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Goal of the report.

The purpose of the report is exclusively methodological, it
is about the connection of the Painlevé equations and
isomonodromy, about the method of developing the theory
of Painlevé equations.

A scheme that allows one to present all six equations and
their basic properties in lectures, say, over a semester is
proposed.

The derivation of equations is introduced, with all the
proofs of the statements, without restrictions on the
parameters and without the spell: “Omitting the
calculations, we obtain...”

... but with: “We can verify by direct calculation that ...”:)



Philosophy:

m “From the Painlevé equations follows Isomonodromy.”
— the theory is transparent and not cumbersome.

m “From the Isomonodromy follows Painlevé equations.”
— this is only partially true. It is true in the case of a
general position of the parameters only. The theory is
both complex and cumbersome.



What is it all about? What is the connection
between the Painlevé equations and the

differential system (of linear equations).

The Painlevé equation is a nonlinear ODE:

dit = f(qa dt, t)

The linear differential system is N x N-matrix equation on
v
dV = A(z; q,qy, t)dzV.

Matrix A is constructed by a set of complex values z, q, qy, t.
Namely. Having a solution q = ¢(t) one can, in a rational
way, construct a set of differential systems

dV = A(z; q,qs, t)dzW such that each of these systems has
the same monodromy. The set of systems is parameterized
by t € C.
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The source of the principal difficulties.

An honest deductive exposition of
“Isomonodromy” —*“Painlevé” is impossible(!) — there are
counterexamples.

In more details. Assuming the constancy of monodromy, as
a consequence, the Painlevé equation PVI(ay, an, g, ayy) is
obtained only if 2cy & Z. If 2cy, € 7Z, then it is possible to

deform the equation, preserving monodromy, differently.

Consequently, it is impossible to say: “... for simplicity,
consider 2ay € 7Z, the general case is only technically more
complicated” — it is not (only) “technically more
complicated”, the main implication is not true, Painlevé
does not follow from the isomonodromy.

If we restrict ourselves to the general position, then the
question immediately arises — why is the condition 2cy & Z
not specified when writing the Painlevé equation itself?!
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A.A. Bolibruch’s counterexample.

It will be shown that the isomonodromy of the deformation
is equivalent to the existence of a flat 1-form

Q = Adz + Bdt.

It will be shown that the Painlevé VI equation define a
deformation form of the following form: 3, Al d; ka

However, there are other flat forms of deformation, for
example Q =

1 0 d(z+t)+ 0 —6t %-I— 2 343t d(z—1)+
1322 0 Z+t 0 -1 V4 t—&-Ll —1 7 —1

3 d(z +1 dt
+(13 3+3t> (2 + )+<_02t 0) o = Adr B
V4

t—1 2 z+1 iz U




What does this example mean?

The example does not affect the
“Painlevé” —“Isomonodromy” transition
and destroys the transition
“Isomonodromy” —“Painlevé”.

The PVTI equation with the parameters of this example
(9/2,1/2,25/2,2) describes an isomonodromic deformation
of the same differential system, but a different deformation.

The deformation that exists in the case of general position
(Painlevé) is also isomonodromic for this system.

But, with this choice of the parameters, there are more
deformations that do not change the monodromy than in
the case of general position. It happens.
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It is suggested:

When getting acquainted with the theory of Painlevé
equations completely abandon the

“Isomonodromy” —*“Painlevé” transition. Just inform,
without going into details, that in the case of a general
position, the inverse transition is also possible. It is
obtained by a deep analysis of the asymptotic expansions.

The inverse monodromy problem and the Riemann-Hilbert
approach shold be presented later, separately — as the most
powerful method for studying the already written
equations. At the time already equipped with both a Lax
pair and Hamiltonian theory.

This is all the more logical since, if we take the point of

view of “Painlevé equations are nonlinear special functions”,

then most scientists need Painlevé equations as a tool, and
__not at all as an object of investigations.



