

π/K/p spectra in Ar+Ar, Kr+Kr and O+O collisions at SPD energies in UrQMD

Anna Kraeva National Research Nuclear University MEPhI

October 29, 2024

Collisions of nuclei of heavy ions in the experiment

- 1. The colliding nuclei fly towards each other (a),
- 2. pass through each other, forming excited matter **(b)**.
- 3. The hot region expands and cools (c),
- 4. a gas of interacting hadrons is formed **(d)**,
- 5. which expands, cools and disintegrates into final hadrons **(e)**

Schematic representation of a heavy ion collision.

- Chemical freeze-out occurs at a temperature (T_{ch}) when inelastic processes that convert one kind of hadronic species into a different one cease and the hadronic abundances stop changing.
- **Kinetic freeze-out** occurs at a temperature (**T**_{kin}) when the momenta of the particles stop changing, i.e., elastic and inelastic scatterings cease

Collision centrality

- Impact parameter b represents a vector connecting the ion centers.
- Collision **centrality** was selected according to the fraction of integral of the impact parameter distribution.
- Central collisions correspond to the small length of b, while peripheral to the large length of impact parameter.

- Searching for the critical point and phase boundary in the QCD phase diagram is currently a focus of experimental and theoretical nuclear physics research.
- However, before looking for signatures, it is important to know the (T, μ B) region of the phase diagram we can access. The spectra of produced particles allow us to infer the T and μ B values at freeze-out.
- The systematic study of these bulk properties may reveal the evolution and change in behavior of the system formed in heavy-ion collisions as a function of collision energy

Blast-Wave fit of spectra

- The kinetic freeze-out parameters are obtained by fitting the spectra with a Blast-Wave model.
- The model assumes that the particles are locally thermalized at a kinetic freeze-out temperature (\mathbf{T}_{kin}) and are moving with a common transverse collective flow velocity.
- Assuming a radially boosted thermal source, with T_{kin} and a transverse radial flow velocity $\boldsymbol{\beta}$, the \boldsymbol{p}_{τ} distribution of the particles is given by equation:

FIG. 36: (Color online) Blast wave model fits of π^{\pm} , K^{\pm} , p and $\bar{p} p_T$ spectra in 0–5% central Au+Au collisions at $\sqrt{s_{NN}}$ (a) 7.7 GeV, (b) 11.5 GeV, (c) 19.6 GeV, (d) 27 GeV, and (e) 39 GeV. Uncertainties on experimental data represent statistical and systematic uncertainties added in quadrature. Here, the uncertainties are smaller than the symbol size.

 $\frac{dN}{p_T \, dp_T} \propto \int_0^R r \, dr \, m_T I_0 \left(\frac{p_T \sinh \rho(r)}{T_{\rm kin}}\right)$ $\times K_1\left(\frac{m_T\cosh\rho(r)}{T_1}\right),$ $\mathbf{m}_{\mathbf{T}}$ - transverse mass, $\boldsymbol{\rho}$ (**r**) = tanh⁻¹ ($\boldsymbol{\beta}$) **I**, **K** - Bessel functions, $\beta = 2 * \beta_s / (2+n)$ β_s - surface velocity, **n** - exponent of flow velocity profile Fit parameters: T_{kin} , β

FIG. 37: (Color online) Variation of T_{kin} with $\langle \beta \rangle$ for different energies and centralities. The centrality increases from left to right for a given energy. The data points other than BES energies are taken from Refs. [43, 66]. Uncertainties represent systematic uncertainties.

results from:

Phys. Rev. C 96.

044904 (2017)

The UrQMD model is a microscopic transport approach that is based on the binary elastic and inelastic scattering of hadrons.

```
In our analysis it is utilized to simulate Ar+Ar, Kr+Kr, O+O collisions at \sqrt{s_{NN}} = 6 and 12 GeV.
```

UrQMD provides a reasonable description of many observables (particle spectra and yields, flow, etc.) for hadron–hadron, hadron–nucleus and nucleus–nucleus reactions across a large range of beam energies.

The used UrQMD setup considers only elastic and inelastic scatterings and may reproduce particle multiplicities and collective motion measured by experiments

Statistics: ~2M events

Particle cuts:

- PDG ($\pi^{\pm} = \pm 211$, K[±] = ±321, p (p-bar) = ±2212)
- |y| < 0.1

Centrality was calculated using multiplicity.

Blastwave fits of p_{τ} spectra for Ar+Ar

Blast-Wave fits of π^{\pm} , K[±], p and pBar p_T spectra in 0-5% central Ar+Ar collision at $\sqrt{s_{_{NN}}} = 6$ and 12 GeV.

- T_{kin} =
- 113 MeV at 0-5% at √s_{NN} = 6 GeV
- 127 MeV at 50-60% at $\sqrt[7]{s}_{NN} = 6 \text{ GeV}$
- 116 MeV at 0-5% at $\sqrt{s_{NN}}$ = 12 GeV
- 136 MeV at 50-60% at √s_{NN} = 12 Gev

Blastwave fits of p_{τ} spectra for Kr+Kr

Blast-Wave fits of π^{\pm} , K[±], p and pBar p_T spectra in 0-5% central Kr+Kr collision at $\sqrt{s_{_{NN}}} = 6$ and 12 GeV.

- T_{kin} =
- 106 MeV at 0-5% at $\sqrt{s_{NN}} = 6$ GeV
- 72 MeV at 50-60% at √s_{NN} = 6 GeV
- 106 MeV at 0-5% at $\sqrt{s_{NN}}$ = 12 GeV
- 134 MeV at 50-60% at $\sqrt{s_{NN}}$ = 12 GeV

Blastwave fits of p_T spectra for O+O

Blast-Wave fits of π^{\pm} , K[±], p and pBar p_T spectra in 0-5% central O+O collision at $\sqrt{s_{_{NN}}} = 6$ and 12 GeV.

- T_{kin} =
- 72 MeV at 0-5% at $\sqrt{s_{NN}} = 6$ GeV
- 72 MeV at 50-60% at $\sqrt{s_{NN}} = 6 \text{ GeV}$
- 72 MeV at 0-5% at $\sqrt{s_{NN}}$ = 12 GeV
- 72 MeV at 50-60% at $\sqrt{s_{NN}}$ = 12 GeV

Conclusion

- Spectra for the π[±], K[±], p and pBar were constructed for Ar+Ar, Kr+Kr, O+O at SPD energies using UrQMD
 - The spectra were fitted using the BlastWave (BW) model
 - Extracted fit parameters T_{kin} and $<\beta>$