
Web Applications for SPD Computing:
CRIC and beyond

Alexey Anisenkov (BINP)

IX SPD Collaboration meeting, 14 May 2025

Outline

2Generic DAQ monitoring: Online, Nearline, Offline plots and metrics
Experiment configuration, control and operations

CRIC: A unified Information framework for LHC
distributed computing and beyond

LHC Computing
 (ATLAS)

Grid information middleware: configuration
platform CRIC (Computing Resource information Catalogue)

1 2

3

Web-based control and monitoring systems for DAQ
applications

fwkweb shared apps: generic web framework

The Large Hadron Collider (LHC) at CERN

3

Exploration of new physics and energy frontier in pp and pb-pb collisions

ATLAS

LHC ring:
27 km
circumference

LHC Challenges

4

● 100+ PB/year capacity production
○ Current total:

■ All LHC: 1.5+ EB
■ ATLAS: 0.5+ EB (raw+sim+derived+replicas)

● Data analysis requires at least ~500k cores
(typical PC processor cores)

● Scientists in tens of countries worldwide

● CERN can provide only up to 20-30% of the storage
and CPU

Requires powerful large-scale computing & storage system;
Distributed-grid concept

Traditional
Global Grid Infrastructure layers

5

The middleware exposes heterogeneous
resources to VOs in a uniform interface
through the Grid:

• Computing Elements give access to CPUs

• Storage Elements give access to data

• Information systems describe the resources

• Authentication & Authorization

High-level VO-oriented middleware services &
applications (e.g. for ATLAS: PanDA, Rucio,
AGIS/CRIC, MONIT, TEST frameworks ..)

Middleware makes Illusion that distributed
infrastructure is a single resource.

Dedicated LHC optical Private Network

Basic Components of Grid
Middleware

Data
Services

Storage
Element

(SE)

File, Replica,
Metadata
Catalogs

File
Movement

Job
Management

Computing
Element

(CE)

Workload
Management

(Broker)

Scheduler

Service
Discovery

Information
&

Monitoring

Information
System

Job,
Network,
Service,

Monitoring

Accounting

Security
Service

Authorization

Authentication

Auditing

GRID
Access

API

CLI

WebUI

WLCG Computing Model
 (continuously evolving)

7

• Tier-1s:

permanent
storage, second
tape copy of data,
re-processing,
memory & CPU
intensive tasks,
analysis

• Tier-0 (CERN):

data recording
and archival,
prompt
reconstruction,
calibration and
and distribution

• Tier-2s + Tier-3s:
Simulation,
end-user analysis

> 2 million jobs/day
10-100 Gb links

(2016)

Pledges resources
(2016):

350k cores
(3.8M HEPSpec06)

700 PB of storage
(310PB disk +

390PB Tape)

nearly 170 sites,
42 countries

Integrates computer centres worldwide that provide computing and storage
resource into a single infrastructure accessible by all LHC physicists

* Initial MONARC architecture (1999) - Models of Networked Analysis at Regional Centers for LHC Experiments

● variety of computing resources and sub grids involved

● variety of infrastructures and middleware providers

Distributed Computing Environment: Resources

Alexey Anisenkov, NEC-2019 8

Research granted
access

 Opportunistic
backfilling

HPC

HPC “ “Standard”
Grid

WLCG Pledged
resources

Cloud
Volunteers

Rented,
on demand

Opportunistic
Opportunistic

backfilling

others ..

LHC Experiments (any modern HEP experiments) rely on
heterogeneous distributed Computing

➢ Each Community uses and describes Resources in its own way

○ Computing Models are similar but still have different implementation

○ Various high level VO-specific frameworks & middleware services
(e.g. for Data and Workflow management)

○ Cross experiments applications (monitoring, accounting, testing
frameworks, resource usage descriptors, etc)

➢ Apart from resources description, high level VO-oriented middleware
services and applications also require the diversity of common
configurations to be centrally stored and shared

Distributed Computing Environment: Experiments

9

…

Resource Configurations & VO applications
Resources description

Alexey Anisenkov, GRID-2018
10

Experiment apps, SW tools (Services)

