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Collisions of nuclei of heavy ions in the experiment

. The colliding nuclei fly
towards each other (a),

. pass through each other, ®
forming excited matter (b).

. The hot region expands and
cools (c),

. a gas of interacting hadrons °
is formed (d),

. which expands, cools and
disintegrates into final
hadrons (e)

(a) (b) (c)

Schematic representation of a heavy ion collision.

e Chemical freeze-out occurs at a temperature (T.,) when inelastic processes that convert one
kind of hadronic species into a different one cease and the hadronic abundances stop
changing.

e Kinetic freeze-out occurs at a temperature (T,;,) when the momenta of the particles stop
changing, i.e., elastic and inelastic scatterings cease



Collision centrality

e Impact parameter b represents a vector Spectators

connecting the ion centers.

e Collision centrality was selected according
to the fraction of integral of the impact
parameter distribution.

e Central collisions correspond to the small
length of b, while peripheral to the large
length of impact parameter.
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What we want to estimate?

e Searching for the critical point and phase boundary in the QCD
phase diagram is currently a focus of experimental and
theoretical nuclear physics research.

Temperature T [MeV]

e However, before looking for signatures, it is important to know
the (T, uB) region of the phase diagram we can access. The

spectra of produced particles allow us to infer the T and uB
values at freeze-out.

e The systematic study of these bulk properties may reveal the
evolution and change in behavior of the system formed in o
heavy-ion collisions as a function of collision energy

1 Net b'aryon density n/ n,
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The kinetic freeze-out parameters are obtained by fitting the spectra
with a Blast-Wave model.

The model assumes that the particles are locally thermalized at a
kinetic freeze-out temperature (T, ) and are moving with a common
transverse collective flow velocity.

Assuming a radially boosted thermal source, with T, and a transverse
radial flow velocity B, the p, distribution of the particles is given by
equation:

X ]\,1

m_. - transverse mass, p (r) = tanh™ (B)

l,» K, - Bessel functions, B =2 * 3,/ (2+n)

B, - surface velocity, n - exponent of flow velocity
profile

Fit parameters: T, , B
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UrQMD model

The UrQMD model is a microscopic transport approach that is based on the binary elastic and inelastic
scattering of hadrons.

In our analysis it is utilized to simulate Ar+Ar, Kr+Kr, O+O collisions at Vs =6 and 12 GeV.

UrQMD provides a reasonable description of many observables (particle spectra and yields, flow, etc.) for
hadron—hadron, hadron—nucleus and nucleus—nucleus reactions across a large range of beam energies.

The used UrQMD setup considers only elastic and inelastic scatterings and may reproduce particle
multiplicities and collective motion measured by experiments

Statistics: V2M events
Particle cuts:

o PDG (i = +211, K* = +321, p (p-bar) = +2212)
o |yl<O1

Centrality was calculated using multiplicity.



Blastwave fits of p_ spectra for Ar+Ar

s o, UrGMD ArAr (5, =6GeV  0-5% S e, UrQMD Ar+Ar s, =6GeV  50-60%
zig 1%, ZI8107 %
Ola" e % curves: BWfits | 0| o= g, ®g curves: BW fits
g [ Em ot on_ g [ = ot on_
1 + t « 1071 :K é}j N10727 :K é}f
Blast-Wave fits of ", K, p and pBar p, b P z B ER
spectra in 0-5% central Ar+Ar collision at ,
10° =, -3
Vs, = 6 and 12 GeV. "na, 107 -
By 0 ..I
() ..I - .. ...
= 10° E 650 s 107 E -0 0090 ..I
kin +, %9 i 2, &
e 113 MeV at 0-5% at Vs, = 6 GeV ~3 ***ﬁ% : s M setny
—4 Py -5 *o,, 1% A O
o 127 MeV at 50-60% at Vs =6 GeV 10 p TS 0t Tt TN
NN 5 2 0.5 1 1.5 2
p, (GeVic) p, (GeVic)
0 =
116 MeV at 0-5% at Vs =12 GeV T o UrQMD Ar+Ar s, =12GeV  0-5% T o UrQMD Ar+Ar s, =12GeV  50-60%
® 136 MeV at 50-60% at Vs (=12 Gev  z§ ; %, zlS [ %,
Ol - e curves: BW fits | o oo (R curves: BW fits
B r ot" On B 0 oT" On
o » AK" 2K o AK" 2K

mp Op
-Fit .Fit

=p Op
-Fit - Fit

o "n
0..... '5.
X .Ge "uy -
N ) .
. éﬁ *a, oy
Dﬁﬁ ** On A
T, Tk By &,
5 1.5 2

2 .
P, (GeV/c) P, (GeV/c)



Blastwave fits of p_ spectra for Kr+Kr

Blast-Wave fits of *, K*, p and pBar P;
spectra in 0-5% central Kr+Kr collision at
Vs, = 6 and 12 GeV.
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Blastwave fits of p_ spectra for O+O
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Conclusion

e Spectra for the 1, K*, p and pBar were constructed for Ar+Ar, Kr+Kr, O+O at SPD energies
using UrQMD
o The spectra were fitted using the BlastWave (BW) model
o Extracted fit parameters T _and <@3>
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