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Fronsdal Fields

All m = 0 HS fields are gauge fields C.Fronsdal 1978

φa1...as(x) is a rank s symmetric tensor obeying φccbba5...as = 0

δφa1...as(x) = ∂(a1εa2...as)(x) , εbba3...as−1 = 0

S =
1

2

∫
Md

(
φa1...as□φa1...as(φ) + . . .

)
HS gauge theory: theory of maximal HS symmetries that cannot result

from spontaneous breakdown of a larger symmetry:

HS symmetries are manifest at ultrahigh energies above any scale

including Planck scale

• HS gauge theory should capture effects of Quantum Gravity:

restrictive HS symmetry versus unavailable experimental tests

• Lower-spin theories as low-energy limits of HS theory:

lower-spin symmetries: subalgebras of HS symmetry

• String Theory as spontaneously broken HS theory?! (s > 2,m > 0)
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No-go and the Role of (A)dS

No HS symmetries in Minkowski space

Weinberg, Coleman-Mandula, Aragone and Deser

Green light: AdS background with Λ ̸= 0 Fradkin, MV, 1987

In agreement with no-go statements the limit Λ → 0 is singular
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HS Symmetries Versus Riemann Geometry

HS symmetries do not commute with space-time symmetries

[T a , THS] = THS , [T ab , THS] = THS

HS transformations map gravitational fields (metric) to HS fields

Consequence:

Riemann geometry is not appropriate for HS theory:

concept of local event may become illusive!

Related feature: HS interactions contain higher derivatives

Bengtsson, Bengtsson, Brink (1983), Berends, Burgers and H. Van Dam (1984),

(1985), Fradkin, MV; Metsaev,...

How non-local HS gauge theory is?!
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Types of Unitary HS Gauge Theories

• Space-time dimension d

• Inner (YM) symmetries and SUSY

• Description type: tensor type in any d or spinor type in d = 3,4,5

• Coxeter type HS symmetry C with C = Z2 for usual HS theories

• Multiparticle extensions
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Reductions

• Chern-Simons type with no matter fields:

Maurier-Cartan equations for HS connection

dω+ ω ∗ ω = 0

No local propagating degrees of freedom

Nontriviality due to boundary conditions

• Self-dual HS theories in d = 4 ∼ chiral to make them looking new

Much simpler than the full HS theory:

no current interactions: Tnm = 0

non-unitary: complex fields in Minkowski signature

• Free Theory
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Variety of Formalisms

• Covariant tensor formalism Dirac, Pauli, Schwinger, Fronsdal, Berends, ...

• Light-front formalism Bengtsson, Bengtsson, Brink; Metsaev, ...

• Superspace for SUSY models Buchbinder, Ivanov, Kuzenko, Zaigraev ...

• BRST covariant formalism Buchbinder, Pashnev, Bengtsson ...

• Frame-like formalism Deser, Lebedev group, Zinoviev ...

• Unfolded dynamics Lebedev group, Iazeolla, Sundell ...
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Unfolded Dynamics

First-order form of differential equations

q̇i(t) = φi(q(t)) initial values: qi(t0)

Unfolded dynamics: multidimensional generalization

∂

∂t
→ d , qi(t) →WΩ(x) = θn1 . . . θnpWΩ

n1...np
(x)

dWΩ(x) = GΩ(W(x)) , d = θn∂n MV 1988

GΩ(W ) : function of “supercoordinates” WΩ

GΩ(W ) =
∞∑
n=1

fΩΦ1...ΦnW
Φ1 . . .WΦn

Covariant first-order differential equations

d > 1: Compatibility conditions

GΦ(W )
∂GΩ(W )

∂WΦ
= 0
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Universal Equations

Unfolded equations are universal if the compatibility condition holds

independentlay of space-time dimension, not using that any p-form with

p > d is zero. In this case equations acquire the form

dF (W (x)) = Q(F (W (x))) , Q := GΩ(W )
∂

∂WΩ

Q is a homological vector field in the target space with coordinates WΩ

obeying the nilpotency condition

Q2 = 0 compatibility condition on GΩ(W )

Analogy with Hamiltonian formalism

Ḟ (q(t)) = {H ,F (q(t))} , q are phase space coordinates

Related concepts: L∞, A∞, Q-manifolds, etc
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Properties

• General applicability

• Manifest (HS) gauge invariance

• Invariance under diffeomorphisms

• Clear group-theoretical interpretation of fields and equations in

terms of modules and cohomology of the symmetry algebra s

Background fields: flat connection of s

Fields: s-modules

Equations: covariant constancy conditions

• Local degrees of freedom are in zero-forms Ci(x0) at any x = x0

(as q(t0)) infinite-dimensional module dual to the space of single-

particle states: Ci(x0) moduli of solutions
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HS Multiplets and Vertices

HS fields are described by the generating functions of certain auxiliary

variables Y : one-forms ω(Y |x) and zero-forms C(Y |x)

The problem: consistent non-linear corrections 1988 in the local frame

dxω = −ω ∗ ω+Υ(ω, ω,C) +Υ(ω, ω,C,C) + . . . ,

dxC = −[ω,C]∗ +Υ(ω,C,C) + . . .