OIM

Open
LDAP
BDII

…

GOCDB

Other
sources

 - Low-level infosys
 - Data providers
 - Service discovery

Rucio

Pilots
DDM

accountring

Installation
System

Testing
System

HammerCloud

Monitoring

 - VO applications
 - frameworks
 - shared services

Incomplete example
from ATLAS

 CRIC: a unified configuration system for a large scale,
heterogeneous and dynamic computing infrastructure

Alexey Anisenkov

Pilots

OIM

Open
LDAP
BDII

…

GOCDB

Grid
configurat

ion
databases

WLCG
Central

ops

GlideinWMS

Phedex

HW/SW Resources
Configuration layer

- Low-level configuration systems
- Data providers
- Service discovery components

- Central WebUI portal
- REST API services for data
export and modification
- Automatic data collectors
- Data validation

Experiment Applications
Frameworks, services layer

- Data Management System
- Workload management
systems
- Monitoring tools
- SW installation services
- Testing frameworks

High-level Information
middleware

➢ Consolidate topology information of a large scale distributed
dynamic computing environment

➢ Facilitate distributed computing operations for (LHC)** Experiments

Key functional capabilities of the CRIC information concept:
■ Built-in information Model(s) for Resource descriptions

■ Clear distinction between (physical) resources provided by grid (Sites) and

how they are used by Experiment(s)

■ Built-in aggregation and validation of data collected from various low-level

information providers (sources)

■ Ability to extend and complement Information Model(s) with Experiment(s)

specific data structures. Flexibility to address technology evolution and

changes in the VO Computing models and applications

■ Experiment-oriented but still Experiment-independent information

framework; Plugin based approach allows experiments to address own reqs

** Initially AGIS (CRIC) has been developed for the ATLAS experiment and then evolved to
whole LHC computing environment. Today thanks to Plugin based approach CRIC can be
applied beyond WLCG for a generic computing environment as unified information system
to address custom VO requirements

CRIC mission: link Resources & VOs together

Alexey Anisenkov
12

…

CRIC Architecture in a nutshell
■ Plugin based: VO can configure, extend and customize default behaviour
■ Applications based: VO enables only needed features out of the box
■ VO can rely on other plugins

■ Base implementation of Computing model -- GRID specific
■ REST API data export (filters, presets, various output formats)
■ Shared engine/widgets/apps for WebUI:

➢ calendars, table view, tree view, object view, inline editors, etc..
➢ changes confirmation edit forms
➢ custom object parameters, generic model configurations

■ Enhanced Authentication (IAM/SSO, SSL, passwd based; local accounts)
■ Enhanced Authorization (instance specific permissions, groups, roles, global

actions, map permissions to e-groups, fetch info from ext sources)
■ Detailed Changes log history
■ …

13

CORE CRIC

ATLAS CRIC

CMS CRIC

WLCG CRIC

NICA CRIC (SPD)

DATALAKE CRIC

fwkweb

➢ CRIC offers a common framework describing generic distributed computing environment
with also an advanced functionality to define all necessary VO specific settings

CMS CRIC

.

WLCG CRICATLAS CRIC

14

 CRIC family: each plugin activates what is needed

.

NICA
CRIC (SPD)

● ATLAS GRID Topology
● ATLAS Sites configurations

(frontier, squids, caches, ..)
● Dynamic configuration

(downtimes, blacklisting,
Functional tests matrix, ..)

● Compute and Storage configs
● ADC Extra settings/params

● WLCG GRID Topology
● Resource Usage by VOs
● VO pledges and requirements
● Accounting and validations

● WLCG Reports generation tools
● WLCG Resource Review Board

(RRB) plots
● TaskForces campaign info

● Simplified topology
● Downtime calendars

● Full Users, Groups, Roles
and permissions for
Auth and Authz by CMS
Web services and apps

DOMA CRICDUNE CRIC

..

Datalake

● Grid description
● Compute and

storage settings
● Dynamic

configuration

● Report generation,
accounting, other
grid related apps ??

Recent CRIC updates
■ Total code refactoring and unification of CRIC engine:

➢ Developed isolated fwkweb platform not depended on CRIC (set of
applications for generic web framework)

➢ Unified and migrated shared components from `core-cric` into `fwkweb`
➢ Refactoring and unification shared functionality into reusable applications for

web services (datatables, syslog, userauth, sslauth, ssoauth, core views, core
forms, core processing, frontend templates, metadata, other shared apps ..)

