Momentum resolution of straw detector in sextant geometry

Ruslan Akhunzyanov

Joint Institute for Nuclear Research

IX SPD Collaboration Meeting 15 May 2025

Current description of the straw tracker geometry in SpdRoot (development branch): octant version

8 modules (octants); each module consists from 31 double layer of straw tubes, with alternating tilt angles Z (0°) — U (+3°) — V (-3°)

Current description of the straw tracker geometry in SpdRoot (development branch): octant version

8 modules (octants); each module consists from 31 double layer of straw tubes, with alternating tilt angles Z (0°) — U (+3°) — V (-3°)

The tubes, one end of which comes out on the side of the module, have to be **removed** in this geometry, because no solution was found how to connect them to the gas system.

Octant geometry without short tubes

For tilt angle α = 3° from 20% to 55% of sensitive area of U/V layers is lost.

For tilt angle $\alpha = 2^{\circ}$ from 13% to 37% of sensitive area of U/V layers is lost *(shown above)*.

Dead zones in the central part.

Octant geometry without short tubes

SpdTsTBGeoMapper *tsb_mapper = SpdTsTBGeoMapper::Instance();

tsb_mapper->MakeShortStraws(false);

Comparison of octant geometries with / without short tubes

Sextant geometry: general view

Sextant geometry: cross section at z = L/2

z tubes form dense (honeycomb-like) packing everywhere, that enhances rigidity of the structure.

Between the z layers, u/v layers are inserted in a non-trivial way.

1) The radius of the oblique tubes is selected so as not to disturb the position of the z layers;

2) Widths of u/v layers are alternately extended or reduced in order to avoid dead zones at the joints of modules.

Sextant geometry: cross section at z = 0

Sextant geometry in SpdRoot

Branch straw-sextant-geometry

New class **SpdTsB**

In simulation script:

SpdTsB *ts_barrel = new SpdTsB();

run->AddModule(ts_barrel);

The octant version is available as SpdTsTB, as before.

Details of sample / analysis

Sample:

- Artificial isotropic sample
- Primary vertex in (0,0,0)
- Tracker configuration: MM+STRAW (sextant version / octant version [with short tubes])
- Initial momentum: 1 GeV / 5 GeV

Analysis:

- Cut on track fit convergency was applied.
- θ , p_T , p_L are expressed as functions of p_x , p_y , p_z , and their resolution (σ) is calculated for each track using the covariance matrix provided by GenFit
- Distributions $\sigma vs \phi$ and $\sigma vs \theta$ are plotted.

Transverse momentum resolution

MM+STRAW, p = 1 GeV/c: transverse momentum resolution

octant version

 $\frac{\sigma_{p_T}}{p_T}$

MM+STRAW, p = 5 GeV/c: transverse momentum resolution

 $\frac{\sigma_{p_T}}{p_T}$

octant version

Polar angle resolution

MM+STRAW, p = 1 GeV/c: polar angle resolution

MM+STRAW, p = 5 GeV/c: polar angle resolution

MM+STRAW, p = 1 GeV/c: polar angle resolution

 σ_{θ} vs ϕ , 80° < θ < 90° σ_{α} vs ϕ , 60° < θ < 70° σ_{α} vs ϕ , 40° < θ < 50° 0.025 0.025 0.025 40 40 -40 0.02 0.02 0.02 35 35 35 -30 30 30 sextant 0.015 0.015 0.015 25 25 25 version 20 20 0.01 0.01 0.01 15 15 0.00 0.00 0.005 0 2 σ_{θ} vs ϕ , 80° < θ < 90° σ_{α} vs ϕ , 60° < θ < 70° σ_{α} vs ϕ , 40° < θ < 50° 0.025 0.025 0.025 90 90 -90 -80 80 80 0.02 0.02 0.02 70 70 70 octant 60 60 60 0.015 0.015 0.015 50 50 version 40 40 0.01 0.01 0.01 30 30 20 0.005 0.005 0.005 10 0 2 2 2 -2 3 0 -2 0 -2

Longitudinal momentum resolution

 $p_L = p \cos \theta = p_T / \tan \theta$

Assuming independent errors of p_{τ} and θ :

