\mathbb{CP}^1 SUSY Sigma Models from Nonlinear Chiral Multiplets For "Problems of Modern Mathematical Physics" 2025, Dubna

Viacheslav Krivorol

Based on work with Dmitri Bykov and Andrew Kuzovchikov

arXiv: 2412.21024

Institute for Theoretical and Mathematical Physics Steklov Mathematical Institute The work is supported by RSF grant Nº 22-72-10122

- 1D Supersymmetric sigma models
- 2 The "harmonic truncation" problem for sigma models
- The basic geometric idea behind the formalism: the (co)adjoint orbits
- O $\mathcal{N}=2$ "classical spin chain" on $\mathbb{CP}^1 imes\mathbb{CP}^1$ and non-linear chirality, D-model
- O-model through flat superconnection
- $\mathcal{N} = 4$ generalization, K-model
- Discussion.

[Ivanov,Smilga'12], [Hull'99]

• Geometrical input: Complex dima = n (Kähler) manifold M with

Complex dim_{\mathbb{C}} = n (Kähler) manifold \mathcal{M} with a Hermitian (Kähler) metric $g_{\mu\bar{\nu}}$.

• Field content: n chiral fields \mathcal{Z}^{μ} , n chiral fields Φ^{μ} and their conjugates.

We are interested in two types of supersymmetic sigma models:

•
$$\mathcal{N} = 2(b)$$
 model:
$$\mathcal{S} = \frac{1}{2} \int \mathrm{d}t \int \mathrm{d}^2\theta \left(g_{\mu\bar{\nu}} D \mathcal{Z}^{\mu} \overline{D} \overline{\mathcal{Z}}^{\bar{\nu}} \right). \tag{1}$$

Math interpretation: Quantum Hamiltonian \sim Dolbeault-Laplace operator Δ_{∂} . • $\mathcal{N} = 4(a)$ model:

$$S = rac{1}{2}\int \mathrm{d}t \int \mathrm{d}^2 heta \left(g_{\muar{
u}} \left(D\mathcal{Z}^\mu\overline{D}\overline{\mathcal{Z}}^{\,ar{
u}} + \Phi^\mu\overline{\Phi}^{\,ar{
u}}
ight)
ight).$$
 (2)

Math interpretation: Quantum Hamiltonian \sim Laplace-de Rham operator $\Delta_d.$

- **<u>Problem</u>**: find a suitable finite-dimensional analog for sigma models / spectral problem for Laplace operators.
- Naive way: lattice regularization,...
- Modification of the problem: Find a finite-dimensional analog that exactly reproduces the part of the original ∞-dim spectral problem.
- Solution: "harmonic truncation method".

[Kirillov'61]

What is the classical analog of a single irreducible representation ρ_λ? Answer: a (co)adjoint orbit O_λ. Nice property: O_λ is naturally symplectic.

[Bykov'12], [Bykov,Kuzovchikov'24]

- Suppose we explore a Laplace spectral problem on *M*. Classical analog: mechanics with the phase space T^{*}*M*. Suppose T^{*}*M* is an "almost symplectomorphic" to the *O_λ × O_{λ'} × ...* (maybe in some limit in *λ*, *λ'*, ...). Then, after geometric quantization, the harmonics of the Laplace operators factorizes as *ρ_λ ⊗ ρ_{λ'} ⊗ ...* in this limit.
- Laplace operator on the sphere CP¹: λ is the spin, O_λ ≃ CP¹ of radius ~ λ and ρ_λ are the spherical harmonics. The sphere mechanics on T*CP¹ is "almost symplectomorphic" to CP¹ × CP¹ in the large spin limit.

[Bykov,Krivorol,Kuzovchikov'24]

• Why supersymmetry? In order to extend the Laplacian to the differencial forms.

0

$\mathcal{N}=2$ mechanics on $\mathbb{CP}^1 imes\mathbb{CP}^1$

• Let us consider the following model (D-model):

$$S = \frac{1}{2} \int \mathrm{d}t \int \mathrm{d}^2\theta \Big(|\mathcal{Z}_1|^2 e^{\mathcal{V}_1} + |\mathcal{Z}_2|^2 e^{\mathcal{V}_2} + |\Psi|^2 e^{\mathcal{V}_1 - \mathcal{V}_2} - \lambda (\mathcal{V}_1 + \mathcal{V}_2) \Big) \,, \tag{3}$$

where \mathcal{V}_1 , \mathcal{V}_2 are real gauge superfields, \mathcal{Z}_2 and Ψ are chiral bosonic and fermionic superfields, but \mathcal{Z}_1 satisfy a <u>non-linear chirality constraint</u> [Ivanov, Krivonos, Toppan'97]

$$\overline{D}\mathcal{Z}_1 + \varkappa \, \Psi \mathcal{Z}_2 = 0 \,. \tag{4}$$

Here z is a coupling constant (which controls the size of the sphere).In components (oscillator variables):

$$egin{aligned} \mathcal{S} &= \int \mathrm{d} t \Big(i \overline{z}_1 \circ \dot{z}_1 + i \overline{z}_2 \circ \dot{z}_2 + i \overline{\psi} \dot{\psi} - \varkappa^2 (\overline{z}_1 \circ z_2) (\overline{z}_2 \circ z_1) - \varkappa^2 \overline{\psi} \psi (\overline{z}_2 \circ z_2 - \overline{z}_1 \circ z_1) + \ &+ lpha_1 (\overline{z}_1 \circ z_1 + \overline{\psi} \psi - \lambda) + lpha_2 (\overline{z}_2 \circ z_2 - \overline{\psi} \psi - \lambda) \Big) \,. \end{aligned}$$