➢ Backport code from `core-cric` into `fwkweb`
➢ Populate fwkweb with new features and components

■ Upgrade of dependent 3rd party frameworks/applications for backend and

frontend services (Django, Bootstrap, jquery, javascript plugins and libraries, etc):

➢ BS4, BS5 support; Django4

■ Finished code migration to python3 (Alma9 OS):
➢ ATLAS-CRIC
➢ NICA-CRIC (SPD)

■ Implemented CRIC deployment using Docker containers and Docker compose

■ Regular updates for CORE-CRIC, ATLAS-CRIC and WLCG-CRIC
15

SPD CRIC status
■ SPD CRIC relies on ATLAS CRIC implementation; extends and customizes it

■ Enabled authentication and authorization via SPD IAM (spd-iam.jinr.ru)

■ Upgraded SPD CRIC installation:

➢ refactored and ported CRIC py3 version
➢ affected plugins: fwkweb, core-cric, atlas-cric, nica-cric
➢ includes all recent updates and fixes from core and ATLAS
➢ Implemented SPD specific changes in CRIC API (nica-cric)

■ Deployed in JINR alma9 cluster using Docker compose containers:
➢ https://spd-cric.jinr.ru
➢ deployment procedure docs:

https://git.jinr.ru/spd/spd-dc/cric/spd-cric-operations/
➢ Enabled DDOS protection (fail2ban)

■ In the process of SPD CRIC final production switch:
➢ Step by step migration of SPD services from cric.jinr.ru to spd-cric.jinr.ru

■ CRIC code sources are automatically mirrored from CERN CRIC repos into JINR gitlab
16

https://spd-cric.jinr.ru
https://git.jinr.ru/spd/spd-dc/cric/spd-cric-operations/

CRIC data concept: beyond CRIC

17

CRIC is the middleware framework designed to describe the topology of the Computing
models, providing unified description of resources and services used by Experiment
applications

DEFINE
model

CONNECT
resources

COLLECT
relations

INTEGRATE
status info

DECLARE
configurations

COMPLETE
validate data

OPERATE via
WebUI

DISTRIBUTE
via APIACT!

GRID specific data
(models, topology,

configs)

But it can be any
subject oriented

models stored in DB

Web applications: daqweb framework

18

● Independent project for DAQ applications: Configuration, Monitoring and
Operations

● Developed in parallel within CRIC era sharing same concepts, methodology
and somewhere completely reuse cloned modules from CRIC and vise versa

● daqweb follows same design concept of splitting project into set of
standalone applications which can be shared and extended later.

● Similar system with CRIC in terms of engine implementation (Django-based
web service, REST API, plugin-based, modular structures)

● Regular technology transfers between daqweb and CRIC projects, regular
sync of shared code components and updates.

● daqweb introduces new features specific for monitoring (interactive plots,
data visualization, templatags widgets, hardware controls, etc..)

● Cross experiments: in production for CMD-3 Collaboration; using by BINP
MRT X-tomography stations; worked dur run-1 in Muon G-2 at Fermilab

● Currently is being refactored to rely on fwkweb components

Brief introduction into subject area:
Role of monitoring tools in DAQ

Slow Control and monitoring system is a vital part of any HEP experiment

• Monitor the status of DAQ and DAQ hardware
• Monitor physical and environmental conditions
• Control the quality of data taken
• Control and operate hardware equipments

• Guarantee safety and correct functioning of whole system

19
Alexey Anisenkov, CHEP-2018

Basic sources of monitoring data
During the operations DAQ and related systems produce

a lot of information for experts and people on shift
that need to be monitored and taken into account

20

Direct read-out of
front-end electronics
(crates, subsystems)

DAQ
status

metrics

Nearline data
processing

Online Data quality
metrics

Slow Control
software sensors

Offline Data quality
metrics

Centralized
Slow control

hardware sensors

Archived Slow
Control data

Subsystems
monitoring
channels

Slow control Online DAQ

Run
Log

Offline Reconstruction

Alexey Anisenkov, CHEP-2018

• e+ e- collider VEPP-2000 at BINP (Novosibirsk)
• 7 detector’s subsystems + cryo, gases, HV, LV
• ~ O(1000) environmental sensors
• ~ O(100) monitoring histos, data quality plots

CMD-3 Experiment
daqweb system discussed in the talk was developed for CMD-3 detector

