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Goal of the report.

The purpose of the report is exclusively methodological, it
is about the connection of the Painlev�e equations and
isomonodromy, about the method of developing the theory
of Painlev�e equations.

A scheme that allows one to present all six equations and
their basic properties in lectures, say, over a semester is
proposed.

The derivation of equations is introduced, with all the
proofs of the statements, without restrictions on the
parameters and without the spell: �Omitting the
calculations, we obtain...�
... but with: �We can verify by direct calculation that ...�:)
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Philosophy:

�From the Painlev�e equations follows Isomonodromy.�
� the theory is transparent and not cumbersome.

�From the Isomonodromy follows Painlev�e equations.�
� this is only partially true. It is true in the case of a
general position of the parameters only. The theory is
both complex and cumbersome.
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What is it all about? What is the connection

between the Painlev�e equations and the

di�erential system (of linear equations).

The Painlev�e equation is a nonlinear ODE:

qtt = F(q, qt, t).

The linear di�erential system is N× N-matrix equation on
Ψ

dΨ = A(z; q, qt, t)dzΨ.

Matrix A is constructed by a set of complex values z, q, qt, t.
Namely. Having a solution q = q(t) one can, in a rational
way, construct a set of di�erential systems
dΨ = A(z; q, qt, t)dzΨ such that each of these systems has
the same monodromy. The set of systems is parameterized
by t ∈ C.
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The source of the principal di�culties.

An honest deductive exposition of
�Isomonodromy�−→�Painlev�e� is impossible(!) � there are
counterexamples.

In more details. Assuming the constancy of monodromy, as
a consequence, the Painlev�e equation PVI(α1, α2, α3, α4) is
obtained only if 2αk 6∈ Z. If 2αk ∈ Z, then it is possible to
deform the equation, preserving monodromy, di�erently.

Consequently, it is impossible to say: �... for simplicity,
consider 2αk 6∈ Z, the general case is only technically more
complicated� � it is not (only) �technically more
complicated�, the main implication is not true, Painlev�e
does not follow from the isomonodromy.

If we restrict ourselves to the general position, then the
question immediately arises � why is the condition 2αk 6∈ Z
not speci�ed when writing the Painlev�e equation itself?!
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A.A. Bolibruch's counterexample.

It will be shown that the isomonodromy of the deformation
is equivalent to the existence of a �at 1-form
Ω = Adz + Bdt.
It will be shown that the Painlev�e VI equation de�ne a
deformation form of the following form:

∑
kA

(k) dz−dzk
z−zk

.
However, there are other �at forms of deformation, for
example Ω =(

1 0
2t

1−t2 0

)
d(z + t)

z + t
+

(
0 −6t
0 −1

)
dz

z
+

(
2 3 + 3t
1

t+1
−1

)
d(z− 1)

z− 1
+

+

(
−3 −3 + 3t
1

t−1 2

)
d(z + 1)

z + 1
+

(
0 0
−2t
1−t2 0

)
dt

z + t
= Adz+Bdt.
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What does this example mean?

The example does not a�ect the
�Painlev�e�−→�Isomonodromy� transition
and destroys the transition
�Isomonodromy�−→�Painlev�e�.

The PVI equation with the parameters of this example
(9/2, 1/2, 25/2, 2) describes an isomonodromic deformation
of the same di�erential system, but a di�erent deformation.

The deformation that exists in the case of general position
(Painlev�e) is also isomonodromic for this system.
But, with this choice of the parameters, there are more
deformations that do not change the monodromy than in
the case of general position. It happens.
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It is suggested:

When getting acquainted with the theory of Painlev�e
equations completely abandon the
�Isomonodromy�−→�Painlev�e� transition. Just inform,
without going into details, that in the case of a general
position, the inverse transition is also possible. It is
obtained by a deep analysis of the asymptotic expansions.

The inverse monodromy problem and the Riemann-Hilbert
approach shold be presented later, separately � as the most
powerful method for studying the already written
equations. At the time already equipped with both a Lax
pair and Hamiltonian theory.