Advantages:

Simple logic — “one-way implication”.

You can remove the cumbersome calculations and many
murky speculations, replacing them with the
“Guess-and-check” trick, where desired.



About priorities.

I have never been interested in this, so I can only say whose
works I studied, the list will be at the end of the
presentation.

Historical references you can find in the number of
monographs.



Structure of the report.

I describe the Fuchsian case (PVI) in as much detail as
possible first. It is the basis, the foundation.

For the non-Fuchsian case I prove the constancy of the
monodromy. It is sufficient for the form of deformation to
be rational and for the Stokes multipliers to be checked to
be constant.

I explain “on the fingers” how it was possible to guess all
this — what manipulations give the answer that is checked.
It is so called “confluence procedure”.



Table of Content:

m True monodromy. Monodromy group. Deformation
form.

m Fuchsian case, PVI system:
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Hamiltonian structure of the Schlesinger equations.
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and the symmetries of PVI.



Table of Content (continuation):

m The Non-Fuchsian Case. PV-PI Systems:

Multiple Poles of a Differential System and the True
Monodromy.

The Stokes Effect, the Notion of “Generalized
Monodromy”.

The Constancy of the Generalized Monodromy is a
Consequence of the Rationality of the Deformation
Form. Checking the Constancy of Stokes Multipliers.
The Deformation Forms for PV-PI, as Successive
Degenerations of the PVI Deformation Form. Guess
and Check.

The Hamiltonian Theory of a Single Irregular
Singularity — a Truncated Loop Group and the Takiff
Algebra.

Symplectic Reduction to (Hamiltonian) PV-PI
Systems.
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True Monodromy. The Deformation Form.

Consider the equation d,W = AdzV in connected not
simply-connected domain of C,. We obtain a connected
simply connected domain by removing the system of cuts
ly. For example, connect the poles A(z)dz with some
non-singular point Pgar.
Consider the solution W : W(Pg,,+) = I in the domain. On
the different sides of each cut V_(z) = \U_,_(Z)MSI_{)_, z € lx,
since any two solutions differ by a constant right-hand
factor.
We introduce the parameter t € [0,1]. The cuts will turn
into “films” 1l x [0, 1], in the neighborhood of each of which
there are two solutions W_(z,t) and \|!+(z,t)M$(z(t).
The sewing together (matching) condition
dW_ W' =d, ¥, ¥ ! =: B is the condition of constancy of
the monodromy Mgli (t) = consty!

e Q= dWWTL = Adz.+ Bdt.is.the.main obiject of the theory.



Fuchsian case. Schlesinger Ansatz.

Consider d¥/dz = Y, AW Ly,

Z—7Z)
in the neighborhood of z ~ z: d,V = (é(_k—)iz + O(1)> v,
The singular part depends only on the difference z — z,
let’s try to find a solution with a symmetric (locally!!)

dependence: dV = (A(k)dz:—jkzk + O(l)) V. Let’s sum and
voluntaristically(!) throw away O(1)dz:

dV — ZAMMW'
K

Z — 7k

The compatibility condition, that is, d?W = 0 gives a
dynamical system on A®, the famous Schlesinger system.



Schlesinger equations on

OW x .. x OW =: T, O®

The condition that each of the m residues of the zero
differential d?V¥ is equal to zero is

The conjugate class A% is preserved since dA® = [A®) 4],
therefore A) belong to the orbit O®) of the (co)adjoint
action of the linear group. Consequently each residue A®)
lies in the symplectic space O®.

Let us construct a Hamiltonian theory.



Hamiltonian structure of the Schlesinger

equations.

A verification shows that the Hamiltonian of the dynamics
with respect to “time” (parameter) zy is

1

Zk_Zi'

Hy = tr A® Z AD
—



Symplectic reduction. Projection of equations

from [T, O® to [T, O®) JGL(2, C).

