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NR perfect fluid and its symmetries

Perfect fluid equations

In non-relativistic space-time (t, xi), i = 1, ..., d a compressible fluid is
characterized by a density ρ(t, x) and the velocity υi(t, x). The evolution over
time is described by the continuity equation

∂0ρ+ ∂i(ρυi) = 0.

and the Euler equation

Dυi = −1

ρ
∂ip+

fi
ρ
, where D = ∂0 + υi∂i

where pressure p(t, x) is assumed to be related to ρ(t, x) via an
equation of state

p = p(ρ).

and fi = f designate external forces. For example:

• f = ρg – gravitational force with acceleration g

• f = 1
c
j×H – Lorentz force in magnetic field H



Free NR perfect fluid and its symmetries, fi = 0

Hamiltonian formulation

The Hamiltonian=energy reads

H =

∫
dx

(
1

2
ρυiυi + V

)
, p = ρV ′ − V

It generates the continuity equation and the Euler equation in the usual way

∂0ρ = {ρ,H} = −∂i(ρυi), ∂0υi = {υi, H} = −υj∂jυi −
1

ρ
∂ip

provided the non-canonical Poisson brackets for ρ and υi are chosen [P. Morrison,

J. Greene, 1980]

{ρ(x), υi(y)} = −∂iδ(x, y),

{υi(x), υj(y)} =
1

ρ
(∂iυj − ∂jυi) δ(x, y).



NR perfect fluid and its symmetries, fi = 0

Stress-energy tensor Tµν

For a specific equation of state and fi = 0 the symmetry group coincides with
the Schrodinger group. One way to see this is to make recourse to the NR
energy-momentum tensor (see e.g. [R.Jackiw, V.Nair, S.Pi, A.Polychronakos, 2004])

T 00 =
1

2
ρυiυi + V, T i0 = ρυi(

1

2
υjυj + V ′)

T 0i = ρυi, T ji = ρυiυj + δijp,

The components satisfy the continuity equations

∂0T
00 + ∂iT

i0 = 0, ∂0T
0i + ∂jT

ji = 0,

as well as the algebraic condition

2T 00 = δijT
ij , V =

1

2
dp. (1)

Firstly, T i0 6= T 0i because the theory is not Lorentz-invariant but T ij = T ji

because it is invariant under spatial rotations. Secondly, the condition (1) is
satisfied only for p ∼ ρ1+

2
d and it is the analogue of the tracelessness condition

characterizing a relativistic conformal field theory.



NR perfect fluid and its symmetries, fi = 0
Conserved charges

Denoting conserved charges associated with the temporal translation, spatial
translation, spatial rotations, Galilei boost, dilation and special conformal
transformation by H, Pi, Mij , Ci, D, and K, respectively, one readily finds

H =

∫
dxT 00 =

∫
dx(

1

2
ρυiυi + V ),

Pi =

∫
dxT 0i =

∫
dxρυi,

Ci =

∫
dx(T 0it− ρxi) = tPi −

∫
dxρxi,

Mij =

∫
dx(T 0ixj − T 0jxi) =

∫
dx(ρυixj − ρυjxi),

D =

∫
dx(T 00t− 1

2
T 0ixi) = tH − 1

2

∫
dxρυixi,

K =

∫
dx(T 00t2 − T 0itxi +

1

2
ρxixi) = −t2H + 2tD +

1

2

∫
dxρxixi.

Motion of the center of mass mXi =
∫
dxρxi

mXi = tPi − Ci, m =

∫
dxρ



NR perfect fluid and its symmetries, fi = 0

Algebra of conserved charges

Within the Hamiltonian formulation the conserved charges do satisfy the
structure relations of the Schrodinger algebra under the Poisson brackets

{H,Pi} = 0, {Pi,Mjk} = δijPk − δikPj ,
{H,Ci} = Pi, {Ci,Mjk} = δijCk − δikCj ,
{Pi, Cj} = δijm, {Mij ,Mab} = δi[aMb]j − δj[aMb]i,

[H,D] = H, [D,Pi] = −1

2
Pi,

[H,K] = 2D, [D,Ci] =
1

2
Ci,

[D,K] = K, [K,Pi] = −Ci.

where H,D,K form the conformal so(2, 1) subalgebra and total mass
m =

∫
dxρ is central charge.



