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Result

Son shell
V = ∫

δQ
TH
= ∫

TH

0

dTH

TH
∫

rds= 1
2πTH

dd−1x
√

g
∂ρ

∂TH
, ρ =

Λ(TH)

8π
(1)

and

Soff shell
A = −(α∂α − 1)W [α]

RRRRRRRRRRRα=1
∼ A, where α =

β

βH
(2)

We show that bulk entropy that computed on-shell precisely follows the area
law in any dimension of space and in any theory of f(R) gravity and coincide
with Wald entropy:

Son shell
V (gravity) = Soff shell

A (gravity) =
A
4

f ′(R) (3)

Generalize this statment for entanglenment entropy of minimally coupled
scalar field:

Son shell
V (matter) = Soff shell

A (matter) (4)

Reason are not yet known
Does it generalize to over space with Killing horizon with non vanishing
cosmological constant (BTZ or Narai) ?
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Introduction

It is known that, in general, quantum corrections to the entropy are given by:

SA =
A

4Gh̵
+α0 log(

A
4Gh̵

) +∑
n

an (
A

4Gh̵
)

−n

. (5)

The first term is the Gibbons-Hawking area law, computed in the semiclassical
approximation.

The leading-order quantum correction is logarithmic and is the most interesting.

For macroscopic black holes, quantum corrections are negligibly small.

At the late stages of black hole evaporation, quantum corrections become very
important.

The effective temperature of a black hole is given by:

1

TH
=

∂SA

∂M
= 8πM + 2α0

1

M
. (6)

For large black holes, the Hawking temperature is inversely related to their mass:
TH ∼

1
M .

For small mass, the temperature is linearly related: TH ∼ M.
This means that the temperature does not diverge at the final stage, resulting in an
increased evaporation time. Moreover, the final stage of black hole evaporation
significantly depends on the sign of α0.

MIPT, IIPT МКТЭФ-2024 3 / 20



Result Introduction Geometry of the de Sitter Space-Time Thermodynamics of de Sitter Space Quantum Correction

Geometry of the de Sitter Space-Time

The de Sitter space is a vacuum solution to Einstein’s equation:

Rµν −
1

2
Rgµν + Λgµν = 0. (7)

The d-dimensional de Sitter space can be visualized as a one-sheeted hyperboloid
embedded in a d + 1-dimensional ambient Minkowski space, described by:

dSd = {X ∈ R
d+1

, XαXα = −X 2
0 +∑

i
X 2

i = H−2} (8)

The static coordinates of de Sitter space are given by:

X =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

X 0
= H−1

√
1 − r2H2 sinh(tH)

X i
= rzi , i = 1, . . . ,d − 1

X d
= ±H−1

√
1 − r2H2 cosh(tH)

, t ∈ (−∞,∞), r ∈ (0,H−1), (9)

where zi are the coordinates on the (d − 2)-dimensional sphere, and the ± in X d defines
the right or left de Sitter wedges with the metric:

ds2
= −(1 − r2H2

)dt2 +
dr2

1 − r2H2
+ r2dΩ2

d−2. (10)

The static coordinates are bounded by a Killing horizon:

rhorizon =
1

H
, (11)

where the metric degenerates.

MIPT, IIPT МКТЭФ-2024 4 / 20



Result Introduction Geometry of the de Sitter Space-Time Thermodynamics of de Sitter Space Quantum Correction

Penrose Diagram

I+

I−
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f(R) Gravity

De Sitter space serves as a solution in modified gravity theory:

W =
1

16π
∫ dd x

√
g (f(R) − 2Λ) +Wmatter. (12)

The variation of the action with respect to the metric yields:

f ′(R)Rµν −
1

2
f(R)gµν + (gµν ◻ −∇µ∇ν) f ′(R) + Λgµν = 8πTmatter

µν . (13)

Thus, the de Sitter space, with Hubble constant equal to H, is a solution to the field
equations in the absence of matter if the cosmological constant is given by:

Λ = (
1

2
f(R) −

1

d
f ′(R)R)

RRRRRRRRRRRR=(d−1)dH2

. (14)
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Thermodynamics of de Sitter Space

An observer in the static patch of de Sitter space sees isotropic radiation with
Gibbons-Hawking temperature:

TH =
H
2π

. (15)

In the semiclassical approximation, the entropy of de Sitter space obeys the area law:

S =
A
4
. (16)

The Gibbons-Hawking temperature is 10−30K , which is much lower than the
temperature of the cosmic microwave background, T = 2.73K .

