

π/K/p spectra in Ar+Ar, Kr+Kr and O+O collisions at SPD energies in UrQMD

Anna Kraeva National Research Nuclear University MEPhI

October 29, 2024

Collisions of nuclei of heavy ions in the experiment

- 1. The colliding nuclei fly towards each other **(a)**,
- 2. pass through each other, forming excited matter **(b)**.
- 3. The hot region expands and cools **(c)**,
- 4. a gas of interacting hadrons is formed **(d)**,
- 5. which expands, cools and disintegrates into final hadrons (e) **Fig. 2** Schematic representation of a heavy ion collision.

- **Chemical freeze-out** occurs at a temperature (T_{ch}) when inelastic processes that convert one kind of hadronic species into a different one cease and the hadronic abundances stop changing.
- **Kinetic freeze-out** occurs at a temperature (T_{kin}) when the momenta of the particles stop changing, i.e., elastic and inelastic scatterings cease

Collision centrality

- **Impact parameter b** represents a vector connecting the ion centers.
- Collision **centrality** was selected according to the fraction of integral of the impact parameter distribution.
- Central collisions correspond to the small length of b, while peripheral to the large length of impact parameter.

- Searching for the critical point and phase boundary in the QCD phase diagram is currently a focus of experimental and theoretical nuclear physics research.
- However, before looking for signatures, it is important to know the $(T, \mu B)$ region of the phase diagram we can access. The spectra of produced particles allow us to infer the T and μ B values at freeze-out.
- The systematic study of these bulk properties may reveal the evolution and change in behavior of the system formed in heavy-ion collisions as a function of collision energy

Blast-Wave fit of spectra

- The kinetic freeze-out parameters are obtained by fitting the spectra with a **Blast-Wave model**.
- The model assumes that the particles are locally thermalized at a kinetic freeze-out temperature (T_{kin}) and are moving with a common transverse collective flow velocity.
- Assuming a radially boosted thermal source, with T_{kin} and a transverse radial flow velocity **β**, the **p_T** distribution of the particles is given by equation:

FIG. 36: (Color online) Blast wave model fits of π^{\pm} , K^{\pm} , p and \bar{p} pr spectra in 0-5% central Au+Au collisions at $\sqrt{s_{NN}}$ = (a) 7.7 GeV, (b) 11.5 GeV, (c) 19.6 GeV, (d) 27 GeV, and (e) 39 GeV. Uncertainties on experimental data represent statistical and systematic uncertainties added in quadrature. Here, the uncertainties are smaller than the symbol size.

 $\frac{dN}{p_T dp_T} \propto \int_0^{\infty} r dr m_T I_0 \left(\frac{p_T \sinh \rho(r)}{T_{\rm kin}} \right)$ $\times K_1\left(\frac{m_T \cosh \rho(r)}{T_{\text{min}}}\right),$ **m_τ** - transverse mass, **ρ (r)** = tanh⁻¹ (β) I_o , **K**₁ - Bessel functions, **β** = 2 * β_S / (2+n) **β_s** - surface velocity, **n** - exponent of flow velocity profile Fit parameters: T_{kin} , β

FIG. 37: (Color online) Variation of T_{kin} with $\langle \beta \rangle$ for different energies and centralities. The centrality increases from left to right for a given energy. The data points other than BES energies are taken from Refs. [43, 66]. Uncertainties represent systematic uncertainties.

Experimental results from: [Phys. Rev. C 96,](https://arxiv.org/abs/1701.07065) [044904 \(2017\)](https://arxiv.org/abs/1701.07065)

The UrQMD model is a microscopic transport approach that is based on the binary elastic and inelastic scattering of hadrons.

```
In our analysis it is utilized to simulate Ar+Ar, Kr+Kr, O+O collisions at \sqrt{s_{NN}} = 6 and 12 GeV.
```
UrQMD provides a reasonable description of many observables (particle spectra and yields, flow, etc.) for hadron–hadron, hadron–nucleus and nucleus–nucleus reactions across a large range of beam energies.

The used UrQMD setup considers only elastic and inelastic scatterings and may reproduce particle multiplicities and collective motion measured by experiments

Statistics: "2M events

Particle cuts:

- PDG (π^{\pm} = \pm 211, K^{\pm} = \pm 321, p (p-bar) = \pm 2212)
- $|y|$ < 0.1

Centrality was calculated using multiplicity.

Blastwave fits of p T spectra for Ar+Ar

Blast-Wave fits of π^\pm , K $^\pm$, p and pBar $\bm{{\mathsf{p}}}\rule{1pt}{1.5ex}$ spectra in 0-5% central Ar+Ar collision at $\sqrt{s_{NN}}$ = 6 and 12 GeV.

-
- T_{kin} =
● 113 MeV at 0-5% at √s_{NN} = 6 GeV
● 127 MeV at 50-60% at √s_{NN} = 6 GeV
-
-
- 116 MeV at 0-5% at \sqrt{s}_{NN} = 12 GeV
● 136 MeV at 50-60% at \sqrt{s}_{NN} = 12 Gev

Blastwave fits of p T spectra for Kr+Kr

Blast-Wave fits of π^\pm , K $^\pm$, p and pBar $\bm{{\mathsf{p}}}\rule{1pt}{1.5ex}$ spectra in 0-5% central Kr+Kr collision at $\sqrt{s_{NN}}$ = 6 and 12 GeV.

-
- T_{kin} =
● 106 MeV at 0-5% at √s_{NN} = 6 GeV
● 72 MeV at 50-60% at √s_{NN} = 6 GeV
-
- 106 MeV at 0-5% at \sqrt{s}_{NN} = 12 GeV
● 134 MeV at 50-60% at \sqrt{s}_{NN} = 12 Gev
-

Blastwave fits of p T spectra for O+O

Blast-Wave fits of π^\pm , K $^\pm$, p and pBar $\bm{{\mathsf{p}}}\rule{1pt}{1.5ex}$ spectra in 0-5% central O+O collision at $\sqrt{s_{NN}}$ = 6 and 12 GeV.

-
- T_{kin} =
● 72 MeV at 0-5% at √s_{NN} = 6 GeV
● 72 MeV at 50-60% at √s_{NN} = 6 GeV
-
-
- 72 MeV at 0-5% at \sqrt{s}_{NN} = 12 GeV
● 72 MeV at 50-60% at \sqrt{s}_{NN} = 12 Gev

Conclusion

- Spectra for the π^{\pm} , K^{\pm}, p and pBar were constructed for Ar+Ar, Kr+Kr, O+O at SPD energies using UrQMD
	- The spectra were fitted using the BlastWave (BW) model
	- \circ Extracted fit parameters T_{kin} and <β>