

Объединенный институт ядерных исследований

Improvement of the energy resolution of ECal SPD

I. Zimin, V. Baranov, O. P. Gavrishchuk, E. Ginya, N. Huseynov, Yu. A. Kulchitsky, A. Maltsev

Problem & possible solutions

Лаборатория ядерных проблем им. В. П. Джелепова

Объединенный институт ядерных исследований

Now, it is impossible to buy fibers from famous companies for a good price. Russian-made fibers have an attenuation length of 600 mm. This leads to a deterioration in the performance of the detector.

Two possible solutions:

- Improving the characteristics of fibers.
- Using sets of scintillator with different light output to align the light collection from the cell (suggested by Oleg Gavrishchuk).

Our goal was to check the second method.

Monte Carlo model

Лаборатория ядерных проблем им. В. П. Джелепова

- Monte Carlo model: Geant4 (QGSP_BERT, G4EmStandardPhysics_option4).
- The same design as the real cell. Except transverse size is 400x400 mm².
- Beam: electrons and gamma-ray, energy from 0.05 GeV to 8 GeV.
- The Geant4 simulation is only on the level of particle-material interaction.
- For the estimation of the optical and electronics effect on the module characteristics we used empirical methods.

Longitudinal energy distributions for electrons

Лаборатория ядерных проблем им. В. П. Джелепова

Attenuation of the signal

Лаборатория ядерных проблем им. В. П. Джелепова

Объединенный институт ядерных исследований

$$A(x) = 0.5A_0 e^{-(L-x)/\lambda}$$

A - number of detected photons, A_0 - number of photons captured at a point x , λ - absorption length, L - WLS fiber ongitudinal energy distribution

Longitudinal energy distribution. Beam energy 1 GeV. The light attenuation (L) length = infinity

The light attenuation (L) length = 500 mm

Longitudinal signal distribution. Beam energy 1 GeV. The light attenuation (L) length = 500 mm

Distributions of the detected energy. Electron 1 GeV.

Лаборатория ядерных проблем им. В. П. Джелепова

	Infinite	2000 mm	1000 mm	500 mm
E, "MeV"	129.66±0.05	112.11±0.05	96.82±0.05	72.37±0.05
σ, "MeV"	4.84±0.04	4.26±0.04	3.97±0.04	3.70±0.05
σ/E	3.73±0.03%	3.80±0.03%	4.10±0.05%	5.12±0.07%
chi2/ndf	22/25	28/20	18/17	17/14

Объединенный институт ядерных исследований

Simulation based on experimental data

Attenuation of the signal, experimental data

Лаборатория ядерных проблем им. В. П. Джелепова

Объединенный институт ядерных исследований

Obtained with data measured by Vladimir Baranov and Eduard Ginya

Linearity. Simulation based on the experimental data.

Лаборатория ядерных проблем им. В. П. Джелепова

Gamma

Resolution. Simulation based on the experimental data.

Лаборатория ядерных проблем им. В. П. Джелепова

Объединенный институт ядерных исследований

Correction

Correction of the attenuation of the signal

OSL-8 Mirror

Лаборатория ядерных проблем им. В. П. Джелепова

Linearity. Correction.

 10^{-1}

Лаборатория ядерных проблем им. В. П. Джелепова

Объединенный институт ядерных исследований

Beam energy, GeV

Beam energy, GeV

Resolution. Correction.

Лаборатория ядерных проблем им. В. П. Джелепова

Объединенный институт ядерных исследований

Electron

Объединенный институт ядерных исследований

Optical and electronics effects

Resolution. Correction. Scintillation.

Лаборатория ядерных проблем им. В. П. Джелепова

Объединенный институт ядерных исследований

Electron

17

Results Лаборатория ядерных проблем им. В. П. Джелепова									
	Linearity								
	WLS shifter	Elec	etron	Gan	nma				
		from	to	from	to				
	OSL-8 (Not corrected)	3 GeV	4 GeV	3 GeV	5 GeV				
	OSL-8 (Corrected)	<u>0.2 GeV</u>	<u>8 GeV</u>	<u>0.1 GeV</u>	<u>8 GeV</u>				
	Kuraray Y11 (Not corrected)	0.9 GeV	8 GeV	0.8 GeV	8 GeV				
Resolution									
		Electron		Gamma					
WLS shifter		a, %	b, %	a, %	b, %				
	OSL-8 (Not corrected)	6.63±0.02	2.06±0.02	6.71±0.03	2.72±0.04				
	OSL-8 (Corrected)	<u>6.66±0.02</u>	<u>1.12±0.04</u>	<u>6.63±0.02</u>	<u>1.60±0.04</u>				
	Kuraray Y11 (Not corrected)	5.64±0.02	0.88±0.04	5.66±0.02	1.16±0.03				

Verification of the Monte Carlo model

Лаборатория ядерных проблем им. В. П. Джелепова

Объединенный институт ядерных исследований

A cross check was carried out with the model of Andrey Maltsev. The models have a good agreement among themselves. Difference between results in Maltsev's and Zimin's decreased from 10 to 1%.

List of changes in the model what significant impact on the result:

- Choose PhysicsLists: G4HadronPhysicsQGSP_BERT_HP, G4EmStandardPhysics_option4;
- Get only Ionizing Energy Deposit;
- Choose newer version of Geant4.

Conclusions

Лаборатория ядерных проблем им. В. П. Джелепова

- A Monte Carlo model of the ECal was made (Geant4).
- Calculated the linearity and the energy resolution of the ECal with Kuraray Y11 and OSL-8 fibers. Showed that the characteristics of the ECal with Kuraray Y11 is better than with OSL-8.
- Checked the method when using sets of scintillation plates with different light output.
- Showed that the method provides the linearity of the ECal with fiber OSL-8 and plate sets 100, 85, 65% from 0.2 GeV to 8 GeV.
- Showed that the method improves the energy resolution of the ECal with fiber OSL-8 and plate sets 100, 85, 65%. For electrons $a = 6.66 \pm 0.02$, $b = 1.12 \pm 0.04$ and for gamma $a = 6.63 \pm 0.02$, $b = 1.60 \pm 0.04$. Constant members have decreased about 45%.

Объединенный институт ядерных исследований

Thank you for your attention!

Longitudinal energy distributions, electrons vs gamma

Лаборатория ядерных проблем им. В. П. Джелепова

Longitudinal energy distributions for different attenuation lengths

Лаборатория ядерных проблем им. В. П. Джелепова

Объединенный институт ядерных исследований

Electron 1 GeV

Correction of the attenuation of the signal

Лаборатория ядерных проблем им. В. П. Джелепова

Setup details

- 200 layers of shashlyk: 0.5 mm Pb/1.5 mm scintillator
- 50 MeV cell energy threshold, 4x4 cm cell
- L_{Att}= 1.0 m, R = 0.9, 5000 photoelectrons per 1 GeV in scintillator

Effect of corrections on ECAL resolution

SPD ECAL resolution

SPD ECAL resolution

All other corrections are also applied

Bigger contribution is from photoelectron statistics