This temperature implies the existence of entropy in de Sitter space, which is given
by 2.6 ⋅ 10122, vastly exceeding the entropy of all the matter and energy in our
Universe, which is on the order of 10104.
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The de Sitter Temperature: TH =
H
2π

1 Imaginary Time Periodicity Trick

ds2
= dϵ2 + ϵ2d(Hτ)

2
+ H−2dΩ2

. (17)

2 Tunneling Exponent

Γ ∼ e−
2π
H E

. (18)

3 KMS Condition

GBD(Z1,2) =
1

Z
Tr [e−βH H

ϕ(x1)ϕ(x2)] . (19)

4 Reduced Density Matrix

∣BD⟩ = ∑
nω

e−π/Hωnω ∣nω,L⟩ ⊗ ∣nω,R⟩ → ρ̂R = TrL∣BD⟩⟨BD∣ = e−βH HR . (20)

5 Unruh-DeWitt Detector

Ṗ(Ei → Ej) = g2
∣mij ∣

2
∫ dte−(Ej−Ei )t GBD(Z = cosh(t)). (21)

The probabilities satisfy the relation:

Ṗ(Ei → Ej) = Ṗ(Ej → Ei)e
−β(Ej−Ei ). (22)
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Entropy (Replica Trick)

Let us consider a general curved spacetime M with a Killing horizon, and impose
periodic boundary conditions τ ∼ τ +β, with a non-fixed inverse temperature β = 2πα/H.
In the limit α→ 1, the Riemannian tensor contains delta-like surface contributions near
the horizon:

lim
α→1

RMα
µνρσ = RM

µνρσ + 2π(1 −α) (n
1
µn2

ρ − n2
µn1

ρ) (n
1
νn2

σ − n2
νn1

σ) δ (Σ) +O ((1 −α)2) , (23)

where n1,2 are two orthonormal vectors orthogonal to the horizon surface Σ. The
classical action in the limit α→ 1 is given by:

W [α] =

= −2πα
1

16π
∫ dd−1x

√
g (f (RM

) − 2Λ)− (24)

−α(1 −α)
1

4
∫ dd−1x

√
gδ (Σ) f ′ (RM

) +O ((1 −α)2) .

Applying the replica formula, we find that the only surface term contributes to the
entropy:

Soff shell
A = −(α∂α − 1)W [α]

RRRRRRRRRRRα=1

=
A
4

f ′(R). (25)
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Entropy (Thermodynamic Potential F = E − THS)

The partition function for thermal gravity can be evaluated in the semiclassical limit by
the on-shell gravity action in Euclidean signature:

Z = e−βH F
= ∫ Dgabe−WE (g) ≈ e−WE (gdS). (26)

Using the thermodynamic potential F = EH − TS, where E is the energy, which is set to
zero for empty de Sitter space:

E = 0, (27)

we can demonstrate that the entropy for the general theory of f(R) gravity is given by:

S = −βH F = −WE(gdS) =
1

16π
∫ dd x

√
g (f(R) − 2Λ) =

A
4

f ′(R). (28)

MIPT, IIPT МКТЭФ-2024 10 / 20



Result Introduction Geometry of the de Sitter Space-Time Thermodynamics of de Sitter Space Quantum Correction

Entropy (First Law)

Let us consider how the area A of the cosmological horizon changes when an
infinitesimal amount of energy is added, δE = δM, where M is the mass of the black
hole. The metric of a Schwarzschild-de Sitter black hole in d = 4 dimensions is given by:

ds2
= (1 − 2M/r − r2H2

)dt2 −
dr2

(1 − 2M/r − r2H2)
− r2dΩ2

. (29)

If we add a small amount of energy δM to the empty de Sitter space, then the area of
the cosmological horizon decreases as:

δAH = −
8π

H
δM, (30)

while we ignore the area of the black hole horizon since it is of second order in the
variation of energy: δABH ∼ δM2. Assuming that the entropy is 1/4 of the event horizon,
we can show that the first law of thermodynamics holds for the cosmological horizon:

δ(−E) = TH dS. (31)
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Local Thermodynamics

The first law of thermodynamics with non-zero pressure is given by:

TH dSon shell
V = δQ = dE + pdV . (32)

Let us assume that:
The temperature is given by the Gibbons-Hawking relation: TH =

H
2π .

