#### Cluster particle production @SPD experiment. Pythia vs Herwig

#### D. Budkouski<sup>1,2</sup>A. Tumasyan<sup>3</sup>, S. Shmatov<sup>1</sup>

<sup>1</sup>JINR (Dubna) <sup>2</sup> INP BSU (Minsk) <sup>4</sup> ANSL (Yerevan)

SPD collaboration meeting, 15 May 2025

#### Motivation

- Partons products of hadron-hadron hard scattering are not accessible for direct measurement
- We can get an information about these particles from the final state products resulting from harmonization of quark-gluon shower created by the initial parton
- If the energy of parton is high in the final state a *jet* of particles will be formed, which will correspond to initial parton
- The goals of this study:
  - Understand the admissibility of such approximation at low energies
  - Study processes of parton production at energy region between non-pQCD and pQCD

# **Event generation**

- Pythia8/Herwig/Herwig+MadGraph generators and FastJet package were used
- Energy of collisions  $\sqrt{s} = 27 \text{ GeV}$
- Herwig's generation parameters are setup same as Pythia
- Clustered jets were matched to:
  - ➢ hard scattered parton (status = 23) Pythia
  - > Highest  $p_T$  parton among all particles Herwig/ Herwig+MadGraph
- To reconstruct parton's  $p_T$  decision tree was used
- Considered cases:
  - $\succ$  qg→qγ process
  - All QCD processes

#### **Selection strategies**

- anti-kt algorithm with parameter R = 0.4, 0.8, 1.2 was used for jet clustering
- Jet was clustered from final state particles with  $p_T > 0.25$  GeV and  $\eta < 5$
- Jet should have at least two particles
- $qg \rightarrow q\gamma$  process
  - > Leading jet  $p_T$  cuts:  $p_{T, jet}$  >3 GeV, >4 GeV, >5 GeV.
  - Leading photon is excluded from jet
- QCD processes (Inclusive case)
  - > Leading jet  $p_T$  cuts:  $p_{T, jet}$  >3 GeV, >4 GeV, >5 GeV.
  - > At least 2 jets in event
  - > Secondary jet  $p_T$  > 2 GeV

# Boosted decision tree training

- $qg \rightarrow q\gamma$  process training parameters
  - $\succ p_x$ ,  $p_y$  of leading jet
  - $\succ$  leading jet  $\eta$
  - ➤ leading jet particle multiplicity
  - > Mean  $p_T$  of jet particles
  - $\succ p_x$ ,  $p_y$  of leading and secondary particles in jet
- Inclusive case training parameters
  - $\succ p_x$ ,  $p_y$  of secondary jet in addition to already mentioned parameters
- Jets reconstructed with different R are used together for training

Pythia -  $q_{,q} \rightarrow q\gamma$  process



- Regression gives good prediction to parton p<sub>T</sub>
- Since cuts on photon doesn't applied, it increases statistics but keep the reconstructed parton p<sub>T</sub> same as with cuts



# Pythia - QCD processes



- QCD processes produce jets that cannot be simply associated with initial parton
- Problem is caused by events with high  $p_T$  jets and low  $p_T$  parton
- Regression gives reasonable results for initial parton  $p_T$



# Herwig+MadGraph - $qg \rightarrow q\gamma$ process



 Jets have good association with the parton even without any special cuts



# Herwig+MadGraph - QCD processes



- Surprisingly, jets have good association with partons
- Apparently, it's related to different jet-parton matching



# Herwig - QCD processes





Same situation with herwig without madgraph

# Transverse momentum of Herwig/Pythia partons



- Pythia produces hard-scattered partons with "more reasonable" momentum
- Partons used in Herwig has higher momentum, which is closer to momentum of jets

#### Conclusion and plans

- Kinematical properties of partons and clustered jets were compared on generator level for Pythia and Herwig
- Using regression can be a solution to reconstruct kinematics of initial parton for inclusive case in Pythia
- Since Herwig+MadGraph produces "weird" hard-scattered partons it was decided to use the highest  $p_T$  parton in event as initiator parton
- It gives better agreement between jet  $p_T$  and parton  $p_T$  in comparison to pythia
- Plans:
  - Investigate differences between Pythia and Herwig
  - Repeat this study with full simulation of detector

# Back up

#### Jets at low energies in other experiments

- Jets at low energies were studied in 70s-80s in many experiments: PETRA, SFM 412, Pisa–Stony Brook, AFS etc.
- Since there was not good enough clustering algorithms, single high p<sub>T</sub> hadrons and clusters of particles were considered as jets
- Main idea of those experiments was in confirmation of events with jets and measurement cross sections

https://inspirehep.net/literature/179516 https://inspirehep.net/literature/153610 https://inspirehep.net/literature/100764 https://inspirehep.net/literature/188734

#### $qg \rightarrow q\gamma$ process with prompt photon cuts



- High p<sub>T</sub> jets have good association with initial parton
- Regression improve σ but not significantly





# Particle multiplicity and pt in event





# Clustered jet ( $\phi$ , $\eta$ ) vs parton ( $\phi$ , $\eta$ )



Jets and partons moves in the same direction

- Jets are clustered with *anti-k<sub>t</sub>* algorithm
- Distance between objects in *anti-k*<sub>t</sub> algorithm defined as  $d_{ij} = \min\left(\frac{1}{k_{ti}^2}, \frac{1}{k_{tj}^2}\right) \frac{\Delta_{ij}^2}{R^2}$ , where  $\Delta_{ij}^2 = (y_i - y_j)^2 + (\varphi_i - \varphi_j)^2$
- The functionality of the algorithm can be understood by considering an event with a few hard particles and many soft ones
  - If hard particle 1 has no hard neighbours within a distance 2R then we have one perfectly conical jet
  - ► If another hard particle 2 is present such that  $R < \Delta_{12} < 2R$  then we have two jets with some overlapping parts
  - > If distance between particles 1 and 2  $\Delta_{12}$  < *R* then both formed one jet

#### Process $qg \rightarrow q\gamma$ cross section ( $\sqrt{s} = 27 \text{ GeV}$ )



- Expected instantaneous luminosity  $10^{32} cm^{-2} s^{-1}$
- For 100 days of work integral luminosity ~  $10^5 nb^{-1}$
- We have enough statistics even for high  $p_T$  partons
- For partons with  $p_T > 3GeV$  we expect ~  $10^6$  events