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main statements

® action principle for classical 4d integer-spin fields is formulated in space
formed by s/(2, C)-spinors and a Lorentz-invariant proper-time coordinate

® e.0.m. get very simple and put no constraints on spinor-dependence of fields

® relation to the space-time picture is provided by unfolded equations
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4d higher-spin gravity and spinors

® higher-spin gravity - a theory of interacting massless fields of all spins
(including graviton) with co-dim gauge symmetry.

® quantum gravity requires new geometry: worldsheet in string theory, twistors
for self-dual theories, spinfoam in loop quantum gravity.

® in 4d higher-spin gravity, Weyl spinors are natural auxiliary variables - it looks
reasonable to try to implement the whole dynamics in terms of them.

® higher spins in spinor variables: [Ponomarev 2104.02770, NM 2301.02207].
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4d higher-spin gravity and spinors

® Higher-spin gauge algebra [Fradkin, Vasiliev, 1987] - infinite-dimensional
associative algebra of star-product (Weyl algebra)

F(Y) g(Y) = F(Y) exp{i 0 4B s}g(V), (1)

where YA = {y® ¥4} is a pair of Grassmann-even Weyl spinors. The only
independent Lorentz-invariant combinations built out of Y are

A

~ Y -

N :=y%0,, N :=y“04. (2)
® Spinor bilinears TA8 = YAYB form sp(4,R) subalgebra

[TAA, 7—BB]>~< — _2,-6AB7-AB7 (3)

isomorphic to so(3,2) symmetry algebra of AdS,, which is a vacuum solution
of Vasiliev theory.

Nikita Misuna (Lebedev Physical Institute, Moscow) Higher-spin fields in spinor space PMMP’25 Dubna 14.02.25 5/18



4d higher-spin gravity and spinors

In terms of s/(2,C), symmetric traceless Lorentz tensors correspond to
symmetric spinor-tensors

{Tal...a,, Moy Tal...a,, — 0} S Tal...a,,,o'q...d,,. (4)

® Antisymmetric Lorentz tensors correspond to (2,0)@(0,2) spinor-tensors

(TP = —T"%) = TU®2 g TH%, (5)
® For derivatives this yields
. . 1
verdygads s yayb _ Znabm. (6)

® Practical profit: working in terms of spinors automatically projects out traces
and boxes of tensor fields, restricting to irreducible on-shell components.
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unfolded equations and unfolding maps

® to formulate higher-spin gravity in a manifestly diffeomorphism- and
gauge-invariant way [Vasiliev'89-94], a special first-order formalism was
developed named unfolded dynamics approach [Vasiliev, hep-th/0504090].

® Master-fields of Vasiliev theory, living in the fiber bundle of C? over AdS,, are
1-form w(Y|x) (“potentials”) and 0-form C(Y'|x) (“field strengths”).

® solving generating Vasiliev equations leads to the unfolded system of the form

(7)
(8)

dw(x]Y) +wrw+ Vi(w,w, C) + V2(w,w,C,C) +...=0

dC(x]Y)+w* C— C*ftw+ VE(w,C,C) + V3(w,C,C,C)+...=0

® These equations can be interpreted as (locally) restoring the space-time
dependence of higher-spin fields from the spinorial one.

® From the space-time point of view, spinors Y encode expansions of
higher-spin fields in on-shell derivatives.

® Two boundary problems C(x|0) — C(x|Y), C(0]Y) — C(x|Y)
generate unfolding maps C(x) — C(Y), C(Y) — C(x).
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unfolded equations and unfolding maps

® Problem: to formulate the theory of relativistic fields solely in terms of
spinors, with no reference to the space-time.

® Motivation: spinor space may provide a fundamental geometry for higher-spin
gravity.
® Idea: one needs an unfolding map defining fields living in R%:3 x (C2 x R) and
unfolded-like equations V,4® = Poa (Y, 7)® defining Poincaré reps — this
allows one to connect space-time fields to spinor-space fields living in C? x R.
® Technicalities: to construct an unfolded formulation of a theory, one should
first define an unfolding map x — x|Y, and then deduce unfolded equations
as identities, satisfied by the unfolded fields [NM, 2402.14164].
® Antipodality of spinor and space-time realizations of Poincaré UIR:
® in space-time: universal P, = —i% for all masses and spins, but
/\A/Ia’b = —iX[aab] + (3371,)’1, thus fields are ¢I(X).
® in spinor space: universal I\A/la,g = Y(a0p) for all masses and spins, but
Poo = aN,’KlaaBd + bN:K/y‘lyé‘ + (cN:nydaa + h.c.), thus fields are (Y, T).
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scalar field