NR perfect fluid and its symmetries
Galilei and Newton-Hooke algebras

As is well known, the Galilei algebra can be considered as a contraction of the
Newton-Hooke algebra [H.Bacry, J.-M.Levy-Leblond, 1967] in which the cosmological
constant tends to zero (the flat space limit)

{H,Pi} = − 1

R2
Ci, {Pi,Mjk} = δijPk − δikPj ,

{H,Ci} = Pi, {Ci,Mjk} = δijCk − δikCj ,
{Pi, Cj} = δijm, {Mij ,Mab} = δi[aMb]j − δj[aMb]i,

The Newton-Hooke algebra follows from the (anti) de Sitter algebra in the
non-relativistic limit in much the same way as the Galilei algebra results from
the Poincaré algebra.
A natural question arises as to how to formulate perfect fluid equations in
non-relativistic spacetime with cosmological constant.

• to analyze the non-relativistic limit of the relativistic hydrodynamics
equations formulated in (anti) de Sitter space [Y.Tian, H.Guo, C.Huang, Z.Xu,

B.Zhou, 2004]

• One of the subjects: to start with the non-relativistic hydrodynamics
equations and accommodate the Newton-Hooke symmetry there.



NR perfect fluid and its symmetries, fi = −ω2ρxi

Perfect fluid equations in harmonic trap

Let us consider a perfect fluid in the harmonic trap specified by fi = −ω2ρxi,
where ω2 is a positive constant of dimension [ω] = t−1, which is assumed to be
small. The Euler equation takes on the form

Dυi + ω2xi = −1

ρ
∂ip.

Together with the continuity equation it can be represented in the Hamiltonian
form

∂0ρ = {ρ,H} = −∂i(ρυi), ∂0υi = {υi, H} = −υj∂jυi − ω2xi −
1

ρ
∂ip

where

H =
1

2
ρυiυi +

1

2
ω2ρxixi + V, p = ρV ′ − V,

and the Poisson brackets are the same as in free case.



NR perfect fluid and its symmetries, fi = −ω2ρxi

Conserved charges

Similarly to the harmonic oscillator, one can construct integrals of motion that
link to spatial translations, the Galilei boost and spatial rotations

Pi =

∫
dx(ρυi cosωt+ ωρxi sinωt), δxi = cosωtai

Ci =
1

ω

∫
dx(ρυi sinωt− ωρxi cosωt), δxi =

1

ω
sinωtbi

Mij =

∫
dx(ρυixj − ρυjxi)

Моtion of the center of mass mXi =
∫
dxρxi

mXi =
Pi
ω

sinωt− Ci cosωt = Ai sin (ωt+ ϕi)

tanϕi = −ωCi
Pi

, A2
i =

P 2
i

ω2
+ C2

i



NR perfect fluid and its symmetries, fi = −ω2ρxi

Algebra of conserved charges

Conserved charges jointly with H satisfy the Newton-Hooke algebra [H.Bacry,

J.-M.Levy-Leblond, 1967] with a negative cosmological constant Λ = − 1
R2 with

respect to the Poisson bracket

{H,Pi} = − 1

R2
Ci, {Pi,Mjk} = δijPk − δikPj ,

{H,Ci} = Pi, {Ci,Mjk} = δijCk − δikCj ,
{Pi, Cj} = δijm, {Mij ,Mab} = δi[aMb]j − δj[aMb]i,

where we identified ω2 = 1
R2 .

• The case of a positive cosmological constant Λ > 0 is obtained by a
formal replacement R→ iR

• The Galilei algebra is reproduced in the flat limit Λ→ 0 (R→∞)



NR perfect fluid and its symmetries, fi = −ω2ρxi

Conformal extention

Like the Galilei algebra, the Newton-Hooke algebra admits a conformal
extension [J.Negro, M.del Olmo, A.Rodriguez-Marco, 1997] by the generators of dilatation
D and special conformal transformation K. Additional structure relations read
[A. Galajinsky, 2010]

[H,D] = H∓ 2

R2
K, [D,Pi] = −1

2
Pi,

[H,K] = 2D, [D,Ci] =
1

2
Ci,

[D,K] = K, [K,Pi] = −Ci. (2)



NR perfect fluid and its symmetries, fi = −ω2ρxi
Extra conserved charges

Let us construct conserved charges that realize extra conformal symmetries

J =

∫
dx(β1(t)ρυiυi + β2(t)ρυixi + β3(t)ρxixi + β4(t)V ).