In the "spin variables" $S^a_A = \overline{z}_A \sigma^a z_A$ we obtain the spin chain Hamiltonian

$$\mathcal{H} = \chi^2 \Big((S_1^a \otimes S_2^a) + \text{fermions} \Big) \,. \tag{6}$$

Reduction to $\mathcal{N} = 1$ superfields

- The idea is that integration over θ
 is the same as D
 differentiation (up to a total derivative). This is the reason why |Z₁|² in N = 2 gives cubic terms in N = 1 superspace (i.e. non-linear chirality gives the interaction).
- The reduced action in $\mathcal{N} = 1$ superfields is

$$S = \int d\theta \Big[-\overline{Z}_A \circ DZ_A + \overline{\Psi} D\Psi + \varkappa \Big(\overline{\Psi} \overline{Z}_2 \circ Z_1 + \Psi \overline{Z}_1 \circ Z_2 \Big) + A_1 \Big(|Z_1|^2 + |\Psi|^2 + \xi_1 \Big) + A_2 \Big(|Z_2|^2 - |\Psi|^2 + \xi_2 \Big) \Big].$$
(7)

 One can check (see Andrew's talk) that in the limit λ → ∞ this model is equivalent N = 2(b) sigma model. The idea is to decompose the matrix Z = (Z₁, Z₂) as Z = UH via the polar decomposition (U is a unitary and H is a Hermitian positive matrices). One can argue that U realize "good" coordinates along Lagrangian embedding CP¹ → CP¹ × CP¹ and H gives the "momentum direction". Thus, the connection with the sigma model can be obtained if integrated by H (this is well defined in the above limit).

$\mathcal{N}=2$ mechanics on $\mathbb{CP}^1 imes\mathbb{CP}^1$ through flat superconnection

• It is useful to look at the action in $\mathcal{N}=2$ superfields from a slightly different angle. We consider an action

$$\mathcal{S} = rac{1}{2}\int \mathrm{d}t igg(\int \mathrm{d}^2 heta igg(|\mathcal{Z}_1|^2+|\mathcal{Z}_2|^2+|\Psi|^2igg)+\lambda\left(\int \mathrm{d} heta \left(\Lambda_1+\Lambda_2
ight)+\mathrm{c.c.}
ight)igg), \quad (8)$$

where we assume that our $\mathcal Z$ fields are "covariantly constant" in the sense

$$\begin{pmatrix} \overline{D} \mathcal{Z}_1 \\ \overline{D} \mathcal{Z}_2 \end{pmatrix} + \underbrace{\begin{pmatrix} \Lambda_1 & \varkappa \Psi \\ 0 & \Lambda_2 \end{pmatrix}}_{:=\mathscr{A}} \begin{pmatrix} \mathcal{Z}_1 \\ \mathcal{Z}_2 \end{pmatrix} = 0.$$
(9)

We also assume that the "superconnection" $\overline{D} + \mathscr{A}$ is flat, i.e. $\overline{D}\mathscr{A} + \mathscr{A}^2 = 0$.

• From the flatness condition one can deduce that $\Lambda_{1,2}$ superfields are chiral and hence $\Lambda_{1,2} = \overline{D} \mathcal{V}_{1,2}$. Thus, we establish an equivalence with the previous formulation (up to a change of variables).

Generalization to $\mathcal{N} = 4$ (K-model)

• It is easy to generalize this story with superconnection to $\mathcal{N}=4.$ Let us consider the action

$$\mathcal{S} = rac{1}{2}\int \mathrm{d}t \Bigg(\int \mathrm{d}^2 heta \left(|\mathcal{Z}_1|^2 + |\mathcal{Z}_2|^2 + |\Psi|^2 + |\Phi|^2
ight) + \lambda \left(\int \mathrm{d} heta \left(\Lambda_1 + \Lambda_2
ight) + \mathrm{c.c.}
ight)\Bigg), \ (10)$$

where fields are satisfy the nonlinear chirality constraints of the form

$$\begin{pmatrix}
\overline{D}Z_{1} \\
\overline{D}Z_{2}
\end{pmatrix} + \underbrace{\begin{pmatrix}
\Lambda_{1} & \varkappa\Psi \\
\varkappa\Phi & \Lambda_{2}
\end{pmatrix}}_{:=\mathscr{A}}
\begin{pmatrix}
\mathcal{Z}_{1} \\
\mathcal{Z}_{2}
\end{pmatrix} = 0$$
(11)

with flateness condition.

- One can check that $\Lambda_1 + \Lambda_2$ is chiral but not Λ_1 and Λ_2 separately. This manifest the fact that we cannot introduce monopoles in this model.
- As in previous case, in the limit $\lambda \to \infty$ this model is equivalent to the $\mathcal{N} = 4(a)$ sigma model.

Discussion

Results:

- We discuss a finite dimensional "truncations into spin chains" (D-model and K-model) for N = 2(b) and N = 4(a) sigma models on the sphere. They provide <u>exact solutions</u> in the level of a finite number of harmonics.
- These models are constructed via <u>non-linear chiral multiplets</u> and flat superconnections.
- The connection between D/K models and sigma models is provided by the "polar decomposition variables".
- The whole story can be generalize to the flag manifolds (SU(n) (co)adjoint orbits). Open questions:
 - Other groups and (co)adjoint orbits: SO, Sp, exceptional, non-compact, ∞-dimensional,...
 - 2 Can we construct "long spin chains" by our method? Are they integrable?
 - Other non-linear chiral multiplets