The energy density is given by the cosmological term:

ρ(2πTH) =
Λ(2πTH)

8π
, Λ = (

1

2
f(R) −

1

d
f ′(R)R) + 8πT 0

0 (33)

The pressure is given by p = −ρ.
Thus, the total entropy of the de Sitter vacuum state is given by:

Son shell
V = ∫

δQ
TH
= ∫

TH

0

dTH

TH
∫

rds=
1

2πTH

dd−1x
√

g
∂ρ

∂TH
. (34)

For f(R) gravity, we can obtain the following value for the entropy:

ρ =
1

8πd
(f ′ [−(d − 1)d(2πTH)

2
] (−(d − 1)d(2πTH)

2
) −

d
2

f [−(d − 1)d(2πTH)
2
]) , (35)

which leads to the conclusion that the entropy of the de Sitter vacuum state is given by:

Son shell
V =

A
4

f ′(R), (36)

which exactly coincides with the Wald entropy of the Killing horizon.
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Quantum Correction

Let us consider quantum corrections to the Einstein equation due to matter:

Rµν −
1

2
Rgµν + Λgµν = 8π⟨Tmatter

µν ⟩ (37)

For d = 4 dimensional spacetime, the conformally coupled matter stress-energy
tensor is given by:

⟨Tmatter
µν ⟩ =

q(s)H4

960π2
gµν (38)

where q(0) = 1, q(1/2) = 11/2, and q(1) = 62 are the coefficients for different spins
s.
Hence, the self-consistent equation for the corrected Hubble constant takes the
form:

6H2
= 8π (Λ +

q(s)H4

960π2
) . (39)

As a result, the vacuum energy is given by:

ρ =
Λ

8π
=
6H2

8π
−

q(s)H4

960π2
. (40)

Consequently, the temperature is given by the quantum-corrected Hubble
constant:

TH =
H
2π
. (41)
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Quantum Correction

Using local thermodynamic expressions:

Son shell
V = ∫

δQ
TH
= ∫

TH

0

dTH

TH
∫

rds= 1
2πT

d3x
√

g
∂ρ

∂TH
. (42)

The corrected entropy of the de Sitter vacuum state is given by:

Son shell
V = S0 +

1

180
q(s) log (4πS0) . (43)

This formula is exact since it is expressed in terms of the corrected Hubble
constant.
The same logarithmic terms were obtained in the context of black holes, and it
seems to be universal:

Son shell
V = S0 +

b
2
log (S0) + . . . , (44)

where b is the integrated conformal anomaly:

b = ∫ d4x
√

g⟨Tµ
µ ⟩, (45)

which for de Sitter space is given by:

b =
q(s)
90

. (46)
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Son shell
V = βHE − βHF

The entropy we define as:

Son shell
V = ∫

T

0

dTH

TH
∫ d3x

√
g
∂ρmatter

∂TH
. (47)

and energy of the system as:

βHE = ∫ d4x
√

gρmatter = ∫ d4x
√

gρmatter . (48)

To find free energy times invese temterature let us use the following relation:

−βH
d

dβH
logZ = TH

d
dTH

logZ = H
d

dH
logZ = 2∫ d4xgµν δ

δgµν
logZ = −∫ d4x

√
g⟨Tµ

µ ⟩
matter

(49)

hence:

βHF = − logZ = −4∫
dTH

TH
∫ d4x

√
gρmatter (50)
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Son shell
V = βHE − βHF

Let:

ρmatter = −⟨T 0
0 ⟩

matter
= −T 4f (

m
T
) , (51)

Then we can rewrite the enrtopy as follows:

Son shell
V = ∫

T

0

dT
T

4

3
π (

1

2πT
)

3 ∂

∂T
[T 4f (

m
T
)] = (52)

=
1

6π2
f (

m
T
) +

2

3π2 ∫

T

0

dT
T

f (
m
T
)

where the first term is indeed energy of the system:

βE = ∫ d4x
√

gρmatter =
1

6π2
f (

m
T
) (53)

and secod is free energy:

βF = −4∫
dT
T

1

T
4

3
π (

1

2πT
)

3

T 4f (
m
T
) = −

2

3π2 ∫
dT
T

f (
m
T
) (54)