From the condition ∂0J = 0 a system of equations arises

β̇1 + β2 = 0, β̇2 + 2(β3 − β1ω2) = 0, β̇3 − β2ω2 = 0, 2β1 − β4 = 0,

and the same condition on the potential V = 1
2
dp as in the free case. The

general solution is easily found

β1 =
1

2
β4 = c1 + c2 cos 2ωt+ c3 sin 2ωt,

β2 = 2ω(c2 sin 2ωt− c3 cos 2ωt),

β3 = ω2(c1 − c2 cos 2ωt− c3 sin 2ωt), (3)

which contains three arbitrary constants c1,2,3 meaning that there are three
independent integrals of motion.

J |c1= 1
2
,c2=c3=0 = H, J |c1=c2=0,c3=

1
4ω

= D, J |c1=−c2= 1
4ω2 ,c3=0 = K



Conformal extensions of Galilei and Newton-Hooke algebras
The `-conformal Galilei algebra

There is a one-parameter family of finite-dimensional conformal extensions for
Galilei algebra [J.Negro, M.del Olmo, A.Rodriguez-Marco, 1997]

[H,D] = H, [H,C
(k)
i ] = kC

(k−1)
i ,

[H,K] = 2D, [D,C
(k)
i ] = (k − `)C(k)

i ,

[D,K] = K, [K,C
(k)
i ] = (k − 2`)C

(k+1)
i ,

[C
(k)
i ,Mab] = δiaC

(k)
b − δibC(k)

a , [Mij ,Mab] = δi[aMb]j − δj[aMb]i, (4)

where k = 0, 1, ..., 2` and the parameter ` is an arbitrary integer or half-integer
number. Generators H, D, K, Mij correspond to time translation, dilation,
special conformal transformation, spatial rotations, while the vector generators
C

(k)
i correspond to spatial translation and Galilei boost for k = 0, 1 and

constant accelerations for k > 1.
• Under dilatation temporal and spatial coordinates scale differently,
t′ = λt, x′i = λ`xi. The quantity z = 1/` is known as a critical dynamical
exponent.

• The case ` = 1
2
is the Schrodinger algebra

• The case ` = 1 is the NR contraction of conformal algebra so(2, d+ 1) .



Conformal extensions of Galilei and Newton-Hooke algebras

The `-conformal Newton-Hooke algebra

There is a one-parameter family of finite-dimensional conformal extensions of
Newton-Hooke algebra [A.Galajinsky, I.Masterov 2011]

[H,D] = H∓ 2

R2
K, [H,C

(k)
i ] = kC

(k−1)
i ± (k − 2`)

R2
C

(k+1)
i ,

[H,K] = 2D, [D,C
(k)
i ] = (k − `)C(k)

i ,

[D,K] = K, [K,C
(k)
i ] = (k − 2`)C

(k+1)
i ,

[C
(k)
i ,Mab] = δiaC

(k)
b − δibC(k)

a , [Mij ,Mab] = δi[aMb]j − δj[aMb]i, (5)

In arbitrary dimension and for half-integer `, conformal Newton-Hooke and
Galilei algebra admits a central extension

[C
(k)
i , C

(m)
j ] = (−1)kk!m!δ(k+m)(2`)δijm

• Constant R is the characteristic time which links to the negative/positive
cosmological constant Λ = ∓ 1

c2R2

• The flat limit R→∞ yields the `-conformal Galilei algebra.



Conformal extensions of Galilei and Newton-Hooke algebras

The `-conformal Newton-Hooke algebra

a) Realization in space-time (t, xi) with Λ < 0 is

H = ∂0, D =
1

2
R

(
sin

2t

R

)
∂0 + `

(
cos

2t

R

)
xi∂i,

K =
1

2
R2

(
1− cos

2t

R

)
∂0 + `R

(
sin

2t

R

)
xi∂i,

C
(k)
i = Rk

(
tan

t

R

)k (
cos

t

R

)2`

∂i, Mij = xi∂j − xj∂i, (6)

b) Realization in space-time (t, xi) with Λ > 0 is given by replacement R→ iR

c) Flat limit Λ→ 0 (R→∞) gives realization for `-conformal Galilei algebra

H = ∂0, D = t∂0 + `xi∂i, K = t2∂0 + 2`txi∂i, C
(k)
i = tk∂i, (7)

d) Dynamical realizations of the `-conformal Newton-Hooke algebra have been
extensively studied in the past [C.Duval, P.Horvathy, 2011; A.Galajinsky, I.Masterov, 2013;

