03 0) (26)

9i(0) =g +ecyw!, J=1,2,3,4,5.

where ¢ is a small parameter, ¢; are constants satisfying > ;(c;)? = 1 and

w{ are eigenvectors enumerated by the index J, Bijwj = 07w/, with 67 < 0.
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First fixed point at finite \

’ 0! H wh ‘ Wy ‘ Wy Wy Wy,
-0.3416 7.159%1077 [ -0.9999 [ -2.323x10° | 4.48x107° [ 3.411x10~ %
-0.06495 || 8.536x10~° | -0.9909 0.09028 -0.05745 0.08206

Table: Stability matrix eigenvectors with negative eigenvalues for the first fixed point

‘We choose constants ¢ in the initial conditions on the unit circle

crw' 4 cow? = cos pw! +sinpw? , @ €[0,27) . (27)
10|
0.2
5 T
0.21 j} L %
A v, 0
029 < (=
0.19) e -5
018 \\——/ \J
A8y -10
0 2x10°  4x10°  6x10° 8x10°  10*  1.2x10% -3x10° -2x10° -10° 0
Us vy
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Second fixed point at finite A

(7 T w T e [ e [ e [ ]

y -0.06504 H 2.511x10°° \ 1.339%x107° \ 7.199x10~3 \ -3.395x107 7 \ 0.9999 \

Table: Stability matrix eigenvectors with negative eigenvalues for the second fixed
point

There are only two RG trajectories corresponding to different signs of c;.
Projections of one of them are depicted on the plots

8000[ —
P~—_| _
\ 0.2782 e
6000 T
Us 4000 \\ 202778 \
2000
\ 0.2774] N
0
-2000 -1500  -1000 -500 0 205 210 215 220 225 230 235
V4 V3
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RG flows from fixed points at A = oo
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Stability matrix

Stability matrix eigenvalues in variables (vq,us, 0) with o =1

IR > | | | P

1 1.154 -1.235 ‘ -0.2734 £ 0.2828 7 | 0.9825
2 0.5302 -71.95 £ 5.134 ¢ -0.3207 | 12.35
3 0.3970 -64.72 £ 0.6149 ¢ 0.3012 10.77
4 -0.01334 | -0.3436 | -0.09353 | 0.2200 £ 0.1806 :

5 (A) || -0.01414 | -0.06998 | 0.06569 | 0.2565 | 0.3204

6 (B) || -0.01515 | 0.0924 £+ 0.2890 ¢ 0.3079 | 0.6032
7 -0.01516 | -1.722 | -0.3324 £ 0.3289 7 | 0.1328
8 -0.01517 | -0.3657 | 0.4340 £ 0.4849 ¢ 1.326

Table: Eigenvalues 87 of the stability matrix for the fixed points with infinite .
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From A to B
Eigen- w w w Wy- w
vector ¢ vt v2 v s
Al 0.0423 -0.0398 | 5.25x10 3 | 5.57x10 > | 0.998
A2 0 -0.115 -0.224 0.0480 -0.967
B1 2.19%x107° | -0.999 | 1.87x107° | 5.69x10~° | 0.0162

Table: Eigenvectors of the stability matrix with negative eigenvalues for the fixed
points A and B.

First we build the trajectory flowing from point A along the eigenvector A2.
Since this vector has zero p-part, the trajectory stays in the hyperplane ¢ = 1.
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From Bto A — 1"

Point B has a unique repulsive direction, pointing away from the o =1

hyperplane. This gives rise to two RG trajectories, depending on the sign of
¢p1 in the initial conditions.

0

o

Figure: The couplings (us,v,) as functions of g along the RG trajectory from the
fixed point B to o = 0 (A — 17). Arrows indicate the flow from UV to IR.
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From B to A — 1/3~

Point B has a unique repulsive direction, pointing away from the o =1

hyperplane. This gives rise to two RG trajectories, depending on the sign of
cp1 in the initial conditions.

Figure: The couplings (us,v,) as functions of g along the RG trajectory from the
fixed point B to o =0 (A — 1/37). Arrows indicate the flow from UV to IR.
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Back to flows from A

We consider a general linear combination of vectors A1 and A2 in the initial
condition (26) at the point A

carw + ca0w?? = cos c,koAl + sin LpAwA2 , (28)

where p4 € [0, 27).

A chart illustrating global
properties of the RG trajectories B

flowing from the fixed point A (0))
along different directions

parametrized by the angle 4. oA >1/3 o=l

Parameter § < 1. S
6 "1 ---. 4 " | )

Trajectories emanating from the A

fixed point A cover the whole

range of A in the unitarity domain: e

A<1/3 or A>1.
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From A to A — 17 and A — 1/3~

Figure: RG flows from the fixed point A to A — 1/37 (o — o0).
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From A to A — 17: the behaviour of G

G 10710
10720 ‘ ‘
0.01 1 102 104 106
A=1

Figure: Behaviour of G as a function of (A — 1) along an RG trajectory connecting
the point A to A — 1. In regions I, IT and III the dependence is well described by
the power law G oc (A — 1)* with kr = —13.69, krr = 3.84, krrr ~ 0.37.

In the vicinity of A = 1, we obtain the following scalings of the couplings

x L (29)

o ()\ _ 1)241/448’ Va ’)\*}1 S

g | N ()\ _ 1)17/448’ Us

This means that all beta functions diverge when A\ — 1.
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From A to A — 1/37: the behaviour of G

10710

10720

10730

-10" -10"? -10° -108 -108 -1 —0.01
A-1/3

Figure: Behaviour of G as a function of (A — 1/3) along an RG trajectory connecting
the point A to A — 1/37. In regions I and II the dependence is well described by
the power law G oc (A — 1/3)* with k; = —13.69, k;r = 3.84.
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Lorentz breaking scale Mpy

Dependence of the IR value of the
gravitational coupling

10 Gir = G1r(N|,_, (30)
10719 on the initial direction of the
Gr trajectory at the point A. Dots
1079 show the numerical result while
dashed line is the fit
10—20
Gir = g}?{ (pa —0)7,
¢-6 91 (31)
Q& = —KRJJ - 9 —0. 776
Recalling that G = 2 Gg= G/\/vs and Mry = vy ~1/4 e obtain a hierarchy
M
LV =vV0ir<1. (32)

Such hierarchy could lead to strong suppression of Lorentz violating effects in
gravity at low energies: M. Pospelov, Y. Shang, Phys.Rev.D 85, 105001 (2012)
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Conclusions and outlook

o All the fixed points of RG flow were found.

e Trajectories flowing out asymptotically free UV fixed points analyzed.
Most of them run into singularity.

o It’s nontrivial that there exist two families of trajectories which cover the
whole range of A in the unitarity domain.

o In the IR domain, trajectories of one of the families run to the region
with A — 17, i.e. towards GR value of the coupling .

e It would be interesting to understand whether non-projectable Hotava
gravity possesses similar RG fixed points, trajectories and hierarchy.

The research was supported by the Russian Science Foundation grant
Ne 23-12-00051.
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