Small-angle pp scattering track reconstruction

A. Terkulov

Lebedev Physical Institute, Moscow

√s: 3.5, 5.0, 6.0, 7.0, 8.0 GeV

t: -0.1, -0.2, -0.3, -0.4, -0.5, -0.6, -0.7, -0.8 $(GeV/c)^2$

A. Lvov's presentation:

https://indico.jinr.ru/event/1373/

range of interest in t: -0.1 -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 (GeV/c)²

problems: small $t \rightarrow$ small polar angle \rightarrow small # of hits in tracker (vertex, barrell and endcup)

special generator, which generates 2 protons in opposite directions with fixed \sqrt{s} and t, polar angle generates according with t, azimuthal randomly inside 2π . Vertex generation with $\sigma_z = 30$ cm

and $\sigma_{x,y} = 0.1$ cm

track selection: 2 tracks, each track is fitted and has fit parameters, for each track at least one hit in vertex part of tracker

$\sqrt{s} = 3.5 \text{ GeV}$ and t = -0.5(GeV/c)² vertex reconstruction

for interaction point $\sigma_{x,y} = 0.1 \text{cm} \rightarrow \text{extrapolate each track to z axis and find nearest points to this axis <math>(x_1, y_1, z_1) (x_2, y_2, z_2)$ and take average

Kinematic fit

kinematic fit: https://www.roma1.infn.it/~didomeni/MEPP/MEPP1900/14_MEPP1900_kinefit_4.pdf apply additional constrains for our variables in form: H(Y)=0 where H is vector $H = \begin{bmatrix} H_1(Y)=0 \\ H_2(Y)=0 \\ \vdots \\ H_k(Y)=0 \end{bmatrix}$ new equation: $\chi^2 = (Y - Y_0)^T \cdot V^{-1} \cdot (Y - Y_0) + 2 \cdot \lambda^T \cdot H$

linearization:
$$H(Y) = H(Y_0) + \partial H(Y_0) / \partial Y \cdot (Y - Y_0) = H(Y_0) + D \cdot (Y - Y_0)$$

after minimization $\chi^2 \rightarrow Y = Y_0 - V \cdot D^T \cdot (D \cdot V \cdot D^T)^{-1} \cdot d$ with $d = H(Y_0)$

our case:
$$Y = \begin{bmatrix} P_{x1} \\ P_{y1} \\ P_{z1} \\ P_{x2} \\ P_{y2} \\ P_{z2} \end{bmatrix}$$
 $H = \begin{bmatrix} P_{1x} + P_{2x} = 0 \\ P_{1y} + P_{2y} = 0 \\ P_{1z} + P_{2z} = 0 \\ 2 \cdot P_{0} - P_{1} - P_{2} = 0 \end{bmatrix}$ $P_{0} \rightarrow \text{beam impulse}$

fixed $\sqrt{s} = 3.5$ GeV t = -0.5(GeV/c)² kinematic fit

0.05 0.1 0.15 (P_x[reco] - P_x[gen])[GeV]

 $\sqrt{s} = 3.5 \text{GeV}, t = -0.5 (\text{GeV/c})^2$ 1800
1600
1400
1400
1200
Mean 0.0001153
Std Dev 0.01788

1000

800

600

400

200

-0.15

-0.1

-0.05

0

take for analysis elastic events only

for elastic events should be $\theta_1 + \theta_2 = \pi$

2 tracks, each track is fitted and has fit parameters, for each track at least one hit in vertex part of tracker, and event is elastic

2 tracks, each track is fitted and has fit parameters, for each track at least one hit in vertex part of tracker, fit gives for particle proton type, fabs($\theta_1 + \theta_2 - \pi$)<1° 0.95*E_{beam} <E₁<1.05*E_{beam} and 0.95*E_{beam} <E₂<1.05*E_{beam}

cuts like in blue, but nonelastic events

2 tracks, each track is fitted and has fit parameters, for each track at least one hit in vertex part of tracker, fit gives for particle proton type, fabs($\theta_1 + \theta_2 - \pi$)<1° 0.95*E_{beam}<E₁<1.05*E_{beam} and 0.95*E_{beam}<E₂<1.05*E_{beam}

cuts like in blue, corrected for efficiency and acceptance

t(GeV/c) ²	-0.1	-0.2	-0.3	-0.4	-0.5	-0.6	-0.7	-0.8
efficiency	0.45	0.62	0.68	0.75	0.8	0.83	0.85	0.87

efficiency for: 2 tracks, each track is fitted and has fit parameters, for each track at least one hit in vertex part of tracker, fit gives for particle proton type, fabs($\theta_1 + \theta_2 - \pi$)<1° and