K.Andrzejewski, A.Galajinsky, J.Gonera, I.Masterov, 2014; S.Krivonos, O.Lechtenfeld, A.Sorin, 2016]



Generalized conformal perfect fluid dynamics

Perfect fluid dynamics with the `-conformal Galilei symmetries

Generalized perfect fluid equations which hold invariant under the action of the
`-conformal Galilei group were formulated by [A.Galajinsky, 2022]

∂0ρ+ ∂i(ρυi) = 0, D2`υi = −1

ρ
∂ip, p = νρ1+

1
`d .

• Group-theoretic approach [A.Galajinsky, 2022]

• Hamiltonian and Lagrangian formulation [T.S, 2023,2024]

• Example ` = 1
2
reproduces Euler fluid with Schrödinger symmetry.

Dυi = −1

ρ
∂ip → Dυi +

1

R2
xi = −1

ρ
∂ip

• Example ` = 3
2

D3υi = −1

ρ
∂ip → ?

The objective: to extend these equation to include a cosmological constant.



Generalized conformal perfect fluid dynamics

Perfect fluid dynamics with the `-conformal Newton-Hooke symmetries

It appears natural to deform only the generalized Euler equation and leave the
continuity equation and the equation of state unchanged. Focusing in what
follows on the case of ` = 3

2
we modify the generalized third-order Euler

equation as follows

D3υi + (ω2
1 + ω2

2)Dυi + ω2
1ω

2
2xi = −1

ρ
∂ip,

where ω2
2 > ω2

1 > 0 are two arbitrary parameters of dimension
[ω1] = [ω2] = t−1. With this choice of the parameters, the left-hand side of the
equation is an analogue of the Pais-Uhlenbeck oscillator [A.Pais, G.Uhlenbeck, 1950]

in classical mechanics

d4

dt4
xi + (ω2

1 + ω2
2)
d2

dt2
xi + ω2

1ω
2
2xi = 0.



Generalized conformal perfect fluid dynamics
Perfect fluid dynamics with the `-conformal Newton-Hooke symmetries

Introducing the Ostrogratsky-like auxiliary field variables υ0
i , υ

1
i , υ

2
i with

υ0
i = υi the equation (8) can be derived from the Hamiltonian

H =

∫
dx

[
ρ

(
υ0
i υ

2
i −

1

2
υ1
i υ

1
i −

1

2
(ω2

1 + ω2
2)υ0

i υ
0
i +

1

2
ω2
1ω

2
2xixi

)
+ V

]
,

where the potential V links to the pressure via the Legendre transform
p = ρV ′ − V , provided the Poisson brackets [T.S., 2023]

{ρ(x), υ2
i (y} = −∂iδ(x− y), {υ0

i (x), υ2
j (y)} = − 1

ρ
∂jυ

0
i δ(x− y),

{υ0
i (x), υ1

j (y)} = − 1
ρ
δijδ(x− y), {υ1

i (x), υ2
j (y)} = − 1

ρ
∂jυ

1
i δ(x− y),

{υ2
i (x), υ2

j (y)} = 1
ρ

(
∂iυ

2
j − ∂jυ2

i

)
δ(x− y),

are used. Indeed, the dynamical equations have the form

∂0ρ = {ρ,H} = −∂i(ρυ0
i ),

∂0υ
0
i = {υ0

i , H} = −υ0
j∂jυ

0
i + υ1

i ,

∂0υ
1
i = {υ1

i , H} = −υ0
j∂jυ

1
i − (ω2

1 + ω2
2)υ0

i + υ2
i ,

∂0υ
2
i = {υ2

i , H} = −υ0
j∂jυ

2
i − ω2

1ω
2
2xi − ∂iV ′,



Generalized conformal perfect fluid dynamics
Perfect fluid dynamics with the `-conformal Newton-Hooke symmetries