® Consider an unfolding map for an off-shell scalar field [NM, 2208.04306]

I d*z  _pieoP
Pp(x) = ®(x]Y,7) == exp(y?y*Vas + T0O)d(x) = | —ze = #(2)
(477)
(9)
® This corresponds to the unfolded-like equation
1 = 0
Vadtbe,T :A—(‘?aad— a_d—qJXY,T, 10
(1Y) = g (Ouda ~ veTa g )OIY.7) (10
which generates a representation of Poincaré algebra as
1 = _ 0 - _ =
Pai = 777 (0ada = vaVagn): Miap) = YaOs): Mg = Had (11)
® P2 casimir is Y-independent
1 : 0
P? .= ZP,s P = —. 12
2 or (12)
® x = 0-boundary problem for (10) is solved as
e(yy,m) = O(x|Y,7) = exp(x*“Paa)p(y7. 7). (13)
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scalar field

® An action principle in spinor space can be deduced from the space-time one
by means of a (Y, 7) — x unfolding map

¢(x) = O(x]Y = 0,7 = 0) = exp(x"*Pac)p(y¥, 7)lv.r=0,  (14)

S= —%/d4x¢(x)(D—m2)¢(X) = —%¢54($+7)(8—i—m2)s@|v,7:o (15)

® Making use of the delta-function representation
2

. z
8(z) = lim = exp{ -}, (16)

the action can be rewritten as

N (—].) (_4E)71 2] P ? 8 2 ( 4E) 1
Slel = lim =55 (e @) exp{———}5-—m’)(e 7 0)ly.r-o0-
(17)
® Compare with the supertrace on the Weyl algebra
str(f xg) = f(Y)exp( 18,43’4 Y)|y=o- (18)

® Poincaré-invariance of S is ensured by 64( P + B) (for translations) and
Lorentz-covariance plus Y-independence (for rotations):
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scalar field

® e.0.m. following from S are
0 s .
(5, —m)elyy,7) =0 (19)

and put no restrictions on Y-dependence of ¢.
® General solution is

o =p(yy)e™™, vo. (20)

1 _
Pad = = 8a<9d — a_dmz . 21
N+1( YaYam®) (21)

This corresponds to 7 being a Lorentz-invariant evolution parameter, while
spinors covariantly parameterize 3d Cauchy hypersurface, which is light-like
(even for massive fields). Massless fields are “static”.

® This separation of 7 and Y variables is a distinguished feature of the
proposed construction. In fact, the freedom is much larger: P? can be
defined arbitrarily, with the only condition [P2, YA] = [P2,04] = 0. Analysis
of unfolded off-shell supersymmetric systems [NM 2201.01674] hints towards a
2"9_order realization of P2. In general case, 7 = 0 projection gets replaced
with projection onto ker P2.
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spin-1 field

® Proca equations for a spin-1 field [Proca, 1936]:

(O - m*)A,(x) =0, (22)
O"An(x) =0 (23)

® Massless limit corresponds to the Maxwell equations in the Lorenz gauge,
with a residual gauge symmetry

An(x) = An(x) + 0pf(x), Of(x)=0. (24)
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spin-1 field

® Consider the following unfolded map for a vector field [NV 2402.14164
1

ﬁ'B a7 o= o« 1 - - =G
Aaa(x) = Ax|Y,7) = & 7 Vst T A (x)y 7 +5Faa(x)y Y +5Faa ()57}
where (anti-)self-dual components of the Maxwell tensor are
Foo(x) =V, 5A" (x),  Faa(x) = VgaA’a(x). (25)
® This map corresponds to an unfolded-type equation
VaaAX|Y,T) = PacA(X|Y,T), (26)
which in addition imposes a transversality constraint on Aqs(x)
V% Ana(x) = 0. (27)
® Poincaré-translations in the spinor space are realized as
1 N+N, ~  N+N+a
Poui = N Y ;— aaad + %}/a}_/aaa
(N+1)(N+1)
0 5 o 0
—P60a (Mt —2=1% — y,8s(N~ —2—1° 2
7a0a(MT° = 2-1) = yoBa(N” = 2-1°)} (28)
on the spin-1 module of the form (“external” indices are not really external)
AY,7) = YY" Aun(yy, 7). (29)
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spin-1 field
® Analogously to the scalar field case, one defines a spinor-space action