This is all the more logical since, if we take the point of
view of �Painlev�e equations are nonlinear special functions�,
then most scientists need Painlev�e equations as a tool, and
not at all as an object of investigations.
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Advantages:

Simple logic � �one-way implication�.

You can remove the cumbersome calculations and many
murky speculations, replacing them with the
�Guess-and-check� trick, where desired.
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About priorities.

I have never been interested in this, so I can only say whose
works I studied, the list will be at the end of the
presentation.
Historical references you can �nd in the number of
monographs.
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Structure of the report.

I describe the Fuchsian case (PVI) in as much detail as
possible �rst. It is the basis, the foundation.

For the non-Fuchsian case I prove the constancy of the
monodromy. It is su�cient for the form of deformation to
be rational and for the Stokes multipliers to be checked to
be constant.

I explain �on the �ngers� how it was possible to guess all
this � what manipulations give the answer that is checked.
It is so called �con�uence procedure�.
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Table of Content:

True monodromy. Monodromy group. Deformation
form.

Fuchsian case, PVI system:

1 Schlesinger ansatz. Schlesinger equations on
∏

kO(k).

2 Hamiltonian structure of the Schlesinger equations.

3 Symplectic reduction. Projection of the equations∏
kO(k) π−→

∏
kO(k)//GL(2,C).

4 Coordinatization
∏

kO(k)//GL(2,C).
5 PVI equation.

6 Sections of
∏

kO(k)//GL(2,C) π−1

−→
∏

kO(k)

and the symmetries of PVI.
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Table of Content (continuation):

The Non-Fuchsian Case. PV-PI Systems:

1 Multiple Poles of a Di�erential System and the True

Monodromy.

2 The Stokes E�ect, the Notion of �Generalized

Monodromy�.

3 The Constancy of the Generalized Monodromy is a

Consequence of the Rationality of the Deformation

Form. Checking the Constancy of Stokes Multipliers.

4 The Deformation Forms for PV-PI, as Successive

Degenerations of the PVI Deformation Form. Guess

and Check.

5 The Hamiltonian Theory of a Single Irregular

Singularity � a Truncated Loop Group and the Taki�

Algebra.

6 Symplectic Reduction to (Hamiltonian) PV-PI

Systems.
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True Monodromy. The Deformation Form.

Consider the equation dzΨ = AdzΨ in connected not
simply-connected domain of Cz. We obtain a connected
simply connected domain by removing the system of cuts
lk. For example, connect the poles A(z)dz with some
non-singular point Pstart.
Consider the solution Ψ : Ψ(Pstart) = I in the domain. On

the di�erent sides of each cut Ψ−(z) = Ψ+(z)M
(k)
+−, z ∈ lk,

since any two solutions di�er by a constant right-hand
factor.
We introduce the parameter t ∈ [0, 1]. The cuts will turn
into ��lms� lk × [0, 1], in the neighborhood of each of which

there are two solutions Ψ−(z, t) and Ψ+(z, t)M
(k)
+−(t).

The sewing together (matching) condition
dtΨ−Ψ−1− = dtΨ+Ψ−1+ =: B is the condition of constancy of

the monodromy M
(k)
+−(t) = constk!

Ω := dΨΨ−1 = Adz + Bdt is the main object of the theory.International Workshop �Problems of Modern Mathematical Physics (PMMP'25)� • Dubna 13.02. 2025
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Fuchsian case. Schlesinger Ansatz.

Consider dΨ/dz =
∑

kA
(k) 1

z−zk
Ψ,

in the neighborhood of z ∼ zk: dzΨ =
(
A(k)dz
z−zk

+ O(1)
)

Ψ.

The singular part depends only on the di�erence z− zk,
let's try to �nd a solution with a symmetric (locally!!)

dependence: dΨ =
(
A(k) dz−dzk

z−zk
+ O(1)

)
Ψ. Let's sum and

voluntaristically(!) throw away O(1)dzk:

dΨ =
∑
k

A(k)dz− dzk
z− zk

Ψ.