We start with vector generators C(0)
i , C

(1)
i , C

(2)
i , C

(3)
i and choose them as

linear expressions in the field variables υ0
i , υ

1
i , υ

2
i and spatial coordinate xi

multiplied by the density ρ

Ii =

∫
dx
(
α1(t)ρυ2

i + α2(t)ρυ1
i + α3(t)ρυ0

i + α4(t)ρxi
)
,

The conservation condition ∂0Ii = 0 gives a system of differential equations

α̇1 + α2 = 0, α̇2 + α3 = 0, α̇3 + α4 − (ω2
1 + ω2

2)α2 = 0, α̇4 − α1ω
2
1ω

2
2 = 0

which has the general solution

α1 = c1 cosω1t+ c2 sinω1t+ c3 cosω2t+ c4 sinω2t,

α2 = c1ω1 sinω1t− c2ω1 cosω1t+ c3ω2 sinω2t− c4ω2 cosω2t,

α3 = −c1ω2
1 cosω1t− c2ω2

1 sinω1t− c3ω2
2 cosω2t− c4ω2

2 sinω2t,

α4 = c1ω1ω
2
2 sinω1t− c2ω1ω

2
2 cosω1t+ c3ω2ω

2
1 sinω2t− c4ω2ω

2
1 cosω2t.

It is satisfied for arbitrary ω2
2 > ω2

1 and contains four integration constants
c1,2,3,4 such that there are four functionally independent integrals of motion.



Generalized conformal perfect fluid dynamics

Perfect fluid dynamics with the `-conformal Newton-Hooke symmetries

Let us turn to the construction of conserved charges associated with the
dilatation D and special conformal transformation K. We search for them as
quadratic combinations involving υ0

i , υ
1
i , υ

2
i and xi multiplied by the density ρ.

The most general expression with arbitrary time-dependent coefficients βi reads

J =

∫
dx
(
β1(t)ρυ0

i υ
2
i + β2(t)ρυ1

i υ
1
i + β3(t)ρυ2

i xi + β4(t)ρυ1
i υ

0
i

+β5(t)ρυ0
i υ

0
i + β6(t)ρυ1

i xi + β7(t)ρυ0
i xi + β8(t)ρxixi + β9(t)V

)
,

where we also included a term with the potential V . From the conservation
condition ∂0J = 0 one obtains the restrictions

β1 + 2β2 = 0, β1 − β9 = 0, β̇4 − 2β2(ω2
1 + ω2

2) + 2β5 + β6 = 0,

β̇1 + β3 + β4 = 0, β̇6 + β7 = 0, β̇5 − β4(ω2
1 + ω2

2) + β7 = 0,

β̇2 + β4 = 0, β̇8 − β3ω2
1ω

2
2 = 0, β̇7 − β1ω2

1ω
2
2 − β6(ω2

1 + ω2
2) + 2β8 = 0,

β̇3 + β6 = 0, β′9V + β3dp = 0,



Generalized conformal perfect fluid dynamics
Perfect fluid dynamics with the `-conformal Newton-Hooke symmetries

They prove compatible provided the extra restrictions

ω2 = 3ω1, V =
3

2
dp → p ∼ ρ1+

2
3d

are imposed. Then the coefficients β acquire the form

β1 = −2β2 = β9 = c1 + c2 cos 2ω1t+ c3 sin 2ω1t,

β4 = −1

3
β3 = −ω1(c2 sin 2ω1t− c3 cos 2ω1t),

β5 = −ω2
1(5c1 + c2 cos 2ω1t+ c3 sin 2ω1t),

β6 = −6ω2
1(c2 cos 2ω1t+ c3 sin 2ω1t),

β7 = −12ω3
1(c2 sin 2ω1t− c3 cos 2ω1t),

β8 =
9ω4

1

2
(c1 − 3c2 cos 2ω1t− 3c3 sin 2ω1t),

which contain three constants of integration c1,2,3. Identifying ω2
1 = 1

R2 we get

J |c1=1,c2=c3=0 = H, J |c1=c2=0,c3=
1

2ω1

= D, J |c1=−c2= 1
2ω2

1

,c3=0 = K



Niederer’s transformation

Isomorphism of `-conformal Newton-Hooke and Galilei algebras
[J.Negro, M.del Olmo, A.Rodriguez-Marco, 1997]