S[A(Y,T)]:——A{ (@nam2st (P + )X E"")A“T 0. (30)

= =
where 0 p 9 M acts after evaluation of the delta-function ([Op, Pag] # 0).
® e.0.m. and their general solutions are

0 _ ; -
(5= = m)YMY N Aun(yy. 1) =0 = A= Aun(yy)Y"YNe™ . (31)

and again there are no restrictions on Y-dependence.
® |n the space-time picture, instead of Proca action, this corresponds to

S[A] = /d4x{c1 Al - m)Al? o - F, (00— m?)F2PY. (32)

But in the spinor-space picture, F and F are independent elementary fields
and the action is of first order in the evolution parameter 7, while the very A,
is in fact absent.
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spin-1 field
® In the massless case %A =0, on the spinor-space field

= o= 1 = o, 1= —\—& =
A(Y) = Awa(yy)yy +§Faa(yy)y y +§Fda(yy)y v, (33)
—_———

All F

F
Poincaré translations are realized as
poF=—NTN 5 5F puF=—NTN 5 5F,
2(N+1)(N +1) 2(N+ 1) (N +1)
1 N+N_ - _
Pas Al = — S ; 0u05Al — 740uF — yadsF).  (34)
(N+1)(N+1)

® F and F correspond to physical +1-helicities.
e zero-helicity Al corresponds to the residual pure-gauge contributions in the
Lorenz gauge

Al = yog5P, s o(yy) = Ne(yy), ¢ = N7Al (35)

® The module is manifestly indecomposable, which reflects the non-existence of
a Lorentz-invariant complete gauge.
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integer-spin fields

® Fierz equations for a spin-s field [Fierz, 1939]:

(D - m2)A"1n2»~ns(X) =0, (36)
8nlAnan...ns(X) = 07 (37)
nnlnzAIth...ns(X) - 0 (38)

® Massless limit corresponds to the Fronsdal equations in TT-gauge, with the
residual gauge symmetry

Anlnz...ns _> Anlnz...ns + 8n5fn1...n5_1 (39)

for a gauge function f,, . n,_,(x) subjected to the same equations.

® |agrangian requires a bunch of auxiliary symmetric traceless fields of ranks
s —2,5s—3,...0 [Singh, Hagen, 1974]. For massless fields, only s — 2 is
necessary [Fronsdal, 1978].
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integer-spin fields

® Straightforward generalization of the s = 1 case to an arbitrary integer s gives
¢5(Y’T) = (YA)25¢A(25)(y)_/aT)7 (40)

produced from a transverse space-time field @ (s),a(s)(X) as

B3B8 40l 57 . vl : a—d\s
Os(x|Y, 1) = &7 Vs TV 4 e )09 ()T (41)

® Poincaré algebra is realized via
Pac = aj, 40a0a + by, 4Yas + ¢ 1 V00 + T jYaOs (42)

for certain Lorentz-invariant operators a, b, ¢ and c.
® Poincaré-invariant action is

S[e.] = — 2(2 P o {(BudMy5t (P + )X ——m)¢|yT o (43)
which leads to e.o.m. that impose no restrictions on Y-dependence
a s -\ _mr
(E - m2)¢5(y77—) = 07 ¢5(Y’T) = (YA)2 ¢A(25)(yy)e (44)

® |n the massless case, a set of all intermediate helicities forms a maximal gauge
submodule, so the physical are only =+s, i.e.

O (Y, 7) = (¥*)* Pagan) (v7) + (7°) Ps(a0)(v7)- (49)
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conclusions

® an action principle for the free classical integer-spin Poincaré fields in the
spinor space (Y4, 7) is constructed.

® e¢.0.m. only fix 7-dependence, while Y-dependence is constrained by the spin
value.

® for massless fields, space-time gauge symmetry gets transformed into a
manifestly indecomposable structure of spinor modules.

® relation to the space-time picture is provided by corresponding unfolded-like
equations.

® further directions:

® conservation laws and charges
inherent spinor-space symmetries
black-hole-like solutions
interactions and locality
quantization
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