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Standard Model Equations

The field equations of quantum physics included in the Standard Model:
I Maxwell equations 1861-1864 (spin 1).
I Klein-Gordon-(Schrodinger) equation 1926 (spin 0).
I Dirac equation 1928 (spin 1/2).
I Weyl equation 1929 (spin 1/2).
I Yang-Mills equations 1954 (spin 1).

Are all these equations satisfactory to physicists?

Until 1998, the answer was “yes”.



About neutrino

The existence of the neutrino was predicted by W. Pauli in 1930. The
neutrino was discovered in 1956 by a team of experimenters led by C.
Cowan and F. Reines. It was discovered that the neutrino is a very light
(possibly massless) left-chiral particle, and the antineutrino is a
right-chiral particle. In 1957, Landau, Salam, Lee and Yang proposed
describing the neutrino with the Weyl equation. It is this equation for the
neutrino that was included in the Standard Model. In 1962, in addition to
the electron neutrino, the muon neutrino was discovered, and in 2000,
the tau neutrino was discovered.



Neutrino oscillations

In 1998, neutrino oscillations were discovered (and later confirmed by
many experiments) in an experiment on the Super-Kamiokande detector.
The theoretical justification for the possibility of neutrino oscillations was
given by B. Pontecorvo back in 1957. Subsequently, the theory of
neutrino oscillations was developed by many authors, including those
from Pontecorvo’s group. Interpretation of experimental data using the
theory of neutrino oscillations indicates the possibility that some (or all)
of the three neutrino flavors νe , νµ, ντ have non-zero masses and, in this
case, cannot be described by the Weyl equation. In this regard, the
question of an equation for describing neutrinos with a non-zero mass
became relevant.



Known candidates for the equation for non-zero mass
neutrinos

In the literature (see, for example, the review [1]), the list of equations
currently considered as candidates for the equation for neutrinos with
nonzero mass consists of the Dirac equation (1928) and the Majorana
equation (1937). Equations for Elko spinors are also discussed (see, for
example, [2]).

M.S.Athar and others, Status and Perspectives of Neutrino Physics,
Prog. Part. Nucl. Phys. 124 (2022) 103947, DOI:
https://doi.org/10.1016/j.ppnp.2022.103947, arXiv:2111.07586

D. V. Ahluwalia and D. Grumiller, JCAP 07 (2005) 012;
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New candidate for the neutrino equation

We propose to supplement the list of candidates with another equation
for the neutrino (and a corresponding equation for the antineutrino).
The new equation is a modification of the biquaternion equation of
Lanczos (1929) ([1], formula (63)).

C. Lanczos, Z. f. Phys. 57 (1929) 447-473, 474-483, 484-493.
Reprinted and translated in W.R. Davis et al., eds., Cornelius
Lanczos Collected Published PapersWith Commentaries
(NorthCarolina StateUniversity,Raleigh, 1998) pages 21132 to 21225.
arXiv:physics/0508012, arXiv:physics/0508002,
arXiv:physics/0508009.

Н. Г. Марчук, Класс полевых уравнений для нейтрино с
ненулевой массой, ТМФ, 219:3 (2024), 422-439; N. G. Marchuk, A
class of field equations for neutrinos with nonzero masses, Theoret.
and Math. Phys., 219:3 (2024), 897-912.



Quaternions and biquaternions

H – algebra of quaternions (1843)

q = q0 + q1I + q2J + q3K , qµ ∈ R

with multiplication

I 2 = J2 = K 2 = IJK = −1.

Quaternion conjugation operation

q → q̃ = q0 − q1I − q2J − q3K , qq̃ = q̃q = q0
2 + q1

2 + q2
2 + q3

2.

C⊗H – algebra of biquaternions (1844)

qµ ∈ C.

Isomorphism
C⊗H ' Mat(2,C).



Second-order matrices from Mat(2,C) and conjugation
operations †,̃ , ∗

In the following presentation, all physical constants (except for the mass
of a particle, which we further denote as m ∈ R) are taken to be equal to
one.

Using conjugation operations
I Hermitian conjugation

V → V †;

I Quaternion conjugation

V → Ṽ = (trV )e − V , V Ṽ = Ṽ V = (det V )e;

I Superposition of Hermitian conjugation and quaternion conjugation

V → V ∗ = Ṽ † = Ṽ †.



Left and right 2x2-spinors from (`) and (`∗) in Minkowski
space R1,3

Let σ0 = e and σ1, σ2, σ3 be the Pauli matrices

σ0 =

[
1 0
0 1

]
, σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
.

A left 2x2-spinor is a matrix function R1,3 → Mat(2,C) such that the
first and second columns of this matrix are left Weyl spinors (spinor
fields). The set of left 2x2-spinors is denoted by (`). The set of right
2x2-spinors is denoted by (`∗).
First order differential operators

∇̃ = σ̃µ∂µ : (`)→ (`∗), ∇ = σµ∂µ : (`∗)→ (`).

Comment. There is a connection between the differential operators ∇,
∇̃ and the conjugation operation ∗. Namely, for any smooth spinor fields
Θ ∈ (`∗), Φ ∈ (`)

(∇Θ)∗ = ∇̃(Θ∗), (∇̃Φ)∗ = ∇(Φ∗).