 $\sigma_{p_L}^2 \approx p^2$

$$\cos^2\theta \left(\frac{\sigma_{p_T}}{p_T}\right)^2 + \frac{1}{\sin^2\theta}\sigma_{\theta}^2 \right], \qquad \left(\frac{\sigma_{p_L}}{p_L}\right)^2 \approx \left(\frac{\sigma_{p_T}}{p_T}\right)^2 + \frac{1}{\cos^2\theta\sin^2\theta}\sigma_{\theta}^2$$

Summary

- A new sextant geometry of the straw tracker has been proposed recently in place of problematic octant geometry.
- Special arrangement of u/v layers in this geometry allows to avoid dead zones at the joints of the modules.
- No additional passive material between modules in sextant geometry.
- It was implemented in SpdRoot in a separate branch straw-sextant-geometry.
- Transverse momentum resolution values for sextant and current octant geometries are close.
- Polar angle resolution in sextant geometry is 1.2-1.6 times worser than in current version.

Backup slides

Two types of modules

Sextant geometry: modification

Formulas

$$\begin{split} p_{T} &= \sqrt{p_{x}^{2} + p_{y}^{2}} \\ \frac{\partial p_{T}}{\partial p_{x}} &= \frac{p_{x}}{p_{T}}; \quad \frac{\partial p_{T}}{\partial p_{y}} = \frac{p_{y}}{p_{T}}; \\ \sigma_{p_{x}}^{2} &= \left(\frac{\partial p_{T}}{\partial p_{x}}\right)^{2} \sigma_{p_{x}}^{2} + \left(\frac{\partial p_{T}}{\partial p_{y}}\right)^{2} \sigma_{p_{y}}^{2} + 2 \frac{\partial p_{T}}{\partial p_{x}} \frac{\partial p_{T}}{\partial p_{y}} \cos(p_{x}, p_{y}) = \left(\frac{p_{x}}{p_{T}}\right)^{2} \sigma_{p_{x}}^{2} + \left(\frac{p_{y}}{p_{T}}\right)^{2} \sigma_{p_{y}}^{2} + 2 \frac{p_{x} p_{y}}{p_{T}^{2}} \cos(p_{x}, p_{y}) = \left(\frac{p_{x}}{p_{T}}\right)^{2} \sigma_{p_{x}}^{2} + \left(\frac{p_{y}}{p_{T}}\right)^{2} \sigma_{p_{y}}^{2} + 2 \frac{p_{x} p_{y}}{p_{T}^{2}} \cos(p_{x}, p_{y}) \end{split}$$

$$\theta = \arccos \frac{p_z}{p} = \arccos \left(\frac{p_z}{\sqrt{p_x^2 + p_y^2 + p_z^2}} \right)$$

$$\frac{\partial \theta}{\partial p_x} = \frac{p_x p_z}{p^2 p_T}; \quad \frac{\partial \theta}{\partial p_y} = \frac{p_y p_z}{p^2 p_T}; \quad \frac{\partial \theta}{\partial p_z} = -\frac{p_T}{p^2};$$

$$\sigma_{\theta}^2 = \frac{1}{p^4} \left[\frac{p_x^2 p_z^2}{p_T^2} \sigma_{p_x}^2 + \frac{p_y^2 p_z^2}{p_T^2} \sigma_{p_y}^2 + p_T^2 \sigma_{p_z}^2 + 2 \frac{p_x p_y p_z^2}{p_T^2} \operatorname{cov}(p_x, p_y) - 2 p_x p_z \operatorname{cov}(p_x, p_z) - 2 p_y p_z \operatorname{cov}(p_y, p_z) \right]$$

 $\phi = \arctan \frac{p_y}{p_x}$ $\frac{\partial \phi}{\partial p_x} = -\frac{p_y}{p_T^2}; \quad \frac{\partial \phi}{\partial p_y} = \frac{p_x}{p_T^2};$ $\sigma_{\phi}^2 = \frac{1}{p_T^4} \Big[p_y^2 \sigma_{p_x}^2 + p_x^2 \sigma_{p_y}^2 - 2 p_x p_y \operatorname{cov}(p_x, p_y) \Big]$

 $\frac{\sigma_{p_L}}{p_L}$

octant version

Number of hits in U/V layers