The Hamiltonian does not depend on the simultaneous
conjugation of all A®) by a single matrix, even if it depends
on 7y, i.e., on the diagonal action of GL(2,C). The
Hamiltonian system can be projected to the quotient space
[T, OW/GL(2,C).

The momentum map is >, A®_ it is the total residue of
the differential Adz. It (the residue) is constant, equal to
zero. We obtain a system with the same Hamiltonians, but
on another symplectic space:

O x .. x O _,/GL(2,C) Ho )JGL(2,C)

Ul ae



Coordinatization of [T, O J/GL(N, C).

We can take functions (matrix elements Ai(jk)) from any
section of the bundle

[[o® — [[o®/cL(N,C)

as coordinates. Consider the Painlevé case N = 2, m = 4.
Usually one of A® is taken as diagonal, and implicitly, by
equations, the diagonal factor is fixed. This is

not an optimal choice! Much more efficient:

0 % J’ * % /)7

and, optionally, we fix either an off-diagonal element or a
proper direction of A®):

(A(4))12 =—1,o0r (A(4))11 - (A(4))12 = (A(4))22 - (A(4))21-
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Coordinatization of [T, O /GL(2, C)

(continuation).

The resulting simplifications:

Symplectic form on the quotient space
w4+ w® = w® — the canonical coordinates on
the space [[, O® JGL(2,C) are the canonical
coordinates on one orbit O,

The equation ), A®) =0 is solved elementarily.



(4)
2

Explicit form of the section if Aj

A A1 —Ppq q A _ Ay 1—q
—p(pa— A1) M +pq )’ 0 X )7

Az 0 ~-¥ ~1
AB) — 3 AW — 1
( ald) Ny )7 Yo+ AN —Xo )7

here A, Al are the eigenvalues of AR A =\ — A, and
> 11, 299 are the sums of the corresponding matrix elements

Yo = —pq+ A+ Ao+ A3, Yoo i=pa + A} + A, + A,
a5y = p(pa—A+A)—(Pa—Y_ A+ Aa) (Pat D N=N) =Xy As.
J J
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Section, if the eigen-direction Ay of A is

constant and equal to (1, —1)T.

A — ( A1+ pq p ) A — ()\2 ag))
—da(pa+ A1) —pg+A;)’ 0 X, )’

AB) — Ay 0 AW _ (TPA= Az + A —pd—As
al) Ay) Pq+As — Ay pg+As+ A )7

aj; =p(q— 1)+ Ag, aﬁ) =pa(q— 1)+ Aiq — As + Ay,
)\): = Zk /\k, Ak = )\k — )\{(



Hamiltonian PVI system.

Let z1 = 0,20 = 1,23 = t,724 = co. The calculation of the

Hamiltonian for the section A%) = —1 gives:
tr AGAM ¢ AGAG) 1
H:= = tr A®) ((t—1)AW+tA®) =
T o1 ot (e DATHAT)
Cqla—1)(a—t) [ A Ay A;
n t(t — 1) pp q+q—1+q—t +
As(As — 2A,) Ly
4t(t — 1)

Here “x” does not contain the coordinates p, q, it does not
affect the equations of motion.



The PVI equation.

The PVI equation is the Euler-Lagrange equation for the
Hamiltonian PVTI system just written out. Having written
it out, we see that it depends on the following combinations
of the eigenvalues A\ — A, =: A of AM):

PVI(AZ AL 45 —(A3+1)2>.

Y

27 27 27 2

We will demonstrate that the generators of the PVI
symmetry groups are easy to obtain. /Advertisement:)/



Schlesinger transform.

Multiplying W from the left by a diagonal matrix of the

2=23
form ( Z*OZ?» 1 ) preserves the Fuchsianity of the system,

since the residues at z, and z3 have zeros where a 2nd-order
pole could arise:

Ak Az 0
(2 — 2 (3) — 3
A _(O Aé)’A —(* )\é)

The transformation is regular at the other points.