The compatibility condition, that is, d2Ψ = 0 gives a
dynamical system on A(k), the famous Schlesinger system.
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Schlesinger equations on

O(1) × ...×O(4) =:
∏

kO(k)

The condition that each of the m residues of the zero
di�erential d2Ψ is equal to zero is

dA(k) +

[
A(k),

∑
i 6=k

A(i)dzk − dzi
zk − zi

]
= 0, k = 1, . . .m.

The conjugate class A(k) is preserved since dA(k) = [A(k), ∗],
therefore A(k) belong to the orbit O(k) of the (co)adjoint
action of the linear group. Consequently each residue A(k)

lies in the symplectic space O(k).

Let us construct a Hamiltonian theory.
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Hamiltonian structure of the Schlesinger

equations.

A veri�cation shows that the Hamiltonian of the dynamics
with respect to �time� (parameter) zk is

Hk = trA(k)
∑
i 6=k

A(i) 1

zk − zi
.

International Workshop �Problems of Modern Mathematical Physics (PMMP'25)� • Dubna 13.02. 2025



18 / 41

Symplectic reduction. Projection of equations

from
∏

kO(k) to
∏

kO(k)//GL(2,C).

The Hamiltonian does not depend on the simultaneous
conjugation of all A(k) by a single matrix, even if it depends
on zk, i.e., on the diagonal action of GL(2,C). The
Hamiltonian system can be projected to the quotient space∏

kO(k)/GL(2,C).
The momentum map is

∑
kA

(k), it is the total residue of
the di�erential Adz. It (the residue) is constant, equal to
zero. We obtain a system with the same Hamiltonians, but
on another symplectic space:

O(1) × ...×O(4)
∣∣∑

k A
(k)=0

/GL(2,C) =:
∏
k

O(k)//GL(2,C)
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Coordinatization of
∏

kO(k)//GL(N,C).
We can take functions (matrix elements A

(k)
ij ) from any

section of the bundle∏
k

O(k) →
∏
k

O(k)//GL(N,C)

as coordinates. Consider the Painlev�e case N = 2,m = 4.
Usually one of A(k) is taken as diagonal, and implicitly, by
equations, the diagonal factor is �xed. This is
not an optimal choice! Much more e�cient:

A(2) =

(
∗ ∗
0 ∗

)
,A(3) =

(
∗ 0
∗ ∗

)
,

and, optionally, we �x either an o�-diagonal element or a
proper direction of A(4):

(A(4))12 = −1 , or (A(4))11 − (A(4))12 = (A(4))22 − (A(4))21.
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Coordinatization of
∏

kO(k)//GL(2,C)
(continuation).

The resulting simpli�cations:

1 Symplectic form on the quotient space
ω(1) + · · ·+ ω(4) = ω(1) � the canonical coordinates on
the space

∏
kO(k)//GL(2,C) are the canonical

coordinates on one orbit O(1).

2 The equation
∑

kA
(k) = 0 is solved elementarily.
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Explicit form of the section if A
(4)
12 = −1.

A(1) =

(
λ1 − pq q

−p(pq−∆1) λ′1 + pq

)
,A(2) =

(
λ2 1− q
0 λ′2

)
,

A(3) =

(
λ3 0

a
(3)
21 λ′3

)
,A(4) =

(
−Σ11 −1

−Σ11Σ22 + λ′4λ4 −Σ22

)
,

here λk, λ
′
k are the eigenvalues of A

(k), ∆k = λk − λ′k and
Σ11,Σ22 are the sums of the corresponding matrix elements

Σ11 := −pq + λ1 + λ2 + λ3,Σ22 := pq + λ′1 + λ′2 + λ′3,

a
(3)
21 = p(pq−λ1+λ′1)−(pq−

∑
j

λj+λ4)(pq+
∑
j

λ′j−λ′4)−λ′4λ4.
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Section, if the eigen-direction λ4 of A
(4) is

constant and equal to (1,−1)T.