Spin-local vertices are local for any finite subset of fields

Gelfond, MV 2018

Projectively compact spin-local vertices are spin-local both in the space-

time coordinates and in the Y coordinates 2023
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Spinor Versus Tensor Formulations

Spinor model in d = 4: auxiliary variables YA = (yα, ȳα̇)

A = 1− 4 spinor index

Tensor model in any dimension d: auxiliary variables Y Ai

A = 0, . . . , d: AdSd vector index i = 1,2: sp(2) vector index

[Y Ai , Y Bj ]∗ = ηABϵij

TAB = −TBA :=
1

2
Y iAY Bi : o(d− 1,2)

tij = tji := Y Ai YjA : sp(2)
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Space of Functions

Components of the fields

ω(Y |x) =
∞∑
l=0

ωA1...Al ,B1...Bl
(x)Y A1

1 . . . Y
Al
1 Y

B1
2 . . . Y

Bl
2

sp(2) invariance

D(tij) = 0 : [ω , tij] = 0

implies that they are valued in all two-row rectangular Young diagrams
s-1

of o(d− 1,2)

The components are made traceless by the ideal factorisation

tij ∗ gij = gij ∗ tij ∼ 0

In the new approach both conditions are implemented by the

BRST formalism
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Adjoint BRST Approach

Let Tα be generators of a Lie (super)algebra g

[Tα , Tβ]± = f
γ
αβTγ

BRST operator

Q := cαTα −
1

2
f
γ
αβc

αcβbγ , Q2 = 0

[cα , bβ]± = δαβ , [cα , cβ]± = 0 , [bα , bβ]± = 0

Q usually acts on a left module V generated from the vacuum |0⟩

bα|0⟩ = 0 .

Elements v ∈ V are b–independent

v = v(c)|0⟩

In the construction of this talk Q acts via graded commutator

Q(a) := [Q , a]± , ∀a ∈ A .

14



Factorisation via Gauge Transformation

Important novelty: mixing between bα-dependent and bα-independent

sectors: let

ξ = ξβbβ

For cα, bα-independent ξβ ∈ A the transformation

δa = Q(ξ)

in the cα , bβ-independent sector has the form

Q(ξ)
∣∣∣∣
b=0

:= {Tβ , ξβ} .

That just describes the sp(2) ideal factorisation.

In the sector linear in Cα the Q invariance condition

Q(a) = 0

implies invariance of a under the adjoint action of g.
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Nonlinear 4d System

How to find nonlinear corrections to HS equations? The efficient trick

MV 1992 reduces the problem to De Rham cohomology with respect to

additional spinor variables ZA = (zα, z̄α̇) in presence of Klein operators K

ω(Y ;K|x) −→W (Z;Y ;K|x) , C(Y ;K|x) −→ B(Z;Y ;K|x) , Y A = (yα, ȳα̇)

Nonlinear HS Equations{
dxW +W ⋆W = i(θAθA+ (ηγ + η̄γ̄) ⋆ B)
dxB+W ⋆ B −B ⋆W = 0

determine ZA-dependence in terms of “initial data” ω(Y ;K|x) and C(Y ;K|x)

S(Z;Y ;K|x) = θASA(Z;Y ;K|x) is a connection along ZA (θA ≡ dZA)

η: complex coupling constant

γ := θαθαkκ , γ̄ := θ̄α̇θ̄α̇k̄κ̄

Klein operators K = (k, k̄) generate chirality automorphisms

kf(A) = f(Ã)k , A = (aα , āα̇) : Ã = (−aα , āα̇)

Inner Klein operators: κ = exp izαyα , κ̄ = exp iz̄α̇ȳ
α̇ , κ⋆f = f̃ ⋆κ , κ⋆κ = 1
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Extensions and Reductions

A∞ structure: Extension of W,B →W i
j , B

i
j ∈ A any associative algebra

Various YM groups are possible. There are always spin 2 and spin 0

fields in the singlet representation

(Anti)self-dual reduction (η = 0) η̄ = 0 1992

In this case only self-dual or anti self-dual components of the HS field

strengths couple with HS connections. (Anti)self-dual theory is far

simpler than the full one since it is free of current interactions.

Recall that the stress tensor for spin-one fields is

Tαβ,α̇β̇ = CαβC̄α̇β̇

If Cαβ or C̄α̇β̇ decouples, there is no stress tensor contribution.