This action changes Ay — Ao +1 and A; — A\; — 1. Thus we
can add any integers to Ay, provided that the sum of the
added is even.



Okamoto transformation.

Let us calculate the Hamiltonian for the second choice of
coordinate section — when one eigen-direction of A® is

constant:
aa- D=0 (»_ (A —F M- F M-
t(t — 1) q q—1 q-—t
As/\y
+q2t(t—1)’

here {Zl, 73,74, Z2} = {0, 1, oo, t}
We got the same equation, but
Ay

Ak—)Ak—T.

It is the famous Okamoto transform.
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Permutation of 0 < oo.

In the first normalization, the z-independent
transformation W — diag(1/q, —1)¥ swaps A1) and A®):

A AT A (A 1)) [AT AL AG (As 1)
2227 2 27227 2 [’

This leads to the transformation qpey = 1/q.



Permutation 0 < 1.

Transformation of the direction of the first coordinate axis
from the eigen-direction of A®) to the eigen-direction of
A swaps A and A®)| and also transforms quew = 1 — q,

{A_i AT A (A3+1)2}_){Ai A} A3 (A3+1)2}

2797 9" 2 2797 9" 2



Permutation 1 < t.

Here the geometric picture is not clear. However, one can
see that the canonical transformation on the fiber t = const

t= 1/tnewa q = UQnew, P = pnew/t

({3

preserves the form of the quadratic in “p” part of the
differential Hdt:

t
p’a(q — 1)(q — t)d log T

but swaps the roots q=1and q=1t: q=1+— 1/t = tyewn-
It is easy to check that the remaining terms, linear in “p”,

in the formula dH A dt also preserve their form.



Permutation of 1 <> t (continuation).

[Ty}

Comparing the linear terms in “p”, we see that:

dp A dq - dH(p, q, t; A17 AQJ A3; A4) Adt =
dpnew/\dQHew_dH(pneW7 Onew tnew; Ala A3+17 A2_17 A4)/\dtnew-

This is transformation
AL A A (As+ 1)) [A] AL (At 1) AF
272727 2 27 27 2 T2
Note. The shifts £1 in the parameters A are a consequence
of the explicit dependence of the transformation on time

dp A dq = dpnew A dgnew — d(pq) N dt/t‘

This also explains the presence of “+1” in the definition of
the Painlevé parameter in the moving pole. Namely
A% k=1,24and (A; +1)*=:0.
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Nonfuchsian case.

Let the differential A(z)dz in a linear differential system
d,V = A(z)dzV
has multiple poles.

How to deform such an equation while preserving
monodromy?



Multiple poles of a differential system and true

monodromy.

The concept of monodromy is preserved, in particular, its
constancy, as before, is equivalent to the existence of a flat
deformation form

Q = Adz + Bdt.

But the concept becomes poor, for example, any(!)
deformation of a system with a single pole is
isomonodromic — the fundamental group is trivial and,
therefore, constant. Analytically:

oV (z,t)/0z = (Al(t) + Ay(t)z + ... + An(t)znfl) V(z,t).

V(z,t) € GL(N,C) is an entire function of z, so setting
B := WV, V! we obtain the flat deformation form:

dV = (Adz + Bdt)V.
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Let z — oo,
e’, Rz>0

eZ e—Z ~
+ e % Mz<O0

It demonstrates that a function analytic in the punctured
neighborhood can have different asymptotics at the point.

Note. This does not happen for rational functions.



Elements of the Theory of Differential

Equations.

Consider dV = (?n ) %\U, z ~ 0,
where ©, is diagonal, with different eigenvalues.

From the Theory of Differential Equations it follows that
the general solution has an asymptotics

w(Z) ~ (I + 221 giZI) exp{@(z)}Ck, if

argz €]6y — § + Tk, 0 + E(k + 1), k=0,1,...,2n.

Here ©(z) = >, ©5%5 ! + 0y Inz, where all ©; are diagonal,

and all g;, ©; are (ratlonally) determined by A (the
equation).