The `-conformal Newton-Hooke algebra

[H,D] = H∓ 2

R2
K, [H,C

(k)
i ] = kC

(k−1)
i ± (k − 2`)

R2
C

(k+1)
i ,

[H,K] = 2D, [D,C
(k)
i ] = (k − `)C(k)

i ,

[D,K] = K, [K,C
(k)
i ] = (k − 2`)C

(k+1)
i ,

The `-conformal Galilei algebra

[H,D] = H, [H,C
(k)
i ] = kC

(k−1)
i ,

[H,K] = 2D, [D,C
(k)
i ] = (k − `)C(k)

i ,

[D,K] = K, [K,C
(k)
i ] = (k − 2`)C

(k+1)
i ,

They are isomorphic by making a linear change of the basis H → H∓ 1
R
K.



Niederer’s transformation
Isomorphism of `-conformal Newton-Hooke and Galilei algebras

Realization of the `-conformal Newton-Hooke algebra

H = ∂0, D =
1

2
R

(
sin

2t

R

)
∂0 + `

(
cos

2t

R

)
xi∂i,

K =
1

2
R2

(
1− cos

2t

R

)
∂0 + `R

(
sin

2t

R

)
xi∂i,

C
(k)
i = Rk

(
tan

t

R

)k (
cos

t

R

)2`

∂i

Realization of the `-conformal Galilei algebra

H = ∂0, D = t∂0 + `xi∂i, K = t2∂0 + 2`txi∂i, C
(k)
i = tk∂i,

There exists a coordinate transformation [A. Galajinsky, I. Masterov, 2011] which links
them

t′ = R tan
t

R
, x′i =

(
∂t′

∂t

)`
xi = (cos

t

R
)−2`xi,

where coordinates with prime parameterize the flat space. For ` = 1
2
these

transformations were first introduced by Niederer [U. Niederer, 1973]

ẍ = 0 → ẍ+
1

R2
x = 0



Niederer’s transformation
Let us apply Niederer’s transformation to generalized perfect fluid equations in
flat space

∂0ρ+ ∂i(ρυi) = 0, D2`υi = −1

ρ
∂ip, p = νρ1+

1
`d .

Transformations of ρ and υi under Niderer’s

The density transformation is obtained by requiring the mass to be invariant∫
V ′
dx′ρ′(t′, x′) =

∫
V

dxρ(t, x) → ρ′(t′, x′) = (cos
t

R
)2`dρ(t, x).

To obtain the transformation law for υi(t, x), consider the orbit of a fluid
particle xi(t) and take into account that

dxi(t)

dt
= υi(t, x(t)) → υ′i(t

′, x′) = (cos
t

R
)−2`+2

(
υi(t, x) +

2`

R
tan

t

R
xi

)
.

One needs to take into account the identities

∂

∂t
= (

∂t′

∂t
)
∂

∂t′
+ (

∂x′i
∂t

)
∂

∂x′i
,

∂

∂xi
= (

∂t′

∂xi
)
∂

∂t′
+ (

∂x′j
∂xi

)
∂

∂x′j
,



Niederer’s transformation

The generalized Niederer transformation does not alter the continuity equation
and the equation of state, while it modifies the Euler equation

n−1∏
k=1

(D2 +
(2k + 1)2

R2
)(Dυi +

1

R2
xi) = −1

ρ
∂ip (8)

for a half-integer ` = n− 1
2
and

n∏
k=1

(D2 +
(2k)2

R2
)υi = −1

ρ
∂ip (9)

for an integer ` = n.

• By construction, the equations hold invariant under the `-conformal
Newton-Hooke transformations.

• In the particular cases ` = 1
2
and ` = 3

2
the equations reproduce the

previously obtained results.



Conclusion

• We formulated perfect fluid equations which enjoy the `-conformal
Newton-Hooke symmetry

• For ` = 1
2 , the symmetries are naturally realized by the harmonic

trap potential and imposing a suitable equation of state

• For higher values of `, the symmetries demand a higher derivative
generalization of the Euler equation which is an analogue of the
Pais-Uhlenbeck oscillator in classical mechanics.

• It was demonstrated that the same results can be achieved by
applying a generalized Neiderer’s transformation.

• Physical applications?

• Supersymmetric extensions?

THANK YOU FOR ATTENTION!