A(1) =

(
λ1 + pq p

−q(pq + ∆1) −pq + λ′1

)
, A(2) =

(
λ2 a

(2)
12

0 λ′2

)
,

A(3) =

(
λ3 0

a
(3)
21 λ′3

)
,A(4) =

(
−pq− λΣ + λ4 −pq− λΣ

pq + λΣ −∆4 pq + λΣ + λ′4

)
,

a
(2)
12 = p(q− 1) + λΣ, a

(3)
21 = pq(q− 1) + ∆1q− λΣ + ∆4,

λΣ :=
∑

k λk, ∆k := λk − λ′k.
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Hamiltonian PVI system.

Let z1 = 0, z2 = 1, z3 = t, z4 =∞. The calculation of the
Hamiltonian for the section A

(4)
12 = −1 gives:

H :=
trA(3)A(1)

t
+

trA(3)A(2)

t− 1
=

1

t(t− 1)
trA(3)((t−1)A(1)+tA(2)) =

=
q(q− 1)(q− t)

t(t− 1)

(
p2 − p

(
∆1

q
+

∆2

q− 1
+

∆3

q− t

))
+

+q
∆Σ(∆Σ − 2∆4)

4t(t− 1)
+ ∗.

Here �∗� does not contain the coordinates p, q, it does not
a�ect the equations of motion.
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The PVI equation.

The PVI equation is the Euler-Lagrange equation for the
Hamiltonian PVI system just written out. Having written
it out, we see that it depends on the following combinations
of the eigenvalues λk − λ′k =: ∆k of A

(k):

PVI

(
∆2

4

2
,

∆2
1

2
,

∆2
2

2
,

(∆3 + 1)2

2

)
.

We will demonstrate that the generators of the PVI
symmetry groups are easy to obtain. /Advertisement:)/
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Schlesinger transform.

Multiplying Ψ from the left by a diagonal matrix of the

form

(
z−z2
z−z3 0

0 1

)
preserves the Fuchsianity of the system,

since the residues at z2 and z3 have zeros where a 2nd-order
pole could arise:

A(2) =

(
λ2 ∗
0 λ′2

)
,A(3) =

(
λ3 0
∗ λ′3

)
.

The transformation is regular at the other points.
This action changes λ2 → λ2 + 1 and λ′3 → λ′3 − 1. Thus we
can add any integers to ∆k, provided that the sum of the
added is even.
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Okamoto transformation.

Let us calculate the Hamiltonian for the second choice of
coordinate section � when one eigen-direction of A(4) is
constant:

q(q− 1)(q− t)

t(t− 1)

(
p2 − p

(
∆4 − ∆Σ

2

q
+

∆2 − ∆Σ

2

q− 1
+

∆3 − ∆Σ

2

q− t

))
+ q

∆Σ∆1

2t(t− 1)
,

here {z1, z3, z4, z2} = {0, 1,∞, t}.
We got the same equation, but

∆k → ∆k −
∆Σ

2
.

It is the famous Okamoto transform.
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Permutation of 0↔∞.

In the �rst normalization, the z-independent
transformation Ψ→ diag(1/q,−1)Ψ swaps A(1) and A(4):{

∆2
4

2
,

∆2
1

2
,

∆2
2

2
,

(∆3 + 1)2

2

}
→
{

∆2
1

2
,

∆2
4

2
,

∆2
2

2
,

(∆3 + 1)2

2

}
.

This leads to the transformation qnew = 1/q.
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Permutation 0↔ 1.

Transformation of the direction of the �rst coordinate axis
from the eigen-direction of A(2) to the eigen-direction of
A(1) swaps A(1) and A(2), and also transforms qnew = 1− q,{

∆2
4

2
,

∆2
1

2
,

∆2
2

2
,

(∆3 + 1)2

2

}
→
{

∆2
4

2
,

∆2
2

2
,

∆2
1

2
,

(∆3 + 1)2

2

}
.
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Permutation 1↔ t.

