Small-angle pp scattering track reconstruction

A. Terkulov

Lebedev Physical Institute, Moscow

√s: 3.5, 5.0, 6.0, 7.0, 8.0 GeV

t: -0.1 , -0.2 , -0.3 , -0.4 , -0.5 , -0.6 , -0.7 , -0.8 (GeV/c)²

A. Lvov's presentation:

<https://indico.jinr.ru/event/1373/>

range of interest in t: -0.1 -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 (GeV/c)²

problems: small $t \rightarrow$ small polar angle \rightarrow small # of hits in tracker (vertex, barrell and endcup)

special generator, which generates 2 protons in opposite directions with fixed $√s$ and t, polar angle generates according with t, azimuthal randomly inside 2π. Vertex generation with σ_z= 30cm

and $\sigma_{_{\rm x,y}}$ = 0.1cm

track selection: 2 tracks, each track is fitted and has fit parameters, for each track at least one hit in vertex part of tracker

\sqrt{s} = 3.5 GeV and t = -0.5(GeV/c)² vertex reconstruction

for interaction point $\sigma_{_{\mathsf{x},\mathsf{y}}}$ = 0.1cm \rightarrow extrapolate each track to z axis and find nearest points to this axis (x₁,y₁,z₁) (x₂,y₂,z₂) and take average

Kinematic fit

$$
\chi^{2} = (Y - Y_{0})^{T} \cdot V^{-1} \cdot (Y - Y_{0}) \qquad V = \begin{bmatrix} \sigma_{1}^{2} & cov(y_{1}, y_{2}) & \dots & \dots \\ cov(y_{2}, y_{1}) & \sigma_{2}^{2} & \dots & \dots \\ \dots & \dots & \dots & \dots \\ \end{bmatrix} Y = \begin{bmatrix} y_{1} \\ y_{2} \\ \dots \\ y_{n} \end{bmatrix} \qquad V - \text{ covariance matrix}
$$

kinematic fit: https://www.roma1.infn.it/~didomeni/MEPP/MEPP1900/14_MEPP1900_kinefit_4.pdf apply additional constrains for our variables in form: $H(Y)=0$ \vert_{H} $H_1(Y) = 0$ $H_2(Y)=0$ **...** $\bm{H}_k(\bm{Y}) = \bm{0}$ ${\bf x}^2 = ({\bf Y} - {\bf Y}_0)^T \cdot {\bf V}^{-1} \cdot ({\bf Y} - {\bf Y}_0) + {\bf 2} \cdot {\bf \lambda}^T \cdot {\bf H}$

linearization:
$$
H(Y) = H(Y_0) + \partial H(Y_0)/\partial Y \cdot (Y - Y_0) = H(Y_0) + D \cdot (Y - Y_0)
$$

where
$$
D = \begin{bmatrix} \frac{\partial H_1}{\partial y_1} & \frac{\partial H_1}{\partial y_2} & \dots & \dots \\ \frac{\partial H_2}{\partial y_1} & \frac{\partial H_2}{\partial y_2} & \dots & \dots \\ \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots \\ \end{bmatrix}
$$
 is $k \times n$ matrix

after minimization χ^2 \rightarrow $Y = Y_0 - V \cdot D^T \cdot (D \cdot V \cdot D^T)^{-1} d$ with $d = H(Y_0)$

our case:
$$
Y = \begin{bmatrix} P_{xI} \\ P_{yI} \\ P_{zI} \\ P_{x2} \\ P_{z2} \\ P_{z2} \end{bmatrix}
$$
 $H = \begin{bmatrix} P_{1x} + P_{2x} = 0 \\ P_{1y} + P_{2y} = 0 \\ P_{1z} + P_{2z} = 0 \\ P_{1z} + P_{2z} = 0 \\ 2 \cdot P_0 - P_1 - P_2 = 0 \end{bmatrix}$ $P_0 \rightarrow$ beam impulse

fixed \sqrt{s} = 3.5GeV t = -0.5(GeV/c)² kinematic fit

 \sqrt{s} = 3.5GeV, t = -0.5(GeV/c)²

take for analysis elastic events only

for elastic events should be $\theta_1 + \theta_2 = \pi$

2 tracks, each track is fitted and has fit parameters, for each track at least one hit in vertex part of tracker, and event is elastic