MIPT, IIPT МКТЭФ-2024 16 / 20



Result Introduction Geometry of the de Sitter Space-Time Thermodynamics of de Sitter Space Quantum Correction

Off shell method

To compute etropy off shell we considere the Euclidean static de Sitter space-time
with not fixed period β in time. Then expanding renormalized effenctive action
W ren

β in terms of β − βH we will complute the renormalized entanglenment etropy
at Gibbons-Hawkong temperature:

Soff shell
A = (α∂α − 1)W ren

α ∣
α=1

, α =
β

2π/H
(55)

Since β is an arbirtuary the Euclidean manifold has conical singularities at the
horizon surface Σ.

W ren
=W bar

gr +W div
matter +O((1 − α)2). (56)
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Wgr = (57)

= α∫
M

d4x
√

g (−
1

16πGB
(RM

+ 2ΛB) + cB
1 RM RM

+ cB
2 RM

µνRM,µν
+ cB

3 RM
µνρσRM,µνρσ

)+

+4π(1 − α)∫ dΣ(−
1

16πGB
+ 2cB

1 RM
+ cB

2 RM
µνnµ

i nν
i + 2cB

3 RM
µνρσnµ

i nρ
i nν

j nσ
j )+

+O ((1 − α)2) .

The path integral over the scalar field is given by:

Zmatter = ∫ Dϕ e−
1
2 ∫Mα

d4x
√

g ϕ(−◻+m2)ϕ (58)

The heat kernel expansions of effective action of matter is given by:

logZmatter =
1

2
∫

ds
s

e−sm2

∫
Mα

d4x
√

g K̄Mα
(s, x , x) (59)

where

K̄Mα
(s, x , x) =

1

(4πs)
d
2

∑

n
ān(x)sn (60)

and

ān(x) = ast
n (x) + aα

n (x)(1 − α)δ(Σ) (61)
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Soff shell
A = (β∂β − 1)

1

2
(ζ′(0, β) + log (µ2) ζ(0, β)) , (62)

where:

ζ(0, β) ≈ (63)

≈ [
ν4

12
+
ν2

24
−

17

2880
] + (

β

βH
− 1)[ν4 +

4

24
ν2 +

3

64
] ,

ζ′(0, β) ≈ const+ (64)

≈ +(
β

βH
− 1)[−

41

144
ν2 −

1

8
ν4 −

973

5760
+

1

192
(16ν4 + 40ν2 + 9)(ψ (

3

2
+ iν) + ψ (

3

2
− iν))]

The bulk entropy:

Son shell
V = ∫

T

0

dT
T ∫ d3x

√
g
∂ρmatter

∂T
. (65)

ρmatter = (66)

= −
H4

64π2

⎡
⎢
⎢
⎢
⎢
⎣

(
1

4
+ µ2)(

9

4
+ µ2 − 12ξ)[ψ (

3

2
+ iµ) + ψ (

3

2
− iµ) − log(

m2

H2
)]+

+µ2 (
4

3
− 12ξ) + ξ(72ξ − 19) +

16

15

⎤
⎥
⎥
⎥
⎥
⎦

,
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logZ matter
= −∫ d3x

√
gg00

⨋
i
ϕi(x)ϕ

∗
i (x) log (1 − e−βωi )+ (67)

+∫ d3x
√

gg00
⨋

i
∫

m2

∞
dm2∂m2 [ϕi(x)ϕ

∗
i (x)] log (1 − e−βωi )−

−β ∫ d3x
√

g ∫
m2

∞
dm2

⨋
i

1

2ωi
[△3∂m2ϕi(x)ϕ

∗
i (x) − ∂m2ϕi(x) △3 ϕ

∗
i (x)]n(βωi).

The first term logZ E
1 is equal to the standard definition of the partition function:

For space time without Killing horizon

logZ matter
= −∫ d3x

√
gg00

⨋
i
ϕi(x)ϕ

∗
i (x) log (1 − e−βωi ) (68)

For space time with Killing horizon:

logZ matter
= (69)

= −β ∫ d3x
√

g ∫
m2

∞
dm2

⨋
i

1

2ωi
[△3∂m2ϕi(x)ϕ

∗
i (x) − ∂m2ϕi(x) △3 ϕ

∗
i (x)]n(βωi) ∼

∼ A
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