Here the geometric picture is not clear. However, one can
see that the canonical transformation on the �ber t = const

t = 1/tnew, q = tqnew, p = pnew/t

preserves the form of the quadratic in �p� part of the
di�erential Hdt:

p2q(q− 1)(q− t)d log
t

t− 1
,

but swaps the roots q = 1 and q = t: q = 1←→ 1/t = tnew.
It is easy to check that the remaining terms, linear in �p�,
in the formula dH ∧ dt also preserve their form.
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Permutation of 1↔ t (continuation).

Comparing the linear terms in �p�, we see that:

dp ∧ dq− dH(p, q, t; ∆1,∆2,∆3,∆4) ∧ dt =

dpnew∧dqnew−dH(pnew, qnew, tnew; ∆1,∆3+1,∆2−1,∆4)∧dtnew.

This is transformation{
∆2

4

2
,

∆2
1

2
,

∆2
2

2
,

(∆3 + 1)2

2

}
→
{

∆2
4

2
,

∆2
1

2
,

(∆3 + 1)2

2
,

∆2
2

2

}
.

Note. The shifts ±1 in the parameters ∆ are a consequence
of the explicit dependence of the transformation on time

dp ∧ dq = dpnew ∧ dqnew − d(pq) ∧ dt/t.

This also explains the presence of �+1� in the de�nition of
the Painlev�e parameter in the moving pole. Namely
∆2

k, k = 1, 2, 4 and (∆3 + 1)2 =: δ.
International Workshop �Problems of Modern Mathematical Physics (PMMP'25)� • Dubna 13.02. 2025



31 / 41

Nonfuchsian case.

Let the di�erential A(z)dz in a linear di�erential system

dzΨ = A(z)dzΨ

has multiple poles.

How to deform such an equation while preserving
monodromy?
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Multiple poles of a di�erential system and true

monodromy.

The concept of monodromy is preserved, in particular, its
constancy, as before, is equivalent to the existence of a �at
deformation form

Ω = Adz + Bdt.

But the concept becomes poor, for example, any(!)
deformation of a system with a single pole is
isomonodromic � the fundamental group is trivial and,
therefore, constant. Analytically:

∂Ψ(z, t)/∂z =
(
A1(t) + A2(t)z + ... + An(t)zn−1

)
Ψ(z, t).

Ψ(z, t) ∈ GL(N,C) is an entire function of z, so setting
B := ΨtΨ

−1, we obtain the �at deformation form:

dΨ = (Adz + Bdt)Ψ.
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Stokes e�ect:

Let z→∞,

ez + e−z ∼ ez, <z > 0
e−z, <z < 0

It demonstrates that a function analytic in the punctured
neighborhood can have di�erent asymptotics at the point.

Note. This does not happen for rational functions.
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Elements of the Theory of Di�erential

Equations.

Consider dΨ =
(

Θn

zn
+ An−1

zn−1 + . . .
)

dz
z

Ψ, z ∼ 0,

where Θn is diagonal, with di�erent eigenvalues.

From the Theory of Di�erential Equations it follows that
the general solution has an asymptotics
Ψ(z) ∼

(
I +
∑∞

i=1 giz
i
)

exp{Θ(z)}Ck, if
arg z ∈]θ0 − δ + π

n
k, θ0 + π

n
(k + 1)[, k = 0, 1, ..., 2n.

Here Θ(z) =
∑n

j=1 Θj
z−j

−j + Θ0 ln z, where all Θj are diagonal,

and all gi,Θj are (rationally) determined by Ai (the
equation).

It is the dependence on k that is the Stokes e�ect. The
factors CkC

−1
k+1 are a generalization of the monodromy

matrices. They are called Stokes multipliers.
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Constancy of the generalized monodromy and

rationality of the deformation form.