 $0.95 \times E_{beam} \times E_1 \times 1.05 \times E_{beam}$ and $0.95 \times E_{beam} \times E_2 \times 1.05 \times E_{beam}$

√s = 3.5GeV

 $t(GeV/c)^2$ -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 -0.1 $\sqrt{s} = 5.0 \text{ Gev}$ 0.13 0.37 0.58 0.63 0.65 efficiency 0.52 0.67 0.7

efficiency for: 2 tracks, each track is fitted and has fit parameters, for each track at least one hit in vertex part of tracker, fit gives for particle proton type, fabs $(\theta_1 + \theta_2 - \pi) < 1^0$ and

 $0.95 \times E_{beam} \times E_1 \times 1.05 \times E_{beam}$ and $0.95 \times E_{beam} \times E_2 \times 1.05 \times E_{beam}$

 $1400 = -t = -0.1 [GeV/c]^2$ $t = -t = -0.2[GeV/c]^2$ 1200 $-t = -0.3[GeV/c]^2$ $-t = -0.4 [GeV/c]^2$ $1000 - t = -0.5 [GeV/c]^2$ $-t = -0.6[GeV/c]^2$ $800 \frac{-t = -0.7 [GeV/c]^2}{-t = -0.8 [GeV/c]^2}$ 600 400 200 –0.2 t_{rec}[GeV/c]² -0.8 -1.2-0.6-0.4 -1

√s = 5.0GeV

	t(GeV/c) ²	-0.1	-0.2	-0.3	-0.4	-0.5	-0.6	-0.7	-0.8
√s = 6.0 Gev	efficiency	0.004	0.23	0.37	0.48	0.54	0.58	0.61	0.63

efficiency for: 2 tracks, each track is fitted and has fit parameters, for each track at least one hit in vertex part of tracker, fit gives for particle proton type, fabs $(\theta_1 + \theta_2 - \pi) < 1^0$ and

 $0.95 \times E_{beam} \times E_1 \times 1.05 \times E_{beam}$ and $0.95 \times E_{beam} \times E_2 \times 1.05 \times E_{beam}$

√s = 6.0GeV

√s = 7.0 Gev	t(GeV/c) ²	-0.1	-0.2	-0.3	-0.4	-0.5	-0.6	-0.7	-0.8
	efficiency	0.0	0.11	0.26	0.35	0.44	0.5	0.54	0.57

efficiency for: 2 tracks, each track is fitted and has fit parameters, for each track at least one hit in vertex part of tracker, fit gives for particle proton type, fabs($\theta_1 + \theta_2 - \pi$)<1° and

$$0.95 \times E_{beam} < E_1 < 1.05 \times E_{beam} and 0.95 \times E_{beam} < E_2 < 1.05 \times E_{beam}$$

√s = 8.0 Gev

t(GeV/c) ²	-0.1	-0.2	-0.3	-0.4	-0.5	-0.6	-0.7	-0.8
efficiency	0.0	0.02	0.15	0.25	0.33	0.4	0.45	0.5

efficiency for: 2 tracks, each track is fitted and has fit parameters, for each track at least one hit in vertex part of tracker, fit gives for particle proton type, fabs($\theta_1 + \theta_2 - \pi$)<1° and

$$0.95 \times E_{beam} < E_1 < 1.05 \times E_{beam} and 0.95 \times E_{beam} < E_2 < 1.05 \times E_{beam}$$

Summary

1. Kinematic fit improves resolution for all variables and gives possibility study elastic scattering for small angles at the first stage

Backup

$$\sqrt{s} = 3.5 \text{GeV} \text{ t} = -0.1 (\text{GeV/c})^2 \theta = 12^0$$

$$\sqrt{s} = 6.0 \text{GeV} \text{ t} = -0.2 (\text{GeV/c})^2 \theta = 9^0$$

 $\sqrt{s} = 8.0 \text{GeV} \text{ t} = -0.3 (\text{GeV/c})^2 \theta = 8^0$

Proton with P=13Gev, vertex = (0,0,0)

azimutal ϕ : uniform distribution from 0 to 2π

 $t = -0.5(Gev/c)^2$ — polar angle 3^0

t(Gev/c) ²	hits in vertex tracker	hits in barrel tracker	hits in endcap tracker
-0.1	0	0	0
-0.2	0	0	2 - 4
-0.3	0	0	16
-0.4	0	0	21
-0.5	1	0	25 - 30
-0.9	3	0	30 - 32
-4.5	5	0	48

fit start P = 13Gev

fit start P = 1Gev

fit by straight line, no Kalman fit

Backup

polar angle 28°