2 tracks, each track is fitted and has fit parameters, for each track at least one hit in vertex part of tracker, fit gives for particle proton type, fabs(θ₁+ θ₂- π)<1⁰ $0.95*$ E $_{\rm beam}$ < E $_{\rm f}$ < 1.05 $*$ E $_{\rm beam}$ and 0.95 $*$ E $_{\rm beam}$ < E $_{\rm g}$ < 1.05 $*$ E $_{\rm beam}$

cuts like in blue, but nonelastic events

2 tracks, each track is fitted and has fit parameters, for each track at least one hit in vertex part of tracker, fit gives for particle proton type, fabs(θ₁+ θ₂- π)<1⁰ $0.95*E_{\rm beam}\!<\!E_{\rm i}\!<\!1.05*E_{\rm beam}$ and $0.95*E_{\rm beam}\!<\!E_{\rm j}\!<\!1.05*E_{\rm beam}$

cuts like in blue, corrected for efficiency and acceptance

$$
\sqrt{s} = 3.5 \text{ GeV}
$$

efficiency for: 2 tracks, each track is fitted and has fit parameters, for each track at least one hit in vertex part of tracker, fit gives for particle proton type, fabs(θ₁+ θ₂- π)<1º and

 0.95 * $\mathsf{E}_{\mathsf{beam}}$ < E_{1} <1.05* $\mathsf{E}_{\mathsf{beam}}$ and 0.95 * $\mathsf{E}_{\mathsf{beam}}$ < E_{2} <1.05* $\mathsf{E}_{\mathsf{beam}}$

 \sqrt{s} = 3.5GeV

 \sqrt{s} = 5.0 Gev

efficiency for: 2 tracks, each track is fitted and has fit parameters, for each track at least one hit in vertex part of tracker, fit gives for particle proton type, fabs(θ₁+ θ₂- π)<1 $^{\rm 0}$ and

 0.95 * $\mathsf{E_{\mathsf{beam}}}$ < $\mathsf{E_{\mathsf{1}}}\texttt{<}1.05$ * $\mathsf{E_{\mathsf{beam}}}$ and 0.95 * $\mathsf{E_{\mathsf{beam}}}$ < $\mathsf{E_{\mathsf{2}}}\texttt{<}1.05$ * $\mathsf{E_{\mathsf{beam}}}$

 \sqrt{s} = 5.0GeV

efficiency for: 2 tracks, each track is fitted and has fit parameters, for each track at least one hit in vertex part of tracker, fit gives for particle proton type, fabs(θ₁+ θ₂- π)<1 $^{\rm 0}$ and

 0.95 * $\mathsf{E_{\mathsf{beam}}}$ < $\mathsf{E_{\mathsf{1}}}\texttt{<}1.05$ * $\mathsf{E_{\mathsf{beam}}}$ and 0.95 * $\mathsf{E_{\mathsf{beam}}}$ < $\mathsf{E_{\mathsf{2}}}\texttt{<}1.05$ * $\mathsf{E_{\mathsf{beam}}}$

 \sqrt{s} = 6.0GeV

efficiency for: 2 tracks, each track is fitted and has fit parameters, for each track at least one hit in vertex part of tracker, fit gives for particle proton type, fabs(θ₁+ θ₂- π)<1 $^{\rm 0}$ and

 0.95 * $\mathsf{E_{\mathsf{beam}}}$ < $\mathsf{E_{\mathsf{1}}}\texttt{<}1.05$ * $\mathsf{E_{\mathsf{beam}}}$ and 0.95 * $\mathsf{E_{\mathsf{beam}}}$ < $\mathsf{E_{\mathsf{2}}}\texttt{<}1.05$ * $\mathsf{E_{\mathsf{beam}}}$ \sqrt{s} = 7.0GeV

 \sqrt{s} = 8.0 Gev

efficiency for: 2 tracks, each track is fitted and has fit parameters, for each track at least one hit in vertex part of tracker, fit gives for particle proton type, fabs(θ₁+ θ₂- π)<1 $^{\rm 0}$ and

$$
0.95 \times E_{\text{beam}} < E_{1} < 1.05 \times E_{\text{beam}} \text{ and } 0.95 \times E_{\text{beam}} < E_{2} < 1.05 \times E_{\text{beam}}
$$

$$
\sqrt{s} = 8.0 \text{GeV}
$$

Summary

1. Kinematic fit improves resolution for all variables and gives possibility study elastic scattering for small angles at the first stage

Backup

$$
\sqrt{s} = 3.5
$$
GeV t = -0.1 $(\text{GeV/c})^2$ θ = 12⁰

$$
\sqrt{s} = 6.0 \text{GeV} \, \text{t} = -0.2 (\text{GeV/c})^2 \, \theta = 9^0
$$

 \sqrt{s} = 8.0GeV t = -0.3(GeV/c)² θ = 8⁰

Proton with $P=13Gev$, vertex = $(0,0,0)$

azimutal φ: uniform distribution from 0 to 2π

 $t = -0.5(Gev/c)^2$ \longrightarrow polar angle 3⁰

fit start $P = 13Gev$ fit start $P = 1Gev$

$$
t = -0.9(Gev/c)^2
$$

fit by straight line, no Kalman fit

Backup

polar angle 28⁰