Self-dual HS theory often called chiral is non-unitary (complex) since η

and η̄ are complex conjugated in Minkowski signature

Reduction with η = η̄ = 0 is even nicer. This is the free HS theory.
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HS Theories in any d within BRST Formalism

The BRST operator of osp(1,2) is

Q := cijτij + ciτi − (cinc
jn+

1

4
cicj)bij − 2cijcibj

osp(1,2) ghosts cij, ci, bij and bj

{cij , bnm} = δinδ
j
m+ δimδ

j
n , [ci , bj] = δij .

So defined BRST charge allows one to introduce the total differential

d := dZ +dψ +Q+ . . . , dZ := θiA
∂

∂ZiA
, dψ := λA

∂

∂ψA

With the collective variables Y := {θAi , λ
A, ZAi , Y

A
i , ψ

A,K, cij, bij} HS equa-

tions are formulated in terms of the fields A = (W,B)

A = A11(Y) ∗Π1 ∗ F +A22(Y;ϕ, ci, bi) ∗Π2 +A12(Y;ϕ+, c
i, bi) ∗ δ(ϕ−) ∗ Θ̄

+Θ ∗ δ(ϕ+) ∗ A21(Y;ϕ−, c
i, bi) ,

{Θ , Θ̄} = 1 , Π1 = ΘΘ̄ , Π2 = Θ̄Θ

A11 : A−model, A22 : B−model, A12 and A21-fermions
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HS Equations

Nonlinear HS equations take the form analogous to that of 4d HS theory

W ∗W =
1

2
(θiAθ

A
i +4gΛ−1θiθi ∗K ∗ K ∗ F (B)), [W ,B]∗ = 0

with

ui := VAU
A
i , V AVA = 1 , Kf(U) = f(Ũ)K , ŨA := UA− 2V AVBU

B

f(Y, ϕ) ∗ g(Y, ϕ) = (2π)−2(M+2)
∫
d2(M+2)Sd2(M+2)TdM+2αdM+2β

exp(2(αAβA − SAj T
j
A))f(Z + S, Y + S, ψ+ α, ϕ+ α)g(Z − T, Y + T, ψ − β, ϕ+ β)

Defining nonzero Weyl-Clifford commutation relations

[Y Ai , Y
B
j ]∗ = εijη

AB , [ZAi , Z
B
j ]∗ = −εijηAB ,

{ϕA , ϕB}∗ = ηAB , {ψA , ψB}∗ = −ηAB .
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Gauge Transformations

δW = [ϵ,W]∗ , δB = [ϵ ,B]∗ .

For

ϵ = ε+ ξ
ij
Wbij

with c, b-independent parameters ε and ξ
ij
W reproduce usual HS gauge

transformations and the factorization transformations, that factor out

terms proportional to τij in W .

Gauge symmetry responsible for the ideal factorization in the B-sector

δB = [W , ξB]∗ , δW = 2gΛ−1γ ∗ ξB , ξB = ξ
ij
B bij

makes sense in the BRST-extended equations due to the Q term in W.

Conjecture: The ξW,B gauge symmetries are responsible for nontrivial

coupling constants (vertices) in the theory provided that ξW,B are

demanded to be projectively-compact spin-local
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Metsaev’s Vertex Classification

Metsaev (2007) has shown that at d > 4 there exist many independent

HS vertices (conserved currents) with

s1 + s2 + s3 − 2smin ≤ Nmax
der ≤ s1 + s2 + s3

This suggests that there should be two coupling constants in d = 4 and

infinitely many independent coupling constants in d > 4 HS theory

This counting matches the results obtained recently with Yuri Tatarenko

2405.02452 for the d = 4 theory

But where are the coupling constants of the HS theories at

d > 4?

Nontrivial coupling constants are conjectured to result from the locality

restrictions on the ideal factorisation parameters in the BRST extended

version of the A-model equations and their SHS extension.

21



Conclusion

New supersymmetric HS gauge theory in any dimension is constructed

that unifies bosonic A and B models

A conjecture on the origin of the infinite number of independent cou-

pling constants associated with the vertices classified by Metsaev from

the relaxed ideal factorisation conditions is put forward

A new construction based on the BRST technique is developed that

greatly simplifies the form of the equations and can be analysed within

the differential homotopy approach

The BRST technique leads to the on-shell version

not to the off-shell?!
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Consequences

Analysis of HS gauge theory has a potential to affect the paradigm of

holographic corresondence replacing the gauge-gravity correspondence

by the conformal gravity - gravity correspondence.

The BRST extension of the HS equations has deep analogy with the

BRST description of String Theory: analogy between sp(2) ∼ sl2 and

Virasoro algebra has been noticed just after the original HS theory in

d dimensions was proposed in 2003 .

Having developed the BRST formalism gives a hope to find a direct

relation of the HS theory with String Theory

Q: 2d conformal field theory
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