21

Typical small-to-medium scale HEP experiment

• 60 authors
• 10k event size,

1kHz FLT rate
Alexey Anisenkov, CHEP-2018

CMD3 DAQ: Architecture overview

22

MIDAS
(mhttpd)

Web Server

 Slow
Control DB

SC
frontends
(MIDAS)

Apache

Run DB

Online
Histograms

Offline
Histograms

DAQ
(MIDAS)

Offline
Analysis

ODB

Browser

Data sources
DAQ services

Equipment
DB

pymidas

Frontend
scripts

Shift
Schedule

Custom
Monitoring
services

Trend data

Online
Analysis

(analyzer)

Remote script
execution,
direct read out data

Access to
required
DB/sources

 + REST API
to fetch

monitoring
data

Web applications (Django, python, Bootstrap)

plots datatablesrunlog templatesadmin

scriptplots slowplots trendplotsslowsensors

g2calo g2utca nearlinelog runfieldlog

Core:

CMD-3

G-2:

...

...

...

syslog scriptsauth task runinfo

Alexey Anisenkov, CHEP-2018

Graphical component to draw plots

23

Own implementation of low-level plot.js widget based on D3.js

• Fully interactive,
dynamic data
visualization

• Data loading via
REST JSON API

• Implemented as
standalone JQuery
plugin

• Draw several graphs on
same pad within canvas

• Common X-axis slider
for all plots on a page

• Predefined time
windows

• And more..

Alexey Anisenkov, CHEP-2018

Interactive plots: some features

24

The same interface for
real-time and historical data

Automatic refresh
for real time data

Predefined
plot presets

Slow plots (time as x-axis)

Ability to zoom in/out for x,y axis
to get more detailed picture

Log scale, 2 y-axis on same pad,
custom data transformation (deriv)

Automatic zoom and switch
from lines to points level
depending on requested
x-time window;
Point details pop-up window

Alexey Anisenkov, CHEP-2018

Graphical component: shared implementation

25

Given plots application is used as a base engine for following components:

• Central Slow control data visualization (slowplots)

• Online and Nearline analysis data visualisation - run by run trending
(trendplots)

• Custom data monitoring
- Real-time read-out from frontend electronic

(e.g. temperatures of SiPM calorimeters at G-2 - g2calo)
- Draw monitoring data from custom db/source (e.g. monitoring of

 microTCA crate temperatures/params at G-2 - g2utca application)

G2calo plots G2utca plots CMD-3 trend plots

Alexey Anisenkov, CHEP-2018

Data quality plots (trend plots)

26

Different data flow to generate data quality metrics (online, nearline, offline)

 Slow
Control DB

MIDAS
ODB

Slow
control

Slow control plots:

Values vs time

DAQ

Online
data

monitor

Near real
time reco

Full
offline
reco

Monitoring ROOT
Histograms

Automatic
Analysis

Key parameters are
saved in RDMS
(resolution, avg

amplitudes, track rec
efficiency, etc..)

Run DB

DQ plots:

Values vs run #
Alexey Anisenkov, CHEP-2018

Implementation feature: Django template tag as widget

27

Special template tag encapsulates all complicated logic and allows easy
configuration of plots by users within WebUI

• Pages can be edited directly
(thanks to templatesadmin app
implemented)

• slowplot template tag specifies
plot configuration (sensors, pads,
colors, ranges, axis settings,
transformations, auto zoom, etc..)

We use Django tags to create “widgets”

Alexey Anisenkov, CHEP-2018

Remote script execution

28

The system is able to execute custom scripts from the web page, run them
real-time at required DAQ machines, and report exit code/stderr/stdout back

• Use distributed task queue Celery +
MySQL/RabbitMQ as message broker

• Register within the system corresponding
Task and track its status in WebUI

• Use template tags approach to customize
how data should be reported back to web

• Support for locking (multiple launch
protection) + appropriate authorization
checks

Base scripts component:

Typical use-cases and applications:
• Interactive hardware control (e.g. prepare boards for data taking, runscripts at CMD-3)

• To generate histograms/plots server-side with complicated analysis or involved several
data sources using ROOT/JSROOT
(e.g. scriptplots, offlineplots at CMD-3, trendplot at G-2)

Alexey Anisenkov, CHEP-2018

Request

Browser

DB

Task
Queue

Remote
Executor

DAQ PC1, PC2,..
Results

 (files, histos, logs, ..)