It is the dependence on k that is the Stokes effect. The
factors Ckcﬂh are a generalization of the monodromy
matrices. They are called Stokes multipliers.
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Constancy of the generalized monodromy and

rationality of the deformation form.

Let dV = QU, Q = Adz + Bdt be the deformation form.
Comparison of asymptotics W and BV gives

i (B(Lt)gi £0(2,1) - g)z‘i ~

<I+Zgl ) (EC(t))e Y, (1)

If B is rational in z, then e®®)(C,C1(t))e=®*" does not
depend neither on z nor on k. It is a diagonal matrix
depending, perhaps, only on t.

For Cy to be zero, it is sufficient that the coefficient of z° in
the series on the left-hand side be zero. This can be verified.
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Irregular isomonodromic deformation forms as

the degenerations of the Schlesinger deformation

form

There are limit transitions of the Schlesinger deformation
form that yield finite rational limits with multiple poles.
For example, let € — 0:

(k) dz—dz _ dz—dz 1A dz—d(zotet)
ZkA Z*Zkk + ( ‘Al/E + AO) Z7Z0O + 6A1

z—(zo+et)
S Al dedn ((Ziﬁgp + Zégg) (dz — dzg) — A-dt +o(1)

Similarly, setting

71 = 29 + €t1,29 = 2o + €ty + €2ty 23 = 7o + €ty + €2ty + €7t3...
and, selecting the appropriate matrix residues depending
on the parameters t, and € — 0, we can obtain a
deformation form with poles of any multiplicity.



[somonodromic Painlevé systems PV-PI can be

obtained by degenerating the Schlesinger

deformation form.

The PV — PI equations correspond to isomonodromic
deformations of systems with multiple poles. These systems
are obtained by various fusions (confluences) of several
poles of the Fuchsian PVI system.

Limit procedures yield rational deformation forms
corresponding to the PV — PI equations.

The “Result”, i.e. that the deformation form leads precisely
to the Painlevé equation, is verified.

The constancy of the Stokes matrices is also verified.
Consequently these deformations are isomonodromic.




The Hamiltonian structure of an irregular

singular point. A truncated loop group and its
Lie algebra, the Takiff algebra.

Fuchsian systems are naturally related to the group

GL(N, C) and its coadjoint action.

Consider a generalization, the group G,, whose elements
are matrix polynomials of degree at most n:

g0+ 812+ ... + guz" € Gy, detgy # 0, the group operation is
the product of polynomials with degrees higher than n
discarded.

Its Lie algebra (Takiff algebra):
a=ay+a1z+ ... +auz" € gn, o € gl(N,C). Coalgebra:
A=(Ad+ . +AL+A)Z egr, A egl’(N,C).
The group G, acts coadjointly on differentials with multiple
poles.

 Pairing <A o >=trResaA.



Symplectic reduction to (Hamiltonian)

systems PV-PI.

As in the Fuchsian case, the original symplectic space is the
Cartesian product of orbits corresponding to each singular

point.

The same Hamiltonian reduction by the diagonal action of

GL(2,C) at the zero level of the momentum map, equal to

the total residue, yields the reduced phase space.

As the pole order increases, the corresponding orbit
becomes more and more complicated. The choice of a
section convenient for the canonical parametrization of the
space also becomes more and more difficult.

The difficulties in obtaining the already known answer are
less and less reasonable.



My sources:

General theory, both regular and irregular:

The Japan School: M. Jimbo, T. Miwa, K. Ueno, K.
Okamoto.

The Leningrad School: A.R. Its, A. A. Kapaev,
A.V. Kitaev and D.A. Korotkin.

A.A. Bolibruch, B.A. Dubrovin and M. Mazzocco.
The theory of the confluence, Lax pairs and the
Hamiltonian structure of the irregular case:

V. Rubtsov, M. Mazzocco and, especially, I. Gaiur.



The End — Komerr :)



