Readout electronics for the FARICH prototype (status and perspectives)

Ivan Kuyanov

Budker Institute of Nuclear Physics, Novosibirsk, Russia

IX SPD collaboration meeting

Yerevan, 13 may 2025

FARICH prototype at the BINP VEPP-4 test facility

Electron beam parameters:	
Energy range	up to 2.5 GeV
Averaged intensity	up to 100 e⁻ / s
Energy spread	2.6%

Purpose of the tests beam:

- Testing the prototype photodetector and readout electronics
- Testing of Cherenkov aerogel radiators

FARICH prototype readout

Photon Detector:

4x H12700 MaPMTs (Hamamatsu):

- flat panel
- 8x8 anode pixels of 6mm size (52mm detector size)

Electronics:

GSI TRB3 platform:

- 2 TRB3 boards (four FPGA-based TDCs with < 20 ps RMS time precision between two channels and 256 channels in total.
- 21 PADIWA (16x channels discriminator) 336 channels (cover 5 64-channel PMTs)
- 2 DIRICH module (discriminator + TDC) 768 channels (cover 12 64-channel PMTs)
- 1104 channels in total (17 64-channel PMTs).
- Each TRB board transmits data via Gbitethernet switch to a PC
- GSI DABC software used for DAQ from TRB

13.05.25

I. Kuyanov IX SPD collaboration meeting

FARICH prototype readout

I. Kuyanov IX SPD collaboration meeting

100

0

-200

-100

200 X_{xit}-X_{track},mm

FARICH prototype readout. Perspectives.

GSI platform is very convenient, flexible and scalable, but prototype needs to be upgraded to allow full ring registration with new photomultiplier.

The proposed candidate is a MCP PMT "Ekran FEP".

To read 36 photomultipliers, 2304 electronic channels are required!

It is necessary to look for a replacement for the current electronics from GSI!

Square MCP PMT from "Ekran FEP" 8x8 anode of 3mm size

DMXG64 ASIC

The DMXG64 ASIC was developed in BINP for various GEM-based detectors:

- 64 input channels with low-noise charge sensitive amplifier
- analog memory for 100 samples
- minimum time gap of 100 ns between measurements
- maximal signal up to 2 × 10⁶ electrons
- equivalent noise charge (ENC) for input low channel capacity (<10 pf) < 4 × 10³ electrons

V. Aulchenko et al 2017 JINST 12 C05004

The GEM-based detector in the Laser Polarimeter facility

The detector electronics have modular design and encompass several boards:

- readout board with GEMs and pad readout structure
- ten FE-boards
- CPU board (DE10-Nano develompment kit)

Dead time < 250µs at 4 kHz trigger rate

Each FE-boards contains two DMXG64 64 channel ASICs with 14bit ADC (1 MSPS) and Altera MAX10 FPGA for reads out.

The FE board can work standalone without CPU board.

 $T_{r/o} \le 6.4 \mu sec$ to read out 64 pixels (1 frame 100ns).

V. Kaminskiy et al 2020 JINST **15** C08019

DMXG64 based FE-boards for reading FARICH PMTs

Preliminary tests have shown that the board can register 1pe pulses from PMT Hamamatsu.

Adapters from PMTS hamamatsu and Ekran FEP to FE-boards are produced.

Further research into the operation of the PMTs with the FE-board is needed.

BINP has a sufficient number of produced DMXG64 to create the required number of channels of the FARICH prototype electronics.

The current parameters FE-board should be good for the FARICH prototype, but for further experiments it is possible that the board needs to be upgraded. (Faster ADC, reduction DMXG64 chip frame length)

Summary

The FARICH prototype needs to be modernized to enable registration of the full ring.

The proposed candidate for FARICH photo detectors is a MCP PMTs "Ekran FEP".

It is necessary to increase the number of electronic channels.

It is possible to replace the TRB3 platform with laser polarimeter facility electronics based on a DMSG64 chip developed at BINP.

The current parameters FE-board should be good for the FARICH prototype, but for further experiments it is possible that the board needs to be upgraded: Faster ADC, reduction DMXG64 chip frame length.

Further research into the operation of the PMTs candidats for FARICH prototype with the FE-board is needed.