Add task

Authorization
checks

exec

Task status

Update

Check task
status

Get results

Apache user Online user (HW access)

daqweb: Example of plots in Offline apps

29

• Based on Remote
script execution

• Dynamic input
configuration (what
params should be
drawn, what axis,
reprocessing
campaign, etc..)

• Draw engine by
ROOT

• Static images,
But can be visualized
as well from ROOT
files client side

Runlog table view/operator helper (classic application)

30

Provides list of collected runs during shift with primary information exposed

• Interactive view to browse Run log table
operated by MIDAS

• Ability to update Run details if need

CMD-3 RunLog

Run Field Log at G-2

Highlight bad Runs
that require attention
by operator

Live filtering, customize
columns, resolve runs by
given shift/date

Provide shift overview in
numbers

Complement Run details
with parameters produced
by Offline Analysis

Links to online
histograms and
Run passport
page

Alexey Anisenkov, CHEP-2018

Same
tableview

as in
CRIC

• Web sockets support for Django applications

• Real-time (bidirectional, low latency, event-based)
communication between a browser and server(s)

• Lightweight production deployment using python native uWSGI
server with async capability by Socket.IO + gevent (event loop) +
Redis cache

• Possible applications: real time Data Quality Monitor,
Event-based data visualization (statistics)

Fwkweb updates: async wsgi support (2024)

31

Fwkweb: Event-based async DQM

32

• Ability to subscribe for
required channels and
receive immediately
updates once produced
by publisher

• DQM histos collected
real time by Online
Analyzer using ROOT

• publisher can produce
whatever aggregated
statistics or images

• Fully interactive images,
Client side visualization

fwkweb + daqweb engine (py3)

 Not covered in this talk

• Real-time monitoring using table representation
(slowsensors)

• Overall information about Runs, Online/Offline params
(runinfo)

• Update forms to change various information in databases

• Changes log and history of user actions made within the system
(syslog)

• Custom applications for particular subsytems:

- hardware control modules
- interactive forms to configure boards (e.g. triggersettings)
- remote execution of chain of scripts (loadelectronics)

Other applications

33

as in
CRIC

as in
CRIC

Conclusion
➢ Web technologies can be effectively used to build functional, handy and

attractive applications in various fields of activity

➢ CRIC offers an information framework describing Distributed computing
environment with advanced functionality to define all necessary
Experiment-specific configurations

➢ SPD CRIC py3 instance has been deployed; Waiting for the production
switch; Information model can be extended to cover any other grid
related use-cases

➢ fwkweb approach can be helpful to build configuration system for
specific data models beyond GRID subject area

➢ daqweb framework is actively used by CMD-3 in Online, Nearline and
Offline applications; It provides full access to various monitoring data as
well as possibility to configure hw equipment

➢ CMD-3 experience in web-based approach for DAQ applications might
be interesting for SPD

34

➢ Check CRIC:

○ https://spd-cric.jinr.ru (NICA-CRIC)
○ http://atlas-cric.cern.ch (ATLAS-CRIC)
○ http://cms-cric.cern.ch (CMS-CRIC)
○ http://wlcg-cric.cern.ch (WLCG-CRIC)
○
○ http://cms-cric-docs.web.cern.ch (CMS-CRIC documentation)
○ http://dune-cric.cern.ch (DUNE-CRIC)
○ http://datalake-cric.cern.ch (DATALAKE-CRIC)

35

Thank you for your attention!

https://spd-cric.jinr.ru
http://atlas-cric.cern.ch
http://cms-cric.cern.ch
http://wlcg-cric.cern.ch
http://cms-cric-docs.web.cern.ch
http://dune-cric.cern.ch
http://datalake-cric.cern.ch

CRIC features as the infosys middleware for VOs

36

➢ Helps to easily integrate new Computing technologies which
have not yet appeared in WLCG as the services or can not be
part of WLCG in general, ATLAS examples:
● newer type of SE based on ObjectStore technology
● Federated Access to storage (FAX redirectors, direct access to

remote files from Worker Nodes)
● Description of opportunistic/volunteer resources

➢ Helps to minimize side effects for end-user applications of
various internal migrations/changes/tests/evolution of
Distributed Computing components/infrastructure:

● Consolidation of protocols description that should be applied only
for few sites, unification of resources, migration to HTCondor

● Keeps data export in several format for backward compatibility

➢ Masks incompatible updates in external data providers,
implement missing functionality/overwrite/fulfill data:
● e.g. fix wrongly published number of cores, core-power
● remove direct dependency to ext sources (obsolete data

providers)

● are similar but still have different
implementation

● Various high level VO-specific frameworks &
middleware services (e.g. for Data and Workflow
management)

● Cross experiments applications (monitoring,
accounting, resource usage, etc)

➢ Apart of resources description, high level
VO-oriented middleware services and applications
also require the diversity of common configurations
to be centrally stored and shared

Alexey Anisenkov, GRID-2018

CRIC implementation details: Web2.0 based

Alexey Anisenkov, NEC-2019 37

• Apache/WSGI + Python + Django
framework as server backend

• Independent database backends
(Oracle, MySQL, Postgres, etc)

• Web Services technologies
(REST API, WebUI, widgets)

• Bootstrap framework as
HTML/CSS/JS client frontend
(responsive, interactive, mobile-friendly)

• Client AJAX, JQuery plugins, own
widgets (datatables, treeview, calendar
view, inline editors ..)

• Plugin based approach
(shareable applications in “core”
re-used by many components)

• Reuse various open-source components

WLCG CRIC

Dedicated CRIC instance for central WLCG operations

➢ Single entry point for complete WLCG topology description and service
configurations for the all 4 LHC experiments

➢ Main info provider for cross-experiment tools:
WLCG Accounting, Monitoring, Service Availability, Test submission systems,..

➢ Federation Pledges management and topology export (REBUS replacement)

➢ VOFeed XML generation (ALICE, LHCb)

➢ Management of VO Pledge Requirements

➢ Tracking of various Task Forces and Migration activities

➢ WLCG Accounting data validation (storage space and CPU capacity from
WSSA)

➢ WLCG Accounting Reporting

Alexey Anisenkov, NEC-2019 38
http://wlcg-cric.cern.ch

http://wlcg-cric.cern.ch/

Examples: Authorization and Authentication (A&A)

➢ CRIC supports enhanced Access controls and user Group management

➢ Several Authentication methods enabled (SSO, SSL, VOMS, local)

➢ Flexible utilisation of Permissions, Roles and Groups at various levels

➢ Fine grain A&A on the level of object (class, instance, global permissions)

➢ Ability to bootstrap User info/DB from whatever external source
 (CERN DB, Experiment DBs, config files, e-groups, VOMS roles, etc)

Each Experiment could configure own Data access policies!

User Profiles

SSO

SSL

VOMS

LocalUser Custom
Groups

permissions

Roles Group
memberships

Auth
Group

Alexey Anisenkov, NEC-2019 39

➢ CMS considers CRIC not only to define access rights within the system, but

also to control user privileges for CMS applications (CRAB, WMAgent, Phedex,
etc…). Relies on CERN SSO and local authentication.

➢ ATLAS uses a simpler Auth concept based on user’s DNs coming from VOMS

Experiment decides what elements should be used out of the
CRIC box to implement own policies and follow own workflow.

SiteDB
Groups

Groups
membership

Auth
Group

per Facility
Groups

Group
Responsib

ilities

Auth
Group

CMS User ATLAS
User

Example of A&A use-cases for different VOs

Roles

Roles

Alexey Anisenkov, NEC-2019 40

Automatic
sync with

CERN

AGIS vs CRIC: some history
AGIS was born in 2009 in ATLAS as the ATLAS Grid Information System:

➢ A collaborative project involving several institutes (BINP, JINR, BNL, Mephi, CERN IT)

➢ Several people involved in the course of the years

➢ More than 2 years to go from the design phase into production phase

➢ In full production as one of the ATLAS critical framework since LHC Run-1 (~2011)

➢ mainly ATLAS oriented information system

Successful experience of AGIS within ATLAS triggered WLCG management
to consider AGIS as a base platform for WLCG Information system.

CRIC is the evolution of AGIS framework beyond ATLAS (2016: CRIC era,
WLCG applications and beyond):

● Next-generation system, feractored and unified engine for WLCG
applications, VO-agnostic implementation

● focused to fit the needs of major experiments at LHC and beyond
41