Left and right Lanczos equations (1929)
Let Φ ∈ (`), Θ ∈ (`∗). Equations

∇̃Φ + imΦ∗N = 0, ∇Θ + imΘ∗N−1 = 0, (1)

where a constant matrix N ∈ Mat(2,C) satisfies equality

N∗N = −e, (2)

are called the left Lanczos equation and right Lanczos equation
respectively (in Lanczos’ work N = N−1 = σ3).
If Φ ∈ (`), Θ ∈ (`∗) are twice continuously differentiable solutions of the
equations (1), then they satisfy the Klein–Gordon equations

(∇̃∇+ m2)Φ = 0, (∇∇̃+ m2)Θ = 0. (3)

where ∇∇̃ = ∇̃∇ = � is the D’Alembert operator.

Theorem
The matrix N ∈ Mat(2,C) satisfies equality (2) if and only if

N = cH,

where c ∈ C, |c | = 1 and H = H†, det H = −1.



Conservation laws for Lanczos equations

Conservation laws for field equations in Minkowski space are expressions
of the form

∂µj
µ = 0, (4)

that is, the 4-divergence of some real vector field with components jµ is
equal to zero in some region of space-time.
Let Φ = Φ(x) ∈ (`) be a solution to the left Lanczos equation (1), (2).
Multiply equation (1) on the left by the matrix Φ† and add the result to
the Hermitian conjugate expression

Φ†σ̃µ∂µΦ + imΦ†Φ∗N = 0, (∂µΦ†)σ̃µΦ− imN†Φ̃Φ = 0,

∂µ(Φ†σ̃µΦ) + im(Φ†Φ∗N − N†Φ̃Φ) = 0. (5)

If trN = 0, then we obtain the conservation law (4) with a real vector
field

jµ = tr(Φ†σ̃µΦ).



Key condition
If

Φ†Φ∗N − N†Φ̃Φ = 0, (6)

then formula (5)

∂µ(Φ†σ̃µΦ) + im(Φ†Φ∗N − N†Φ̃Φ) = 0

gives the conservation law

∂µ(iΦ†σ̃µΦ) = 0. (7)

Components of the vector with values in the Lie algebra u(2)

Jµ = iΦ†σ̃µΦ ∈ u(2)T1

expand in the Pauli basis
Jµ = ijµa σ

a.

As a result, from (7) we obtain four real conservation laws

∂µj
µ
a = 0, a = 0, 1, 2, 3. (8)



Conservative 2x2-equation
Let us consider two modifications of the Lanczos equation (1), (2) that
ensure the fulfillment of the key condition (6):

I Lanczos equation with an additional condition

det Φ = 0;

I Lanczos equation with N = cH and with phase factor c ∈ C,
|c | = 1, depending on spinor Φ by formula

c =
det Φ

| det Φ|
(9)

In this case we obtain left conservative 2x2-equation

∇̃Φ + imΦ̂H = 0, (10)

where H is a constant matrix from Herm(2) with condition det H = −1
and

Φ̂ =
det Φ

| det Φ|
Φ∗. (11)

The equation (Θ = Θ(x) ∈ (`∗), H ∈ Herm(2), det H = −1)

∇Θ + imΘ̂H−1 = 0, (12)

will be called the right conservative 2x2-equation.



Gauge U(2) symmetry of conservative 2x2-equations

Let Aµ = Aµ(x), (x ∈ R1,3) be a smooth covector field with values in the
Lie algebra u(2).

Theorem
Let ρ be a real constant. The equation

σ̃µ(∂µΦ + ΦAµ) + imΦ̂H = 0, (13)

where

Φ = Φ(x) ∈ (`), H = H(x) ∈ Herm(2), det H = −1, trH = ρ
(14)

is invariant under the following gauge transformation with unitary matrix
V = V (x) ∈ U(2)

Φ → Φ́ = ΦV ,

Aµ → Áµ = V−1AµV − V−1∂µV , (15)

H → H́ = V−1HV .



Combining the Left Conservative 2x2-Equation with the
Yang–Mills System of Equations we get

σ̃µ(∂µΦ + ΦAµ) + imΦ̂H = 0,

∂µAν − ∂νAµ − [Aµ,Aν ] = Fµν , (16)
∂µF

µν − [Aµ,F
µν ] = iΦ†σ̃νΦ,

det Φ 6= 0, det H = −1, trH = ρ,

invariant under the gauge transformation (15) with the unitary Lie group
U(2) (with Fµν ∈ u(2)T2 and Fµν → F́µν = V−1FµνV ).
We consider the system of equations (16) as a system of equations for a
(left-chiral) neutrino interacting with the Yang–Mills field (Aµ,Fµν) with
U(2) gauge symmetry.
For the antineutrino we have the system of equations

σµ(∂µΘ−ΘÃµ) + imΘ̂H−1 = 0,

∂µÃν − ∂νÃµ + [Ãµ, Ãν ] = F̃µν , (17)

∂µF̃
µν + [Ãµ, F̃

µν ] = iΘ†σνΘ,

det Θ 6= 0, det(H−1) = −1, tr(H−1) = −ρ,



Polar gauge of solutions of the left conservative
2x2-equation

By the polar matrix factorization theorem, any non-singular matrix
A ∈ Mat(2,C) can be uniquely represented as a product of two matrices

A = QW ,

where Q is a Hermitian positive definite matrix and V ∈ U(2). If
Φ = Φ(x) is a solution to the left conservative equation (13), (14) in the
domain Ω, then at each fixed point x́ ∈ Ω the matrix Φ(x́) has a polar
factorization

Φ(x́) = Q(x́)W (x́). (18)



Thank you!


