SPD Collaboration Week FEE for Straw Readout

JOINT INSTITUTE FOR NUCLEAR RESEARCH

Speaker: Vitaly Bautin on behalf of Straw Tracker Team

13.05.2025

Motivation:

- 30k+ channels
- 150um spatial resolution
- dE/dX charge resolution
- Simultanious Charge & Time measure

A dedicated R&D is ongoing to study the possibilities for STT Front-End Electronics (FEB) solution.

On-Chamber Motherboards

Special 19mm wide on-chamber motherboards have been created for the SPD straw tracker.

6-petal spring loaded contacts are used to connect straw wires. Easy to mount and dismount

A 64 tube prototype has been developed with X-U-V layers. Boards and FPC tested.

VMM3a FEE Prototype

Investigating existing readout solutions

8

Number of channels	64	
Clock frequency	1080 MHz	
Input capacitance	<300 pF	
Dynamic range	up to 2 pC	
Gain	0.5, 1, 3, 4.5, 6, 9, 12, 16 mV/fC	
Peaking time	25 / 50 / 100 / 200 ns	
ENC (energy branch)	<3000 e ⁻	
TDC binning	~1 ns	
Maximum event rate	140 kHz/ch	
Consumption	15 mW/ch	

VMM3/3A ASIC is well known chip for gaseous detectors. It has amplifier and shaper adjustable in a wide range. But it was not really done for the timing measurements so fastest shaping is 25ns and ToA mode has some issues.

VMM3 with External ADC

 Once the process is complete the ASIC can be switched readout phase. The first set of amplitude and time voltages is made available at the **analog** outputs. The address of the channel is serialised and made available at the digital output using six data clocks.

TKI

VMM3A FEB designed

Fe55 Source, Ar/CO2 70:30 Mixture

Time Measurements (Muon Testbeam April 2025)

DC/DC with Magnetic Field

Without DC/DC VMM3a consumption is 600mW @ 1.2V (500mA)

20mVpp pulsations so far. To be improved

HV Segmentation

Tests of the solid state relay for the STT readout boards at 3000 V

Summary table of SPD Straw Tracker parameters

Detector type	barrel	end-cap
Detector tasks	dE/dx	xy coordinates, dE/dx
Working mode	triggerless	triggerless
Detector inner diameter, mm	540	
Detector outer diameter, mm	1700	
Number of layers	30 (double layer)	2x, 2y, 2u, 2v
Number of stations, sections	8 sections	12 stations
Number of channels	32288	8192
Tube diameter, mm	10	10
Maximum tube length, mm	2400	1700
Central core diameter, mm	0.03	0.03
Maximum detector capacitance, pF	26	18,5
Gas detector	70 Argon, 30 CO ₂	70 Argon, 30 CO ₂
Operating voltage, V	+1650	+1650
Multiplication factor, HV=1750	4.5E4	4.5E4
Charge from the first electron, fC	7.7	7.7
Electron drift velocity, µm/ns	65	65
Electron drift time, ns	120	120
Ion drift time, µs	100	100
Spectral resolution, µm	150	150
Maximum load, kHz per tube	150	

See A. Solin report at SPD Coll. Meeting: https://indico.jinr.ru/event/3189/contributions/17520/attachments/ 13230/22121/14_Development%20of%20an%20ASIC%20for%20straw%20and%20micromegas%20detectors%20of%20the%20NICA-

Single Ended vs Differential ADC

ADC Driver: Single-Ended Input to Differential Output

The real benefit of differential signals is in noisy environments, because of increased common mode rejection

Timing resolutions obtained from a readout board equipped with VMM3a, MCU, and differential drivers for the internal ADC of the MCU with test pulses (300 fC) and different TAC slopes.

	TAC slope 100 ns	TAC slope 350 ns	TAC slope 650 ns
Slew rate	$10~{ m V}/\mu{ m s}$	$2.8~{ m V}/\mu{ m s}$	1.5 V/105
Bin size	30 ps	110 ps	pre 200 ps
Timing resolution	70 ps	230 ps	V 440 ps
EXTREM			

Test beam setup evolution

CERN, H8 + H4 (**2024**) 6x Si planes VMM / TIGER/ ATLAS ASD readout