Let dΨ = ΩΨ, Ω = Adz + Bdt be the deformation form.
Comparison of asymptotics Ψt and BΨ gives

∞∑
i=0

(
B(z, t)gi − giΘ̇(z, t)− ġi

)
z−i ∼(

I +
∞∑
i=1

giz
−i

)
eΘ(z,t)(ĊkC

−1
k (t))e−Θ(z,t). (1)

If B is rational in z, then eΘ(z,t)(ĊkC
−1
k (t))e−Θ(z,t) does not

depend neither on z nor on k. It is a diagonal matrix
depending, perhaps, only on t.
For Ċk to be zero, it is su�cient that the coe�cient of z0 in
the series on the left-hand side be zero. This can be veri�ed.
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Irregular isomonodromic deformation forms as

the degenerations of the Schlesinger deformation

form

There are limit transitions of the Schlesinger deformation
form that yield �nite rational limits with multiple poles.
For example, let ε→ 0:∑

kA
(k) dz−dzk

z−zk
+ (−A1/ε + A0)dz−dz0

z−z0 + 1
ε
A1

dz−d(z0+εt)
z−(z0+εt)

=

=
∑

kA
(k) dz−dzk

z−zk
+
(

tA1

(z−z0)2
+ A0

z−z0

)
(dz− dz0)− A1

z−z0dt+ o(1)

Similarly, setting
z1 = z0 + εt1, z2 = z0 + εt1 + ε2t2, z3 = z0 + εt1 + ε2t2 + ε3t3...
and, selecting the appropriate matrix residues depending
on the parameters tk and ε→ 0, we can obtain a
deformation form with poles of any multiplicity.
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Isomonodromic Painlev�e systems PV-PI can be

obtained by degenerating the Schlesinger

deformation form.

The PV − PI equations correspond to isomonodromic
deformations of systems with multiple poles. These systems
are obtained by various fusions (con�uences) of several
poles of the Fuchsian PVI system.

Limit procedures yield rational deformation forms
corresponding to the PV − PI equations.

The �Result�, i.e. that the deformation form leads precisely
to the Painlev�e equation, is veri�ed.
The constancy of the Stokes matrices is also veri�ed.
Consequently these deformations are isomonodromic.
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The Hamiltonian structure of an irregular

singular point. A truncated loop group and its

Lie algebra, the Taki� algebra.

Fuchsian systems are naturally related to the group
GL(N,C) and its coadjoint action.
Consider a generalization, the group Gn, whose elements
are matrix polynomials of degree at most n:
g0 + g1z + ... + gnz

n ∈ Gn, det g0 6= 0, the group operation is
the product of polynomials with degrees higher than n
discarded.

Its Lie algebra (Taki� algebra):
α = α0 + α1z + ... + αnz

n ∈ gn, αk ∈ gl(N,C). Coalgebra:
A = (An

1
zn

+ ... + A1
1
z

+ A0)dz
z
∈ g∗n, Ak ∈ gl∗(N,C).

The group Gn acts coadjointly on di�erentials with multiple
poles.
Pairing < A, α >= tr ResαA.
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Symplectic reduction to (Hamiltonian)

systems PV-PI.

As in the Fuchsian case, the original symplectic space is the
Cartesian product of orbits corresponding to each singular
point.
The same Hamiltonian reduction by the diagonal action of
GL(2,C) at the zero level of the momentum map, equal to
the total residue, yields the reduced phase space.

As the pole order increases, the corresponding orbit
becomes more and more complicated. The choice of a
section convenient for the canonical parametrization of the
space also becomes more and more di�cult.
The di�culties in obtaining the already known answer are
less and less reasonable.
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My sources:

General theory, both regular and irregular:

The Japan School: M. Jimbo, T. Miwa, K. Ueno, K.
Okamoto.

The Leningrad School: A.R. Its, A. A. Kapaev,
A.V. Kitaev and D.A. Korotkin.

A.A. Bolibruch, B.A. Dubrovin and M. Mazzocco.

The theory of the con�uence, Lax pairs and the
Hamiltonian structure of the irregular case:

V. Rubtsov, M. Mazzocco and, especially, I. Gaiur.
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Thank you!

The End = Êîíåö :)
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